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Abstract

The nk model of fitness interactions is examined. This model has been used by previous authors to investigate the effects of fitness
epistasis on substitution dynamics in molecular evolution, and to make broader claims about the importance of epistasis. To
examine these claims, an infinite-allele approximation is introduced. In this limit, it is shown that the nk model is, at an appropriate
level of description, formally identical to the non-epistatic House-of-Cards model—a well-studied model in theoretical population
genetics. It is further shown that in many parameter regimes, the analytical results obtained from this infinite-allele approximation
are very close to results from the full nk model (with a finite number of alleles per locus). The findings presented shed light on a

number of previous results.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When the fitness effect of an allele varies with the
genetic background in which the allele is present, we say
there is epistasis for fitness. When the fittest allele in one
genetic background is not the fittest allele in another
background, then we have ‘rank-order’ or ‘reverse-sign’
epistasis. The effects of such epistasis are most
prominent when highly divergent individuals hybri-
dize—causing post-zygotic reproductive isolation, or
its within-population analogue, outbreeding depression
(Barton, 2001; Edmands, 2002). However, the sugges-
tion that such epistasis might play a role in the adaptive
evolution of single populations has been far more
controversial (Whitlock et al., 1995; Coyne et al.,
1997; Wolf et al., 2000). A key question is whether
segregating alleles often encounter genetic backgrounds
that are sufficiently different for significant epistasis to
be manifest—i.e. whether genetic variation of the
appropriate kind is present.
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These issues aside, it is clear that fitness epistasis
might have important evolutionary consequences even
when little genetic variation of any kind is present. One
of these consequences is the existence of multiple
genotypes with higher fitness than all of their one-
mutant neighbours (the one mutant neighbours of a
given genotype are those genotypes that may be reached
by a single mutational event). Since these locally optimal
genotypes may have lower fitness than the best possible
combination of alleles (the global optimum), and double
mutations are rare, populations may become ‘trapped’
at globally suboptimal states (Wright, 1932; Maynard
Smith, 1970; Kauffman and Levin, 1987; Whitlock et
al., 1995). In addition, when multiple local optima exist,
the stochastic appearance of mutations may be an
important diversifying force in evolution—bringing
about the evolutionary divergence of isolated popula-
tions subject to identical selection pressures (e.g., Mani
and Clarke, 1990).

A second possible consequence of fitness epistasis is
the occurrence of non-independent substitution events.
This stems from the fact that the fixation of a particular
allele may alter the selective context for other alleles,
actively inducing further substitutions, or preventing


www.elsevier.com/locate/yjtbi

330 J.J. Welch, D. Waxman | Journal of Theoretical Biology 234 (2005) 329-340

them from taking place. When substitutions induce
further substitutions, molecular evolution may be
characterized by concerted bursts of change. This is
one possible explanation for the overdispersal of the
molecular clock—the empirical finding that the variance
in the number of non-synonymous substitutions in a
lineage may greatly exceed the mean number (Maynard
Smith, 1970; Fitch and Markowitz, 1970; Gillespie,
1984; Kimura, 1985; Stephan and Kirby, 1993; Ohta,
1997a, b).

These, and other effects of fitness epistasis have been
invoked to explain an increasing range of empirical
results (e.g. Lenski and Travisiano, 1994; Korona, 1996;
Kichler Holder and Bull, 2001; Schrag et al., 1997; Elena
et al., 1998; Burch and Chao, 1999; Moore et al., 2000;
Elena and Lenski, 2001; Jeong et al., 2001; Kondrashov
et al., 2002; Fraser et al., 2002). Despite this, however,
there has been a relative dearth of quantitative
theoretical predictions. A possible explanation is the
sometimes baroque complexity of the models used to
study genetic interactions. An exception, in this respect,
is the “nk model” introduced by Kauffman and Levin
(1987; cf. Felsenstein, 2000; Barton and Keightley,
2002). The nk model has the advantage that the level
of fitness epistasis may be tuned by adjusting a single
parameter, denoted k; but despite this simplicity, it is
able to account for a rich variety of empirically observed
phenomena (see below). In addition, the adequacy with
which the nk model represents a particular biological
system is, in theory, open to empirical test (e.g.,
Kauffman and Weinberger, 1989; Fontana et al., 1993;
Jeong et al., 2001; Fraser et al., 2002).

Previously, the nk model has been used to investigate
both the properties of local optima, and substitution
dynamics in molecular evolution. In particular, Kauff-
man and Levin (1987) and others (Weinberger, 1991;
Macken and Perelson, 1989; Kauffman, 1993; Perelson
and Macken, 1995) investigated statistics concerning the
number and fitness values associated with locally
optimal genotypes. Kauffman (1993) showed that
increasing the epistasis parameter, k, causes the number
of local optima to increase, but their expected fitness to
decrease. As such, he suggested that when an equili-
brium was reached, populations characterized by a high
value of k would tend to be at a severe selective
disadvantage compared with populations characterized
by a smaller value of k. He dubbed this finding “the
crisis of complexity” (Kauffman, 1993). Ohta (1997a, b,
1998) used individual-based simulation to investigate the
substitution process under the nk model. Choosing
parameters so that both natural selection and genetic
drift played an important role in substitutions, Ohta
showed that overdispersal of the substitution process
could result. With this in mind, the nk model was
described as a generalization of Gillespie’s (1984)
‘mutational landscape model,” which was introduced

to model coordinated bursts of selectively-driven sub-
stitutions. Furthermore, and in seeming contradiction to
Kauffman (1993), Ohta showed that the equilibrium
level of fitness attained in the simulations was relatively
independent of k.

The present study introduces a slightly modified
version of the nk model that allows us to shed light on
the results of Kauffman and Ohta. Though our model is
still technically epistatic in the sense above, it is also
formally identical to a standard population genetics
model that contains no epistasis (for reasons given
below). As such, the modified model is capable of
generating neither local optima, nor substitutions that
induce further substitutions. Despite this fact, we show
that the modified model is able to qualitatively
reproduce some of the key results of the previous
authors. Let us begin by introducing the nk model in
something close to its conventional form.

2. The nk model

The nk framework can be used to model fitness
interactions at various levels of organization (such as
interactions between different proteins, or among
different sites within a protein). With suitable para-
meterization, the treatment given below is broadly
consistent with all of these scenarios. However, for
concreteness, and following most previous treatments,
we will use the terminology of ‘loci’ and ‘alleles’
throughout. With this in mind, consider a sequence of
n haploid loci, each with a possible alleles. In this case,
a" distinct haploid genotypes may be formed. The
logarithm of the fitness associated with each of these
genotypes is determined from the sum of n “fitness-
contributions”—one contribution arising from each
locus. Denoting the fitness of a given genotype by W,
and the fitness contribution of locus 7 by /;, we have

In(W) = Z I, (1)
i=1

The use of log fitness in this equation gives us a
multiplicative ~ model of fitness (since W =
e x e x ... xeM). This is a minor departure from
Kauffman (1993) and others, who used an additive nk
model. However most previous results depend exclu-
sively on the rank ordering of the fitness values, and so
will be identical for additive and multiplicative models.
Furthermore, for several reasons, a multiplicative model
is the natural choice in population genetics (see, e.g.,
Phillips et al., 2000).

The key to the model is understanding how the #; are
calculated. Rather than assign these values in a
formulaic way to facilitate the analysis, the nk model
assumes that each possible %; is a random number that is
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drawn, at the outset, from a particular probability
distribution. This distribution, denoted f (%), is termed
the landscape distribution, since it determines the
statistical properties of the fitness landscape. In all of
the work below, we assume that the landscape distribu-
tion is normal, with mean 0 and variance ¢*:

f(h) = (2na®) " exp{—h/(25°)}. (2)

We note that Kauffman (1993) and others, have used a
uniform distribution for f(k#). However, a normal
distribution has some advantages (as will become clear
below), and again, the exact form of f(#) makes little
difference to the rank-order statistics considered by
most previous authors.

So far, we have not made clear exactly how many /
values must be generated in order to determine the
fitness values of all possible genotypes. The answer to
this question depends on how genotype relates to fitness,
and this depends crucially on the value of the epistasis
parameter, k.

Consider first the nk model when there is no epistasis
(this corresponds to setting k=0 in the general
description given below). In this case the fitness
contribution of locus i, namely /%;, is independent of
the alleles carried at other loci and depends only on the
allele carried at locus i. Since a alleles are available at
locus i, h; may take one of a distinct values in any given
individual. For each particular realization of the model,
each of these a values must be independently generated
from f(h) and then stored in a lookup table. Following
this procedure for each of the n loci, we end up with a
table containing a total of n x @ independently gener-
ated random numbers. The fitness values of all possible
genotypes can then be calculated using the appropriate
numbers from the table.

To incorporate epistasis, the nk model allows the
fitness contribution of locus i to depend not only on the
allele carried at locus i, but also on the alleles carried at
k other loci. We say these k loci epistatically influence
locus i, such that the value of /; will change whenever a
mutation occurs at any of k + 1 loci, namely locus i and
the & other loci that epistatically influence this locus.
Since each locus has a possible alleles, considered
together, locus i and the k loci that epistatically influence
locus i may form a total of ¢**! distinct combinations of
alleles. Under the assumptions of the nk model, each of
these ¢**! combinations leads to a distinct, indepen-
dently generated value of A;. As such, to specify the
fitness of all genotypes, we need a lookup table that
contains a total of n x ¢! random numbers, each
generated from the landscape distribution, f (/).

An additional complication that arises when there is
epistasis (i.e., when k>0), is that we must specify the
pattern of epistatic connections. In other words, we
must decide exactly which k loci epistatically influence
each locus. Kauffman (1993) calls this the specification

of the “k-amongst-the-n”. A variety of methods have
been used to assign the epistatic connections, three of
which are depicted in Fig. 1.

Kauffman investigated assigning the connections at
random (Fig. 1a), and connecting each locus to its k
nearest neighbours in the sequence (Fig. 1b). The latter
method was adopted by Ohta (1997a). A third
possibility, the ‘block method’, was introduced by
Perelson and Macken (1995), and was motivated by
the observation that molecular sequences have natural
partitions—such as protein domains. To implement the
block method, the n loci are divided into a series of
equally sized blocks, each containing k + 1 loci—thus n
must be exactly divisible by k + 1. (The generalization to
blocks of variable size is trivial.) Each locus within a
given block is epistatically influenced by every other
locus within that block, but by no locus outside the
block (Fig. 1c¢).

Kauffman (1993) suggested that the way in which the
epistatic connections are assigned makes little difference
to the statistics of the nk landscapes. Below, we confirm,
via simulation, that the three methods depicted in Fig. 1
yield very similar results. There are, however, important
differences as regards analytical tractability. In parti-
cular, with the random and nearest neighbour methods
(Figs. la and b), difficulties stem from the fact that the
sets of epistatic connections overlap, so a single locus
may be connected to every other locus via a chain of

(a) random method

R T

L 1 r 1 [ [ I [ [ ]
(b) nearest-neighbour method

e e B e e e

(©) block method
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Fig. 1. Possible patterns of epistatic connectivity under the nk model
are depicted. In each case, n =9 loci are shown, and each locus is
epistatically influenced by k = 2 other loci. Connections of epistatic
influence are denoted with arrows; so the loci that epistatically
influence a given locus have arrows leading from them, and
terminating at that locus. Because k = 2, exactly two arrows terminate
at each locus in all cases. Each diagram represents the results of
assigning the epistatic connections via a different method. (a)
represents a possible outcome when the connections are assigned at
random (so each locus is epistatically influenced by k& = 2 loci chosen
at random from the remaining n — 1 loci). Note that, in this case, a
variable number of arrows stem from each locus. (b) shows the pattern
when each locus is influenced by its k nearest-neighbour loci, with the
loci on the ends of line connected to each other. (c) shows epistatic
connections arranged in blocks of k + 1 reciprocally interacting loci.
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connections. For this reason, the analytical results which
follow apply strictly to the block method (Fig. 1c).

3. Optima results

We have already noted that the earliest analytical
work on the nk model focussed on the statistics of the
locally optimal genotypes—genotypes with higher fit-
ness than all of their single-mutant neighbours. When
k = 0, natural selection can, in theory, ‘optimize’ each
locus independently, and so there is only one optimal
genotype—which is by definition the global optimum.
As k increases, and loci become increasingly interde-
pendent, the number of local optima increases rapidly
(Kauffman, 1993). Perelson and Macken (1995) have
shown that under the block method, the expected
number of local optima is approximately a”[(a — 1)(k +
D]~/ *+D (the approximation assumes that k is reason-
ably large).

We can also calculate the expected fitness of the
globally optimal genotype, which we denote W,,, and
that of a randomly chosen locally optimal genotype,
denoted W,,. These are extreme value statistics (e.g.,
Gumbel, 1958), and so follow from standard results.
However, to express the statistics of interest in a helpful
form, our choice of landscape distribution, Eq. (2),
requires that we make some rather crude approxima-
tions (described in Appendix A). These lead to

E[ln W] ~ no2 In(a)]'/?,
0.82n02

l 0 ~ 1 AN 17 N0
Varlln Wool G201 Inga) )
2D 112 0.82n4>
E[]l’l W[o] ~ Nno |:k——}—1:| N Var[ln Wlo] ~ D >
C))

where D =In[(a — 1)(k+ 1)+ 1] — 1. Note that the
expected log fitness of the global optimum, Efln W],
is entirely independent of k (to the level of approxima-
tion adopted). However, the equivalent statistic for a
randomly chosen optimum declines rapidly with £.
Indeed, as k become very large, E[In W] approaches
zero—which is the mean of the landscape distribution,
and so the value expected for a genotype chosen entirely
at random. This is one of Kauffman’s (1993) key results.

4. How is the model epistatic?

So far, we have presented results that are largely
within a conventional nk framework. However, it is
revealing to relate the all-important parameter k to the
conventional population genetics notion of epistasis
(e.g. Phillips et al., 2000). This will, in turn, help us to

understand the population dynamics of the nk model
under natural selection. With this in mind, consider a
mutation occurring at locus i. This mutation may
described by its selection coefficient, s;, defined by W' =
W x (1 +s;), where W denotes the fitness of an
individual not carrying the mutation, and W’ the fitness
of the mutant. A mutation at a second locus, j, might be
described in a similar way, and have a fitness W' =
W x (1 4 s;). If there is no epistasis, then the fitness of
the double mutant (the genotype with mutations at loci
i and j) would be W =W x (1+s;) x(1+s;). The
extent of epistasis is usually measured by the magnitude
of the deviation from this multiplicative result. Denoting
this epistatic deviation by ¢;, we have W’ = W x (1 +
5i) % (14 57) x (14 ¢).

Let us now calculate the relevant quantities for the nk
model. Under the model, the mutation at locus i will
alter a certain number of fitness contributions—that of
locus i itself, and all of those loci that are epistatically
influenced by locus i (these would be the loci whose
arrows terminated at locus i, in Fig. 1). The fitness
contribution of all other loci will remain unchanged.
From Eq. (1), we have

In(1+s)=InW —In W =">"(hf — h), 5
/

where the sum is over all loci that are epistatically
influenced by locus 7, and /4; and /] denote the fitness
contribution of locus / before and after the mutation has
occurred. According to the specification of the model,
both /; and 4] are random numbers drawn from the
landscape distribution, f(h).

We can gain important insights into the nk model
merely by noting the number of terms that appear in the
sum in Eq. (5), and in the equivalent sum needed to
specify the epistatic deviation, ¢;. To see this, consider
the two loci i and j, when k = 1. In this case, there are
three possible patterns of connection, and these are
depicted in the left hand column of Table 1.

The other columns give the quantities relevant for
calculating the effects of selection, and the epistatic
deviation, in each of the three cases. There are three
things to notice about Table 1, all of which reveal
important properties of the nk model. Firstly (and of
least significance), as the interconnectivity of the loci
increases, we require more independently generated &
values to describe the situation (the three cases require 4,
6 and 8 values, respectively). Since increasing the value
of the parameter k increases the connectivity, this shows
why more / values are required to specify the fitness of
every possible genotype as k increases.

Secondly, the number of terms in the epistatic
deviation increases with the connectivity. This means
that the selective effect of the double mutant will become
increasingly unpredictable from those of the two single
mutants. It is this property that is commonly meant by
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Table 1
The quantities needed to represent selection acting on a pair of loci are shown, under the assumptions of the nk model (see text, Egs. (1) and (5))
In(1 + s7) In(1 +s5) In(1 + &;)
/—\ f—\ hf — 11,' /’l* — h/' 0

[ [ « [ 7 | |

| I r’l\ r’_l\ | hf —hy W —hi + 1 —hy W =B — b+ by
i J

I | r"ﬁ | | hf—hi + hj’.‘ —hy I —hi+ hj* —h; L Y T N hj* — hj +hy
i J ’

Each row of the table shows results for a different arrangement of epistatic connectivity between the loci. Within a row, each differently notated /
value is simply a distinct random number, independently generated from the landscape distribution, f(/).

epistasis. As a result, increasing k will increase the
amount of epistasis, in this commonly used sense.

Thirdly, it is clear from Table 1 that the number of
terms needed to specify the selective effects of the single
mutants will also increase with the connectivity. In nk
papers, this is usually expressed by saying that increas-
ing k decreases the correlation of the fitness landscape.
Less formally, we can say that increasing k will lead, on
average, to mutations causing larger changes in fitness.
As a result, mutations occurring at loci with more
epistatic connections will tend to be under stronger
selection, but, as pointed out by Fisher (1930, Chapter
2), these large-effect mutations are also more likely to be
deleterious.

It is important to note that the close relation of the
three properties mentioned above, is not typical of
epistatic models in theoretical population genetics. For
example, it is easy to imagine a model in which the
distribution of the epistatic parameter, ¢&;, changes,
while the distributions of the single-mutant selection
coefficients, s; and s;, remain fixed. However, the three
properties are intimately linked in the nk framework,
and each of them stems from the fact that a given
substitution will alter, on average, k+ 1 distinct &
values. As a result of this, any increase in fitness epistasis
(the unpredictability of the double mutant fitness from
the single mutant fitnesses) will also be accompanied by
a decrease in the correlation of the fitness landscape—or
an increase in the expected “‘size” of single mutants. This
will prove crucial for understanding the dynamics of the
nk model.

5. Infinite-allele approximation

A major problem with analysing the nk model is the
fact that evolution may revisit previously tested
combinations of interacting alleles—a fact which leads
to some intractable mathematics. Previously published
analyses have avoided this problem by assuming that
the number of genotypes is very large (e.g. Macken
and Perelson, 1989; Weinberger, 1991; Perelson and

Macken, 1995). Here, we also make this assumption,
but in a novel way. Specifically, we treat the nk model in
the limit where the number of alleles, a, becomes very
large and effectively infinite. In this case, rather than
choosing our mutant values from a lookup table of
limited size, we can, when a mutation occurs, simply
generate a new random number directly from the
landscape distribution. As a result, a mutation at any
locus may generate the complete spectrum of mutant
effects, regardless of the allele present before the
mutation; thus, in principle, all possible fitness values
are reachable via a single mutation from all possible
genotypes.

Technically, employing the infinite-allele limit does
not alter the epistatic nature of the nk model. The effects
of a particular allele may still be background-dependent,
and so all of the properties described in the previous
section will still apply. However, because the mutational
opportunities available are now background-indepen-
dent, the large ¢ approximation does nullify two of the
most important consequences of fitness epistasis. In
particular, regardless of the value of &, substitutions can
never induce further bursts of substitutions, and
populations will never become trapped at local optima.
Indeed local optima will cease to exist—a fact which
exemplifies their general irrelevance in fitness landscapes
of high-dimensionality (see Provine, 1986; Gavrilets,
1997). Furthermore, it can be shown that in the infinite-
allele limit, the nk model becomes formally identical to
an entirely non-epistatic model familiar from population
genetics. This model is the “fixed” or “House-of-Cards”
model that has been widely studied in the context of
molecular evolution (Ohta and Tachida, 1990; Tachida,
1991, 1996; Gillespie, 1994, 1995). We clarify the
relationship between the House-of-Cards model and
the nk model below.

The above considerations show that employing the
infinite-allele limit alters the nk model in a fundamental
respect. Nevertheless, we show below that the analytical
results obtained in this limit are often very close to
simulation results from the original nk model with a
small number of alleles.
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6. Dynamics with infinite alleles

Let us now consider the dynamics of a population
evolving according to the nk model in the infinite-allele
limit. Our overall aim is to calculate the probability
distribution of population fitnesses as they change over
time. This distribution characterizes the evolution of a
large number of replicate populations with an identical
initial state, and incorporates the stochastic processes of
drift and mutation as well as natural selection.

Consider a single population of stable size N. We
assume that the per locus mutation rate, u, is sufficiently
small that mutations appear in the population very
rarely. That is, we assume un/N < 1. In this low mutation
rate limit, it follows that the loss or fixation of a newly
arisen mutation occurs very rapidly when compared
with the typical interval between the appearance of
mutations. Hence the population is genetically mono-
morphic, at the relevant loci, for the majority of the
time, and the fixation of loss of a mutation is
approximated as an instantaneous process. It also
follows that the mode of reproduction (i.e., whether
sexual or asexual) makes little difference to the
evolutionary outcome. Assumptions similar to the
above have been used by many previous authors (e.g.
Maynard Smith, 1970; Gillespie, 1983, 1984; Tachida,
1991; Orr, 1998; Barton, 2001; Welch and Waxman,
2003), and in most previous nk work (Kauffman and
Levin, 1987; Weinberger, 1991; Macken and Perelson,
1989)—although this work has not often taken natural
selection explicitly into account (see Fontana et al.,
1993; Orr, 2002). Clearly, a crucial quantity in the
analysis is the probability that a newly arisen mutation
reaches fixation. If the mutation has selection coefficient
s, this probability is given by

l—e %
1(s) = 1 —c—2Ns (6)

(Kimura, 1957). Since all analytic work in this section is
restricted to the block method of assigning epistatic
connections (Fig. 1c), we consider the evolution of a
single block of loci. Given the infinite-allele assumption,
the loci within the block are fully interchangeable. As
such, we need only consider the sum of their fitness
contributions. With this in mind, we introduce the
notation X' = 3. hi; where the sum is over all loci in the
block under consideration. Since each block contains
k + 1loci, the sum contains k + 1 terms. Now consider a
mutation taking place at any one of the loci within the
block. From Eq. (5), we have s = e =¥ — 1, where X* is
the fitness contribution of the block after the mutation.
This result for s shows that the dynamics of the fitness
contribution of the block can be expressed solely in
terms of the random variables X* and X. We now
describe the probability densities of these variables. We
begin with the post-mutation quantity, X*, whose

probability density we will denote g(x). It follows from
the discussion of mutation given above, that X* is
simply the sum of k + 1 independent draws from the
landscape distribution. Since we have assumed that the
landscape distribution is normal, Eq. (2), it follows that
q(x) will also be normal, with a mean 0 and a variance
(k + Do?,

q(x) = [2n(k + 1)a*] 2 exp{—x?/[2(k + 1)a?]}. (7)

Furthermore, it follows from the Central Limit Theo-
rem, that for «ll landscape distributions with finite
variance, a sufficiently large value of k will lead to an
approximately normal ¢(x). Our choice of a normal f (%)
yields an exactly normal ¢(x) for arbitrary k.

The variable X describes the fitness contribution of a
block at a given time. Since its value will change
cumulatively as the result of selection, mutation and
drift, its probability density will also be time-dependent.
Accordingly, we denote the probability density of X at
time ¢ by p(x, t). In Appendix B, we derive the following
equation which determines how p(x,f) changes over
time:

op(x,t)
or

(k + l)uN{q(x) / oe™ — p(y,tdy

o) / 11 — 1)q() dy}. ®)

Eq. (8) is virtually identical to an equation given by
Tachida (1991) for describing the House-of-Cards
model. In fact, Tachida’s equation (A4) differs from
our Eq. (8) only because he uses an approximate form of
the fixation probability, I1(-). This identity clarifies the
relationship between the two models. When the number
of alleles is infinite, the nk model remains epistatic at the
level of single loci, but each block of loci evolves
according to the non-epistatic House-of-Cards model.
This is reasonable, since while there is epistasis within
blocks, there is no epistasis between blocks (Fig. 1).
Due to this formal identity, we can make use of
previously available results to understand the nk model.
For example, Tachida (1991) shows that Eq. (8) has a
stable equilibrium, which can be approximated by

Ilirgo p(x, 1) >~ q(x — A), ©)
where
A =2N -k + 1)d* (10)

(see Appendix B; Zeng et al., 1989; Tachida, 1991). Thus
the approximate equilibrium distribution of the fitness
contribution of a block of loci is simply the normal
distribution, ¢g(x), with a shifted mean. Using this result,
we can find the expected value of log fitness at
equilibrium; this is simply the sum of the expected
values for each block. The same applies approximately
to the equilibrium variance in log fitness. Since, by
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assumption, there are n/(k + 1) blocks in total, we have
E[ln W]~ 2(N — ne®, Var{ln W] ~ ng> (11)

(see also Gillespie, 1994). Remarkably, both results in
Eq. (11) are wholly independent of k.

7. Simulation results

How well, then, do the infinite-allele results approx-
imate the dynamics of the nk model when « is finite and
the epistatic connections are, e.g., randomly assigned?
To answer this question, we have carried out simula-
tions. The simulation procedure is designed to match the
assumptions behind the preceding analysis in all respects
other than the infinite-allele approximation. As such, we
assume that mutations are very rare, and so enter a
homogeneous population one at a time, and then either
reach fixation or are lost. (Simulations carried out in this
way were used by Tachida (1991) and a comparison with
results obtained by more sophisticated simulation
methods was undertaken by Gillespie, 1994.) To
initialize each simulation trial, we populated fitness
lookup tables using the landscape distribution, and
chose an initial genotype at random (note that the
results changed little if the initial conditions were
retained for whole sets of simulation trials). After
initialization, the simulation procedure can be described
by the following algorithm: (i) to determine the interval
of time before the appearance of a mutation, a random
Poisson waiting time was generated from a distribution
with mean 1/(Nnu); (ii) the mutating locus was chosen at
random, and its allele was replaced with one of the ¢ — 1
alternative alleles, also chosen at random; (iii) the
mutant fitness was calculated using the lookup tables,
and the mutation either reached fixation or was lost with
a probability determined by Eq. (6). These three steps
were then repeated for the next mutation, and the trial
terminated after evolution had proceeded for a certain
length of time. For each set of parameter values, we
carried out 1000 replicate trials, and then averaged over
the results.

Figs. 2 and 3 show simulation results generated in the
manner described above. Also shown, for comparison,
are infinite-allele results obtained by the numerical
integration of Eq. (8) with p(x,0) = ¢g(x) as the initial
condition (this is equivalent to choosing the initial
genotype at random). For the fixed parameters, previous
work on the House-of-Cards model has shown that its
behaviour depends crucially on the strength of selection,
measured by the product of the population size and the
standard deviation of the mutant distribution, g(x); this
product is N+/k + lo in our notation. In contrast, the
genomic mutation rate un—which we have assumed is
small—simply acts as an overall scaling factor of time.
We choose to vary N and k in the results presented. In
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Fig. 2. The expected logarithm of fitness, E[In W (¢)], is plotted as a
function of time, measured in units of unN¢. Simulation results (the
grey curves) are compared to the numerical integration of Eq. (8) (the
black curves). In all cases, n = 32 loci were used, and ¢ = 103 was the
standard deviation of the landscape distribution, Eq. (2). Each plot
shows two different values of k (the level of gene interaction), k = 1
(thinner lines) and k = 15 (thicker lines). Simulation results are
presented for @ =2 alleles and a = 9 alleles, and the block method
of assigning epistatic connection was used.

particular, pairs of plots show results for weak selection:
No = %; and for strong selection: No = 10. Each plot
then includes results for two values of k, namely k = 1
(the thinner line of each pair) and k& = 15 (the thicker
lines).

Fig. 2 shows simulation results using the block
method of assigning epistatic connections (Fig. Ic),
and different numbers of alleles. Results are presented
for a = 2 alleles, since biallelic loci are common to most
nk work, and deviate most from the infinite-allele
approximation. Results are also presented for a =9
alleles, since this value was used by Ohta (1997a, b,
1998). Fig. 2a shows the weak selection results. In all
cases, the population is shown to rapidly reach a
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Fig. 3. The results shown are identical to those in Fig. 2, with the
exception that the simulation results shown use the random method,
and the nearest-neighbour method of assigning epistatic connections
(see Fig. 1). In each case a = 9 alleles were used.

dynamic equilibrium. The continued fluctuation of the
curves after this point shows that substitutions are still
occurring, it is just that weakly beneficial and weakly
deleterious substitutions occur with roughly equal
frequency (see also Gillespie, 1994, 1995). For the curve
representing a = 2, k = 15, and for both curves using
a =29, the equilibrium is given very accurately by Eq.
(11). In these cases, the agreement between the
analytical results and the simulation is excellent—and
so the infinite-allele House-of-Cards model accurately
approximates the dynamical behaviour of the nk model.
The exceptional case is the curve representing the case
a =2, k = 1; here the curve reaches an equilibrium not
treated analytically, where genetic drift, and the scarcity
of alleles affect the outcome (we return to this case in the
discussion).

Fig. 2b shows equivalent results with strong selection.
In this case, quantitative agreement with the infinite-
allele results is good only at small times when a = 9, and

is poor when a = 2. This is because selection was strong
enough for the finite-allele populations to reach a fitness
optimum, rather than a drift-influenced equilibrium.
The fitness level reached lay between the values
predicted by the optimum equations, Egs. (3) and (4),
rather than the higher value predicted by Eq. (11). By
comparing Egs. (3) and (11), we can say that, in general,
an optimum is likely to be reached if Na> +/In(a)/2.

Fig. 3 shows simulation results using different
methods of assigning the epistatic connections, namely
the random method (Fig. 1a) and the nearest-neighbour
method (Fig. 1b). In both cases, a = 9 alleles were used.
Comparing Figs. 2 and 3, it is clear that altering the
pattern of epistatic connections makes rather little
difference to the results (Kauffman, 1993). However,
systematic differences are apparent, particularly when
connections are randomly assigned and selection is
strong (Fig. 3b). These differences seem to stem from the
fact that a new mutation may alter the fitness contribu-
tion of a variable number of loci (depending on how
many loci are epistatically affected by the locus at which
the mutation occurs). Compared to the cases where each
mutation alters a fixed number of fitness contributions,
this variation in size acts as a mildly retarding force
when k is small, but accelerates the rate of adaptation
when k is larger.

8. Dynamics with infinite alleles and strong selection

We have seen in the previous section that the nk
model can be very accurately approximated by the
House-of-Cards model when selection is weak (as
measured by small values of the compound parameter
N+k+ 1o). When selection is strong, however, the
agreement is typically poor. Nevertheless, in the follow-
ing section, we further explore the behaviour of the
infinite-alleles model with strong selection. We show
that, in spite of the poor quantitative agreement in this
regime, the influence of k& on the outcome of evolution is
remarkably similar to that under the standard nk model.

Simulation results for the House-of-Cards model with
strong selection were reported by Gillespie (1994, 1995).
He showed that, after a relatively short period of time,
substitutions become increasingly rare and effectively
stop occurring. This means that when selection is strong,
the equilibrium represented by Eqgs. (11), is simply never
reached. (In general, the relevance of equilibrium
quantities depends on the relative time-scales of
equilibration and environmental change, after which
the fitness effects associated with different allelic
combinations are likely to change; e.g., Gillespie, 1983,
1995; Tachida, 1991.) The reason for the absence of
equilibration in the House-of-Cards model with strong
selection is clear. In order for a block of loci to approach
its expected equilibrium fitness, mutations of value A4 =
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2(N — 1)(k + 1)o? must be generated from ¢(x) (see Egs.
(7) and (10)). Since these mutations are a distance of
2(N — 1)a/k + 1o standard deviations from the mean of
q(x), it follows that if N+/k + 16> 1, such mutations will
be extremely rare. Gillespie (1994, 1995) made a similar
point using the theory of records.

Although we know that Egs. (11) will not apply when
selection is strong, no previous results tell us the level of
fitness that will be attained. We now derive this result.
The calculation uses an approximation for the fixation
probability of Eq. (6). This approximation relies on the
fact that when selection is strong, only beneficial
mutations are capable of fixing, i.e., II(s) >~ 0 for s<0.
In addition, we assume that the selection coefficients of
beneficial mutations are small. In this case, we have

2In(1+s), s>0,
II(s) >~ 0 $<0. (12)

This approximate fixation probability allows us to
obtain a major simplification. By scaling time and other
quantities, we can eliminate all parameters from Eq. (8).
As a consequence, if all blocks of loci are identically
distributed initially, then we can write the expected log
fitness in terms of a single function, F(e), and just two
combinations of parameters:

no
vk +1

This equation is derived in Appendix B. If, as in Figs. 2
and 3, the population begins with a randomly chosen
genotype (which means that p(x,0) = ¢(x)), an exact
form of the function F(e) can be found (see Eq. (B.5),
Appendix B), and has the approximation

T,
F(T)~ 2.36 x T%05,

A number of interesting conclusions follow from
considering Egs. (13) and (14) together. Firstly, at large
times, where the second line of Eq. (14) will apply, the
expected log fitness of a population will be proportional
to (k + 1)7%%%, a rate of decline that is slightly less rapid
than the reciprocal of the square root: (k + 1)~"/2. This
result is remarkably similar to the outcome of evolution
when « is finite. In that case, as can be seen from Figs. 2b
and 3b, and from Eq. (4), strong selection takes
populations to optima whose expected log fitness also
declines slightly less rapidly than (k + 1)~"/? (the small
positive contribution comes from the term denoted D in
Eq. (4)). In other words, the influence of k& on the
outcome of evolution is very similar in both the infinite-a
House-of-Cards model and in the conventional nk model.

A similar conclusion follows from comparing the
small and large argument versions of Eq. (14). These can
be thought of as applying to poorly adapted and well-
adapted populations, respectively. In the former case,

E[ln W(1)] = x FQ(k + 1)**uNat). (13)

T<1,

1<T<10". (14)

when ¢ is small and the population is poorly-adapted,
E[ln W(¢)] is proportional to (k + 1)z, so large k leads to
the most rapid rate of increase in fitness. At large times,
when significant adaptation has already occurred, we
have seen that E[ln W(¢)] is proportional to (k+
1)704%5.005 5o small k leads to the most rapid rate of
adaptation. Although these results apply strictly to the
infinite-allele model, an identical trade-off between
different values of k can be seen clearly in the finite-
allele simulation curves shown in Figs. 2b and 3b (where
it leads to a crossing of the trajectories of populations
characterized by different values of k).

This trade-off is inherently a multi-locus phenomen-
on, and so has not been previously reported for the
House-of-Cards model. However, very similar results
have been reported for a model of optimizing selection
acting on multiple quantitative traits, that was first
introduced by Fisher (1930, Chapter 2) to advocate
micromutationalism (Hartl and Taubes, 1998; Orr,
1998, 2000; Welch and Waxman, 2003; see also Hansen,
2003 for more general results). The parallel between the
two models helps to reiterate the fact that the effects of &
on the correlation of the fitness landscape can also be
understood in terms of the “‘size” of new mutations.

9. Discussion

The present study has examined the nk model
introduced by Kauffman and Levin (1987). We have
shown that when epistatic connections are arranged
according to the block method of Perelson and Macken
(1995), and the number of alleles, «a, is assumed to be
effectively infinite, the nk model becomes formally
identical to the non-epistatic House-of-Cards model
(Ohta and Tachida, 1990; Tachida, 1991, 1996; Gille-
spie, 1994, 1995).

We further showed that when selection is weak, the
House-of-Cards model accurately approximates the nk
model even in the more general case—that is, when the
number of alleles is limited, and epistatic connections
are, e.g., randomly assigned (Fig. 3). The dynamical
similarity of these models under weak selection has
important implications for interpreting the simulation
results of Ohta (1997a, b, 1998). In particular, it suggests
that they should not be explained by invoking those
properties of the nk model that disappear in the infinite-
allele limit. Such properties include the existence of
multiple local optima, and the ability of substitutions to
selectively induce further substitutions, neither of which
may occur under the House-of-Cards model. This point
has particular relevance for understanding the over-
dispersion of the substitution process in Ohta’s simula-
tions. Although epistatic models can lead to the
clustering of substitutions (e.g. Fitch and Markovitz,
1970), so can the House-of-Cards model (Tachida,
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1991). As a result, rather than attribute the over-
dispersion demonstrated by the nk model to fitness
epistasis, it is more plausibly attributed to the similarity
of the nk model to the House-of-Cards model. Indeed,
Ohta (1997b) remarked that the behaviour of the index
of dispersion under the nk model closely resembles
results from the House-of-Cards model; we have shown
why this is to be expected.

Kauffman (1993) used the nk model to show how, as k&
increased, the ability of populations to reach states of
high fitness was compromised by the existence of
multiple locally optimal genotypes of low fitness. This
can be thought of as restating and quantifying Wright’s
(1932) claim that the lack of fit intermediates may be an
important obstacle to natural selection when fitness
epistasis is widespread. In response to Wright, it has
been argued that local optima become increasingly
irrelevant in fitness landscapes of high dimensionality
(e.g. Provine, 1986; Gavrilets, 1997). Here, however, we
have shown that, when selection is strong, a near-
identical fitness penalty is paid by high-k populations,
even when the number of alleles available is infinite, and
so no local optima exist (see Eqgs. (13) and (14)). The fact
that this result was obtained with the House-of-Cards
model, and that similar results have been reported with
Fisher’s quantitative trait model (e.g., Hartl and Taubes,
1998; Orr, 2000; Hansen, 2003; Welch and Waxman,
2003), suggest that this result can be best explained by
the effect of the parameter k& on the expected size of
mutations—a property that is inextricably linked with
the level of fitness epistasis in the nk framework. We
have also shown that Kauffman’s result is conditional
on strong selection acting on at all loci. When selection
is weak, increasing k may have no effect on the
equilibrium fitness (e.g., Eq. (11); Fig. 2a; Fig. 3a; Ohta,
1997a), and in some cases, will lead to a fitness increase
(Fig. 2a). Further caveats will apply when, as in real
genetic systems, the strength of selection varies between
sites (see, e.g., Solow et al., 1999).

Finally, and more broadly, we have stressed that
adjusting parameter k within the nk framework, has
variety of effects on evolutionary dynamics. As such, it
should not be assumed that the “level of epistasis’ can
be adjusted without also adjusting other quantities of
crucial importance (e.g., the strength of selection acting
on each site). This should be borne in mind when
interpreting the results of simulation studies using the nk
model in which & is an important parameter (e.g.
Bergman et al., 1995; Peck, 2004).
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Appendix A

In this appendix we briefly derive Egs. (3) and (4), for
the expectation and variance of the log fitness of the
globally optimal genotype and of a randomly chosen
locally optimal genotype. These are extreme value
statistics and the following relies heavily on Gumbel
(1958) throughout. Consider a probability density g(x)
with associated cumulative distribution G(x). We now
make a number, Z, of independent draws from g(x), and
denote the largest value drawn by X ;. The cumulative
distribution of X is simply G(x)*. When Z is large, and
g(x) is normal, this distribution approaches a Gumbel
distribution with expectation and variance E[X ] >~ o +
9B, and Var[X ] ~ n*f*/6, with o defined by 1 — G(x) =
1/Z,p defined by 1/ = Zg(z), and 7y =0.5772... is
Euler’s constant. To give a clearer indication of the
parameter-dependence, in the text we make the rougher
approximations,

E[X1]~ 0,(2[In(Z) - 1]'7,
Var[X ] ~ n’6,* In(Z* /27) /6, (A.1)

where o, is the standard deviation of g(x). To derive the
equations in the text, consider a single block of loci. The
fitness contribution of this block will be the sum of k& + 1
independent random numbers each drawn from the
landscape distribution, Eq. (2). Given our choice of
distribution, this is equivalent to taking a single draw
from a normal distribution with mean zero and standard
deviation ¢, = (k + 1)"/%0; i.c., the relevant g(x) is the
distribution g(x) of Eq. (7). The globally optimal fitness
value of a block of loci will be the maximum of Z =
a®*tD draws, since this is total number of allelic
combinations that may be formed in that block. A
randomly chosen optimal block will be the maximum of
Z = (a — 1)(k + 1) + 1 draws, which includes the locally
optimal sequence and all of its one-mutant neighbours.
The equations in the text relate to the log fitness of a
complete genotype, and so are found by multiplying by
expectation and variance of an optimal block, by the
number of blocks, n/(k + 1).

Appendix B

In this appendix, we derive the equation determining
the dynamics of the probability distribution, p(x, ¢), Eq.
(8), and some of its properties. We begin with a
stochastic process where time is measured in “‘events,”
and an event is the loss or fixation of a mutation that is
newly arisen in a given block of loci. After 7 + 1 events
the log fitness contribution of block o, namely X ,, obeys

Xo(t+1) = X (1) + I(X, = X ()X, — Xo(1))0rs-
(B.1)
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Here, X, is the mutant value of X, and I is an indicator
variable which depends on the fixation probability of
Eq. (6). At every event, I(x), takes the value 1 with
probability I1(e* — 1), when fixation of a mutation
occurs and it takes the value 0, with probability 1 —
II(e* — 1), when loss of a mutation occurs. Additionally,
O, denotes a Kronecker delta and r takes one of the
values 1,2,...,n/(k+ 1) with the probability that a
mutation occurs in block r, namely (k + 1)/n.

From Eq. (B.l1), a difference equation for the
probability density of X,(tr) can be obtained. Eq. (8)
closely resembles this difference equation, and follows
from (i) treating T as a continuously varying quantity,
governed by a differential equation (an approximation
which follows from the small probability of fixation
associated with each event); and (ii) averaging over an
infinite number of replicate populations, allowing us to
replace 7 by the expected number of events in time ¢,
namely unN. The equilibrium result, Eq. (9), can be
found by using an approximate form of the fixation
probability Eq. (6). Specifically, we assume selection
coefficients are small, and replace I1(e*™ — 1) by II(x —
»). From this follows

q(x) exp[2(N — 1)x]
[ a(y)exp[2(N — 1)yldy

(Tachida, 1991) which can be confirmed, numerically,
to be stable. Eq. (9) follows from using Eq. (7) in Eq. (B.2).

We now derive results for the scaling lead-
ing to Eq. (13), when the approximation of Eq. (12)
applies. In terms of 0=x[(k+ 1)o?]"V/2 T =
2(k + 1)*?uNat, Q(0) = exp(—6*/2)/+/2n and P(0, T) =
v/ (k + 1a?p(x, ), the dynamical equation, Eq. (8), takes
the form OP(0,T)/0T = Q(0) ffoo O —P)P(p, T)dop —
PO,T) [,° (¢ — 0)0(¢)d¢. This equation contains no
parameters. Assuming P(0,0) is independent of para-
meters, it follows that the mean value of 6 is only a
function of 7, which we write as F(T),

llim px, 1) ~ (B.2)

F(T) = / 0P(0, T) do. (B.3)

This is the function appearing in Eq. (13) of the main
text. For the special case P(0,0) = Q(6) corresponding
to p(x,0) = ¢(x), we have determined the exact solution
for PO, T),

0
P(0.T) = TQ(0) 1 exp(—n(¢)T)dé, (B.4)
where  5(0) = [;7 (¢ — 0)O($)d¢ = Q(0) — (0/2)erfc

(0/+/2). In this case, the function F(T) follows by
noting that 6Q(0) = —dQ(0)/d0, allowing us to obtain

FT)=T / 0(0) exp(—y(0)T) do. (B.5)

From this result, it follows that limr_ F(T)/T = 1 (Eq.
(14)). An approximation to F(T) for larger T may be

derived as follows. First, noting that Q(0) = d*»(0)/d6*
and integrating by parts in Eq. (B.5) yields F(T) =
T2 [[dn(0)/d0]*e~"DT d0. Changing variable of integra-
tion from 6 to # leads to

F(T)=T° /0 (—[dn(x)/dx], g )e "7 dn. (B.6)

Since T appears only in the exponential, large T
results in only small # contributing to the integral and
that for small #,(—[dn(x)/dx],—y,) approximately
depends on 5 as a power of 5. Using 0(y) in the
range 2-6, corresponding to #n in the range
1.5x 107185 x 1073, we fitted a straight line to
log((—[dn(x)/dx]x:(,(n))) as a function of log(n),
log((—[dn(x)/dx],_g(,)) = a + (B — 1)log(n) and found
a~0.88,B>~1.95 so —[dn(x)/dx],_g, =~ en®'. Sub-

X

stitution of this into Eq. (B.6) vyields F(T) >~
e“I'(B)T*> 8, where I'() denotes Euler’s Gamma func-
tion and corresponds to Eq. (14) of the main text.

More  generally, we expect that F(T)=x~
e“Dr(B(T)T> 2D where a(T) and B(T) are, on the
scale of 7' = 10°, slowly varying functions of 7.
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