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Abstract

We consider the implications of mutationally non-equivalent loci for large populations of randomly mating diploid organisms

under mutation–selection balance. Variation, across loci, of parameters such as the allelic mutational variance and the mutation

rate, is shown to reduce the equilibrium genetic variance. This is proved to follow from the genetic variance contributed by a single

locus having an underlying convexity. We give approximate results indicating the way small deviations of the mutational

parameters, from their mean values, reduce the genetic variance. Numerical estimates of the size of the effect are given for more

general variations of the parameters. Variation in the mutation rates has a significantly smaller effect than variation in the

mutational variances. Under accepted parameter values, the reduction in genetic variance can be substantial.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

A classic problem in population genetics is the
maintenance of quantitative genetic variation under
mutation–selection balance. This problem has received a
great deal of attention in the literature, and a number of
different models have been proposed. For reviews see
e.g. Bulmer (1989), Bürger and Lande (1994) and Bürger
(1998). An assumption shared by the majority of this
work is that the loci controlling the trait are fully
interchangeable—an assumption surely made for analy-
tical convenience rather than biological accuracy. In
previous work (Welch and Waxman, 2002), we investi-
gated the consequences of relaxing this assumption.
Using the continuum-of-alleles model of mutation
introduced by Crow and Kimura (1964), we investigated
the effects of allowing the distribution of mutant effects
to vary between each locus controlling the trait. That
paper included a numerical section on the maintenance
of quantitative genetic variation. We showed that, for
some parameter ranges, non-equivalent loci could
substantially reduce the amount of genetic variation
maintained at equilibrium.

Here, we extend this work by showing analytically
that allowing the mutational properties of loci to vary is
expected to reduce the equilibrium variance under most
conditions. Furthermore, we extend the previous work
by allowing not only the mutational variances but also
the mutation rates to vary between loci. We note that
variation in the mutation rates has a significantly
smaller effect than variation in the mutational variances.
As well as the continuum-of-alleles model used pre-
viously, we treat the discrete-allele stepwise mutation
model introduced by Slatkin (1987). The comparison
shows that our general conclusions are robust to this
change of assumptions.
The model we consider describes an effectively infinite

population of randomly mating dioecious sexual organ-
isms, where the sexes do not exhibit any dimorphism.
Individuals are characterised by a single phenotypic trait
that is controlled by 2n alleles at n unlinked diploid loci.
We assume additive genetics in which an individual’s
genotypic value, G; is given by G ¼

Pn
j¼1ðxj þ yjÞ; where

xj ðyjÞ is the effect of the maternally (paternally)
originating allele at locus j: Thus at the level of the
trait, there is no dominance or epistasis. Following
Kimura (1965), we assume generations are overlapping,
and hence time is continuous. We restrict our analysis to
a description of equilibrium (see below). However, the
conclusions we arrive at, also apply approximately to
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populations with discrete generations, when subject to
weak selection. Fitness is determined entirely by
stabilising selection on the trait. The fitness of indivi-
duals of genotypic value, G; is, following Kimura (1965),
taken to have the form �sG2 (which is defined up to an
additive constant), where s is a positive parameter whose
magnitude gives a measure of the intensity of selection
and the optimal genotypic value has been taken to lie at
G ¼ 0: This form of fitness function may, in discrete
time models, be considered equivalent to nonoptimal
selection (Haldane, 1954) when only small values of G2

occur with any appreciable frequency.
Apart from the assumption of a quadratically

declining fitness function, we also assume the population
is in linkage and Hardy–Weinberg equilibrium. Many
analyses of the full multilocus problem that incorporate
linkage disequilibria have indicated that linkage equili-
brium is a reasonable approximation (see e.g. Bulmer,
1989; Turelli and Barton, 1990). Under this assumption,
the overall genetic variance can be determined by
calculating the variance maintained at a single locus,
and then summing over all loci. The equilibrium result is

V̂G ¼ 2
Xn

j¼1
#s2x;j; ð1Þ

where 2 #s2x;j is the equilibrium genetic variance arising
from locus j and the factor of 2 is due to diploidy.
It is, perhaps, necessary to emphasise that the

conclusions we arrive at below, concerning the genetic
variance, are based on unlinked loci in linkage
equilibrium. We do not draw any conclusions about
the genetic variance for linked loci, where linkage
disequilibria may not be neglectable.
In what follows in the main text, we shall, for clarity,

deal exclusively with Crow and Kimura’s (1964)
continuum-of-alleles model. Details of Slatkin’s (1987)
discrete-allele model are relegated to an appendix. It is
shown there that the same general conclusions follow
from both models.
Kimura (1965) (see also Bulmer, 1989) derived the

equation describing the evolution of the distribution of
effects of alleles of e.g. maternal origin, at locus j;
assuming a continuum of alleles (Crow and Kimura,
1964). At equilibrium, we write this distribution as
jjðxjÞ with an identical distribution for paternally
originating alleles. Assuming xj has been defined so it
has a vanishing mean (as is completely adequate for
considerations of genetic variance), it follows that #s2x;j ¼R

x2
j jjðxjÞ dxj: After averaging over the genetic back-

ground, made up of the remaining 2n � 1 alleles, it is
found that jjðxjÞ obeys the one locus, haploid equation:

ðsx2
j þ mjÞjjðxjÞ � mj

Z
fjðxj � yÞjjðyÞ dy

¼ s #s2x;jjjðxjÞ ð2Þ

(Kimura, 1965). In this equation, fjðxj � yÞ is the
distribution of mutant allelic effects at locus j and the
quantity mj is the allelic mutation rate at this locus. Note
that we use the convention, both here, and in the
following sections, that all integrations range from �N

to N unless otherwise stated.

2. Introduction of non-equivalent loci

In general, mutationally non-equivalent loci have
different rates of mutation, mj; and different distribu-
tions of mutant effects, fjðxÞ: Empirically, little is known
about the distributions of mutant effects, apart from the
constraint that, as probability densities, they are non-
negative and normalised to unity. They could, in
principle, assume any number of plausible shapes. We
follow the method introduced in Welch and Waxman,
2002, by assuming that the fjðxÞ at each locus can be
derived by parameterising a ‘‘reference distribution’’
gðxÞ which is a probability density with a variance of
unity. Here we take gðxÞ to be symmetric. The allelic
mutation distribution at locus j follows from the
reference distribution, gðxÞ; by the incorporation of a
non-negative parameter vj:

fjðxÞ ¼
1ffiffiffiffi
vj

p g
xffiffiffiffi
vj

p

 !
: ð3Þ

The function fjðxÞ is normalised to unity, is symmetric
(hence has a mean of zero), but has a variance of vj:
Non-equivalent loci are introduced into this model by
allowing variation in the mj and vj across loci. The
results given below apply for a range of gðxÞ; including
the Gaussian form adopted by Crow and Kimura
(1964), i.e. gðxÞ ¼ ð2pÞ�1=2 expð�x2=2Þ which yields
fjðxÞ ¼ ð2pvjÞ�1=2 expð�x2=ð2vjÞÞ; although we shall
not restrict ourselves to any one form of gðxÞ: It follows
from Eq. (2) that the equilibrium genetic variance
contributed by locus j depends on both the mutation
rate, mj and the mutational variance, vj ; at that locus. To
emphasise this dependence, we write #s2x;j ¼ #s2xðmj; vjÞ:
Note that previously (Welch and Waxman, 2002), we

also allowed the mean effect of mutations (mutational
biases) to vary between loci. Since, if these biases are not
large, this is expected to have little effect on the
maintenance of genetic variance, we restrict ourselves
here to mutations with a vanishing mean effect.

3. Genetic variance

To investigate the degree to which the non-equiva-
lence of loci affects the level of genetic variance at
mutation–selection balance, we examine the ratio
V̂G=V̂G;0; where V̂G is the equilibrium genetic variance
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defined in Eq. (1) and V̂G;0 denotes the equilibrium
genetic variance maintained when loci are equivalent—
and every locus has a mutation rate equal to the mean
mutation rate, m0; and a mutational variance equal to
the mean mutational variance, v0: These mean values are
given by

m0 ¼
1

n

Xn

j¼1
mj; v0 ¼

1

n

Xn

j¼1
vj : ð4Þ

The ratio of interest is, from Eq. (1),

V̂G

V̂G;0

¼
Pn

j¼1 2 #s
2
xðmj; vjÞPn

j¼1 2 #s2xðm0; v0Þ
¼ 1

n

Xn

j¼1

#s2xðmj; vjÞ
#s2xðm0; v0Þ

: ð5Þ

4. The consequence of non-equivalent loci

It may be observed that Eq. (5) has the form of an
average of #s2xðmj; vjÞ= #s2xðm0; v0Þ over all loci. The average
is required only when there is variation in mj and vj

across loci. When any such variation is present, a very
general property of #s2xðm; vÞ is exposed, namely an
underlying convexity. In Appendix A, it is shown that
we can write #s2xðm; vÞ ¼ ðm=sÞhðsv=mÞ; where the function
hðzÞ is convex downwards, in the sense d2hðzÞ=dz2p0
and the net consequence of this, for the model under
investigation, is that V̂G=V̂G;0 satisfies the inequality

V̂G

V̂G;0

p1: ð6Þ

Appendix A contains a proof of this. In Appendix B, we
provide a similar analysis for the discrete-allele model
with stepwise mutation. Thus, the variation of the
mutational properties of loci results in a lowering of
V̂G=V̂G;0 below its maximum value of unity. To under-
stand more about this reduction, let us consider
approximate results. An informative approach is the
delta method (see e.g. Bulmer, 1967) which applies when
the mj and vj have only small deviations from their mean
values. Since the delta method places no constraints on
the value of the ratio svj=mj; the method covers the case
svj=mjb1; where the House of Cards approximation
holds (Turelli, 1984) and also the case svj=mj51; where
the Gaussian approximation holds (Kimura, 1965;
Lande, 1976). A straightforward calculation, based on
a Taylor expansion about the mean values of mj and vj in
Eq. (A.1), that appears in Appendix A, shows that to
quadratic order in deviations,

V̂G

V̂G;0

C1� k
VarðmÞ
m20

þ VarðvÞ
v20

� 2
Covðm; vÞ

m0v0

� 	
: ð7Þ

Here k is a positive constant that can be written in terms
of the function hðzÞ that was introduced in Appendix A.
It is given by k ¼ ðsz0Þ2jh00ðsz0Þj=½2hðsz0Þ
; where z0 ¼
v0=m0 and h00ðzÞ ¼ d2hðzÞ=dz2:

The approximation in Eq. (7) explicitly shows that for
mj and vj that are uncorrelated and have only small
deviations from their mean values, any variation in these
parameters across loci generally reduces V̂G=V̂G;0:
Negative correlations between mj and vj further enhance
the reduction in V̂G=V̂G;0; while positive correlations
reduce the reduction. If such a correlation between the
mutational variance contributed by a locus and its
mutation rate does exist in nature, then we expect it to
be negative. The rationale for this is that (i) negative
correlations have often been invoked to reconcile
estimates of the zygotic mutation rate of various
quantitative characters with typical estimates of genic
mutation rates at large-effect loci. Without negative
correlations, the reconciliation would require extremely
large numbers of loci affecting the trait (Turelli, 1984;
Lynch and Walsh, 1998, Chapter 12); (ii) such a
correlation has a very limited amount of empirical
support (Mukai, 1964; Gregory, 1965). However, the
evidence here is far from conclusive, and beyond the
observation that a substantial positive correlation seems
unlikely, little definite can be said (Lynch and Walsh,
1998, Chapter 12 contains a full discussion).

5. Origin of the reduction in genetic variance

The results above indicate that the genetic variance
decreases when there is variation of mj and vj across loci.
The reasons for this are buried deep within the
mathematics of Appendices A and B. We note, however,
that the effect is not due to non-equivalent loci causing a
reduction in the amount of variance input into the
genetic variance by new mutations. To see this, note that
the input of new mutations into the genetic variance,
each generation, is

VM ¼
Xn

j¼1
2mjvj

¼ 2nm0v0 þ 2n
1

n

Xn

j¼1
ðmj � m0Þðvj � v0Þ

�Uv0 þ 2nCovðm; vÞ: ð8Þ

Here U ¼ 2nm0 is the mutation rate for the trait across
the genome. Thus, if there is no correlation between
mutation rates and allelic mutational variances, non-
equivalent loci yield VM ¼ Uv0 which coincides with the
result for equivalent loci, yet still there will generally be
suppression of V̂G relative to V̂G;0:
To try to gain an intuitive understanding of why the

reduction is occurring, we consider the simple case of
just two loci. Let us write the mutation rates at the two
loci as m1 ¼ m0 þ Dm and m2 ¼ m0 � Dm and the muta-
tional variances as v1 ¼ v0 þ Dv and v2 ¼ v0 � Dv; so the
average mutation rate of the two loci is m0 and the
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average mutational variance is v0: Using Eq. (1) we have

V̂G � V̂GðDm;DvÞ
¼ 2 #s2xðm0 þ Dm; v0 þ DvÞ þ 2 #s2xðm0 � Dm; v0 � DvÞ: ð9Þ

In the House of Cards regime, selection at a locus is
much stronger than mutation at the locus and m=ðsvÞ51
(Turelli, 1984). This leads, with a Gaussian or similarly
shaped smooth unimodal distribution of mutant allelic
effects, to

#s2xðm; vÞCm
s
� c

v

m
s


 �2
; ð10Þ

where c is a positive constant of order unity. For a
Gaussian mutation distribution, it has been estimated
that when m=ðsvÞ51; #s2xðm; vÞCm

s
� p

2
1
v
ðm

s
Þ2 (Bürger and

Hofbauer, 1994; Bürger, 2000, Eq. (1.15)), thus, c in
Eq. (10) is p=2: More refined estimates can be derived,
but for the illustrative requirements of this section, all
we need is an approximation of the form in Eq. (10).
Another example that shows that for small m; #s2xðm; vÞ is
of the form given in Eq. (10) follows if we anticipate
some of the results presented below. For a particular
smooth unimodal, but non-Gaussian distribution of
mutations, an exact result for the variance can be
derived (Waxman, 2003) and is given in Eq. (12). Direct
expansion of this exact result in powers of m quickly
shows that up to and including terms of Oðm2Þ; the
variance, #s2xðm; vÞ; is given by Eq. (10) with c ¼ 2:
Having established the region of validity of Eq. (10),

we employ it in Eq. (9) to obtain

V̂GðDm;DvÞ
V̂Gð0; 0Þ

C1� c
ðm0Dv � v0DmÞ2

ðv20 � D2
vÞm20ðv0s=m0 � cÞ

: ð11Þ

The right-hand side is smaller than unity since v07Dv

are variances and hence non-negative, so v20 � D2
v40 and

v0s=m0; by assumption of the House of Cards regime, is
b1 and hence much larger than c which is Oð1Þ:
We can thus see, from Eq. (11), that there is a

reduction of the genetic variance for non-equivalent loci,
V̂GðDm;DvÞ; below the variance associated with equiva-
lent loci, V̂Gð0; 0Þ: The reduction occurs because of the
presence of a term proportional to m2=v in Eq. (10). This
reduction would not occur if #s2xðm; vÞ were simply taken
as m=s: Thus in the House of Cards regime, the reduction
in the genetic variance is directly attributable to terms in
#s2xðm; vÞ lying beyond the leading term. We note that the
higher order correction to m=s; that lead to the reduction
of the genetic variance in the House of Cards regime, are
very small terms.
In the Gaussian regime, selection at a locus is much

weaker than mutation at the locus and sv=m51
(Kimura, 1965; Lande, 1976). This leads to

#s2xðm; vÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv=ð2sÞ

p
and we employ this result in

Eq. (9). Using basic properties of the square root, it
can be shown that for either Dm or Dv (or both) non-

vanishing, Eq. (9) yields a reduction in the genetic
variance below the result of equivalent loci.
In both cases considered, it is evident that intrinsic

non-linearities in #s2xðm; vÞ result in a net decrease in the
genetic variance when loci are non-equivalent. Thus, the
increase in variance gained at one locus, by e.g.
increasing m is more than offset by the decrease in
variance at the other locus, because of the compensating
decrease in m: Similar behaviour is also exhibited when
the v’s are changed.

6. Numerical estimates

In order to see some effects of the non-equivalence of
loci, we have carried out a numerical investigation. Our
aim is to illustrate the magnitude of the reduction in
genetic variance that could be expected. We consider
two special cases: (i) the case of equally mutable loci
with different mutational variances (variation in the v’s
with the m’s held constant), and (ii) loci with equal
mutational variances but different rates of mutation
(variation in the m’s with the v’s held constant). Though
unrealistic, they provide a crude estimate of the
minimum magnitude of the effect, since the more
plausible case, joint variation, perhaps with negatively
correlated values, should always lead to a greater
reduction. In addition, this separation allows us to see
the influence of the two parameters in isolation and
prevents us from increasing the number of unwarranted
assumptions.
Even with this simplification, there is a significant

amount of flexibility associated with the estimates, since
there are choices to be made for the distributions of the
mj and vj; the choice of the reference distribution, gðxÞ;
as well as the specification of parameter values.
For the reference distribution, we have chosen the

form shown in Fig. 1; this does not differ greatly from a
Gaussian distribution in appearance, and corresponds
to gðxÞ ¼ x=sinhðpx=

ffiffiffi
2

p
Þ; it has a mean of zero, a

variance of 1 and a kurtosis of 4:
The virtue of this gðxÞ is that, using Eq. (3), Eq. (2)

can be solved exactly. The genetic variance following
from this gðxÞ differs little from that calculated with a
Gaussian distribution (as used in most of the previous
work on this subject) and leads to (Waxman, 2003)

#s2xðm; vÞ ¼ 2ms�1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m=ðsvÞ

p
þ 1
�1: ð12Þ

For completeness, we state that the exact result,

following from the choice gðxÞ ¼ x=sinhðpx=
ffiffiffi
2

p
Þ; that

was derived in Waxman (2003). With b ¼ 1
2
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8u

sv

q
� 1Þ

and Gð�Þ denoting Euler’s Gamma function, the
distribution of allelic effects of, e.g. maternal origin
at a locus with mutation rate u and mutational variance
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v is given by

jðxÞ ¼ ð2b�3=2=ðp
ffiffiffi
v

p
ÞÞ7Gðb=2þ ix=

ffiffiffiffiffi
2v

p
Þ72=GðbÞ:

Note that the result of Eq. (12) fully interpolates
between the Gaussian and House of Cards limits when
sv=m ranges from being very small to being very large.
Rather than choose a particular set of m’s and v’s for

our numerical estimates, we approximate the sum in
Eq. (5) by an integral involving the probability density
of m and v: Pðm; vÞ: This approximation differs from a
typical value of the sum by a correction of order 1=

ffiffiffi
n

p
;

where n is the number of loci. Using Eq. (12) in Eq. (5)
and replacing the sum by an integral yields

V̂G

V̂G;0

C
Z

N

0

dm
Z

N

0

dv Pðm; vÞ m
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m0=ðsv0Þ

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8m=ðsvÞ
p

þ 1
:

ð13Þ

For the fixed parameters, we use accepted estimates
that facilitate comparison with other work, and so take
s ¼ 0:025; m0 ¼ 10�5 and v0 ¼ 0:05 (see e.g. Lande,
1976; Turelli, 1984). When varying the v’s alone, we
have Pðm; vÞ ¼ dðm� m0ÞPðvÞ; where dð�Þ denotes a
Dirac delta function and PðvÞ; is a univariate distribu-
tion. Equivalently, when varying the m’s, we take
Pðm; vÞ ¼ dðv � v0ÞPðmÞ with PðmÞ another univariate
distribution. Although we are largely ignorant of the
distribution of mutation rates in nature, empirical
evidence suggests that the distribution of v’s is L-
shaped, with the majority of loci contributing a small
amount to the mutational variance and a few loci
contributing larger amounts (Falconer and Mackay,
1996; Bost et al., 1999). We have argued (Welch and
Waxman, 2002) that a single-sided gamma distribution

may be an appropriate choice. We thus take PðvÞ ¼
PGðv; v0; qÞ; where

PGðv; v0; qÞ ¼
0; vo0;

vq�1 expð�qv=v0Þ
GðqÞðv0=qÞq ; v40

8><
>: ð14Þ

is a single-sided gamma distribution with mean v0 and
shape parameter q such that the distribution is L-shaped
for qo1 and is roughly bell-shaped for q41:
Here, we use a single-sided gamma distribution to also

characterise the m’s, thus we take PðmÞ ¼ PGðm; m0; qÞ:
Fig. 2 shows curves for the proportional reduction in

equilibrium genetic variance, i.e. V̂G=V̂G;0; for various
values of the shape parameter q:
It is clear that varying the mutation rates has a

significantly smaller effect than varying the mutational
variances. For variable m’s, an extremely small q is
needed to cause a significant reduction. By contrast,
with variable v’s, a sharp fall off in V̂G=V̂G;0 is seen to
occur when qo0:2: Given the empirical evidence for an
L-shaped distribution of the mutational variances, this is
likely to be the range of biological relevance. Given the
magnitude of effects seen for variable m’s and v’s alone,
it is clear that joint variation could lead to a significant
reduction.

5 0 5
0

0.5

x

g(
x)

Exactly soluble
Gaussian

Fig. 1. A plot of the profile of the distribution of mutant effects,

gðxÞ ¼ x=sinhðpx=
ffiffiffi
2

p
Þ; that was adopted for the numerical calcula-

tions of this work. This choice of gðxÞ allows Eq. (2) to be solved

exactly. As far as appearance and reasonableness are concerned, there

is very little to distinguish between the form of the chosen gðxÞ and the
Gaussian distribution, ð2pÞ�1=2 expð�x2=2Þ: In the plot, the Gaussian

distribution is plotted for comparison (dashed curve).

0 0.2 1
0

1

q

V̂
G

 / 
 V̂

G
0

variable µ, ν = ν
0

variable ν, µ = µ
0

Fig. 2. Plots of the ratio V̂G=V̂G;0 are given as a function of the

parameter q characterising the gamma distribution of non-equivalent

loci, where V̂G is the equilibrium genetic variance for non-equivalent

loci and V̂G;0 the equilibrium genetic variance for equivalent loci. The

upper plot corresponds to variation in the allelic mutation rates but no

variation in the allelic mutational variances. The lower plot

corresponds to variation in the allelic mutational variances but no

variation in the allelic mutation rates. The figure shows the

proportional reduction in the genetic variance maintained at muta-

tion–selection balance. Both m’s and v’s were drawn from a gamma

distribution with the parameter q as in Eq. (14). Other parameters are

given in the text. The plots utilise simplified forms of Eq. (13) given in

Appendix C.
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7. Summary and discussion

The majority of models that examine the maintenance
of quantitative genetic variation through mutation–
selection balance have assumed, either implicitly or as
an analytical convenience, that all loci are mutationally
equivalent. Here, we have shown that this assumption,
while it may not affect the amount of variance
contributed by new mutations, can have a significant
effect on the amount of variance maintained at
equilibrium. The variance is not increased and generally
is decreased. We have based our calculations on the
continuum-of-alleles model of mutation (Crow and
Kimura, 1964) and the discrete-allele, stepwise mutation
model of Slatkin (1987).
Our conclusions agree with, and strengthen, the

findings of Turelli (1984), that the strong stabilising
selection and high heritabilities observed in nature may
be difficult to reconcile with simple mutation–selection
balance models. We note that for a single locus, the
House of Cards approximation always overestimates the
true equilibrium variance in Kimura’s model (Bürger,
1986; Bürger and Hofbauer, 1994). The present analysis
shows that with multiple loci in linkage equilibrium, this
overestimate may be much more severe than inferred
from the single-locus result—if the mutational variances
(and mutation rates) of the loci are sufficiently different.
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Appendix A

In this appendix, we prove that V̂G=V̂G;0p1; where
V̂G (V̂G;0) is the equilibrium genetic variance for non-
equivalent (equivalent) loci.
To proceed, let #s2xðm; vÞ be the equilibrium variance of

allelic effects, of single parental origin, at a locus with
mutation rate m and mutational variance v: Note that
#s2xðm; vÞ only depends on the parameters s; m and v in
the form #s2xðm; vÞ ¼ ðm=sÞhðvs=mÞ; where the function
hðzÞ is convex downwards: d2hðzÞ=dz2p0: To prove
this, substitute Eq. (3) into Eq. (2) and make the change
of variables x ¼

ffiffiffi
v

p
X ; y ¼

ffiffiffi
v

p
Y and set jjðxÞ ¼ cðX Þ:

This yields the eigenvalue equation
R

LðX ;Y ÞcðYÞ dY ¼
½s #s2xðm; vÞ=m
cðX Þ where, with dð�Þ a Dirac delta func-
tion, LðX ;Y Þ ¼ ½ðsv=mÞX 2 þ 1
dðX � Y Þ � gðX � YÞ is
a linear operator, cðXÞ is an eigenfunction and
s #s2xðm; vÞ=m the eigenvalue. On inspection, LðX ;YÞ
depends only on the combination of parameters sv=m:

Consequently, the eigenvalue s #s2xðm; vÞ=m; can itself only
depend on sv=m: We thus write s #s2xðm; vÞ=m ¼ hðsv=mÞ for
an unknown function hðzÞ whose form depends on gðXÞ:
A homogeneity relation equivalent to s #s2xðm; vÞ=m ¼
hðsv=mÞ was conjectured by Bürger (1986).
Consideration of dynamics (results not shown)

indicate that hðsv=mÞ is the smallest eigenvalue of
LðX ;YÞ and furthermore hðsv=mÞ must be o1; so
cðX Þ is normalisable. We make the assumption that
cðX Þ is square integrable over ð�N;NÞ; and an
example where this applies is when gðXÞpgmax for
some gmaxoN: We then observe (i) the operator
LðX ;YÞ is, up to an irrelevant Fourier transform,
identical to the Hamiltonian operator of one dimen-
sional non-relativistic quantum mechanics with a non-
negative potential. Hence, (ii) its smallest eigenvalue
s #s2xðm; vÞ=m ¼ hðsv=mÞ is non-negative, it has a unique
square integrable eigenfunction and the eigenvalue is
guaranteed to lie in the discrete spectrum. (iii) The fact
that hðsv=mÞ is the smallest eigenvalue means that if we
calculate its series expansion hðzþ eÞ ¼ hðzÞ þ
e dhðzÞ=dzþ ðe2=2Þ d2hðzÞ=dz2 þ? via standard non-
degenerate perturbation theory, with e the strength of
the perturbation, then we are guaranteed that the
second-order term ðe2=2Þ d2hðzÞ=dz2 is p0; thus hðzÞ is
convex. Proofs of (i)–(iii) can be found in textbooks on
quantum theory (e.g. Merzbacher, 1970).
We can thus write Eq. (5) in terms of the convex

function hðzÞ as

V̂G

V̂G;0

¼ 1

n

Xn

j¼1

mjhðsvj=mjÞ
m0hðsv0=m0Þ

: ðA:1Þ

This takes the form of an average, where locus j occurs
with weight oj ¼ mj=ðnm0Þ: Since, m0 ¼

Pn
j¼1 mj=n; it

follows that
Pn

j¼1oj ¼ 1: Convexity of hðzÞ allows
application of Jensen’s inequality (Gradsteyn and
Ryzhik, 1980) in the form

Pn
j¼1 ojhðsvj=mjÞp

hð
Pn

j¼1 ojsvj=mjÞ: Since
Pn

j¼1 ojsvj=mj ¼ sv0=m0; we havePn
j¼1 ojhðsvj=mjÞphðsv0=m0Þ and using this in Eq. (A.1)

yields the inequality, V̂G=V̂G;0p1:

Appendix B

In this appendix, we work within the discrete-allele,
stepwise model of mutation (Slatkin, 1987) and prove
that V̂G=V̂G;0p1; where V̂G (V̂G;0) is the equilibrium
genetic variance for non-equivalent (equivalent) loci.
To proceed, note that the analogue of Eq. (2) for a

locus with mutation rate m is

sðkDÞ2pðkÞ þ mfpðkÞ � 1
2
½pðk þ 1Þ þ pðk � 1Þ
g

¼ s #s2xpðkÞ; ðB:1Þ
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where alleles have effects k � D with k ¼ 0;71;72;y;
the quantity D is a parameter of the theory and pðkÞ is
the frequency of alleles at the locus of single parental
origin, with effect k � D: The quantity #s2x ¼P

N

k¼�N
ðkDÞ2pðkÞ is the equilibrium variance arising

from alleles of single parental origin.
Note that #s2x depends only on parameters in the form

#s2x ¼ ðm=sÞhðD2s=mÞ; where the function hðzÞ is convex
downwards: d2hðzÞ=dz2p0: To prove the above we
divide Eq. (B.1) by m yielding

X
j

Lðk; jÞpðjÞ ¼ s #s2x
m

pðkÞ; ðB:2Þ

where Lðk; jÞ ¼ sðkDÞ2
m dk;j þ fdk;j � 1

2
½dkþ1;j þ dk�1;j
g and

dj;k is a Kronecker delta that is 1 for j ¼ k and zero
otherwise. Eq. (B.2) takes the form of an eigenvalue
equation where Lðk; jÞ is a linear operator, pðkÞ the
eigenvector and s #s2x=m the eigenvalue. On inspection,
Lðk; jÞ depends only on parameters in the problem in the
combination sD2=m; hence the eigenvalue, s #s2x=m; can
itself only depend on s #s2x=m and we write s #s2x=m ¼
hðsD2=mÞ for an unknown function hðzÞ:
Considerations of dynamics indicate that hðsD2=mÞ is

the smallest eigenvalue of Lðk; jÞ:
Note that an alternative representation of Lðk; jÞ is as

its discrete Fourier transform. With i ¼
ffiffiffiffiffiffiffi
�1

p
;X

k;j

exp½iðak � bjÞ
Lðk; jÞ

¼ � sD2

m
@2

@a2
þ ½1� cosðaÞ


� �
dða� bÞ

and this coincides with the Hamiltonian operator of
one-dimensional non-relativistic quantum mechanics
with a non-negative potential and coordinate a re-
stricted to the interval ½�p; p
: Once this is appreciated,
the arguments used in Appendix A yield convexity of
hðzÞ; i.e. d2hðzÞ=dz2p0: Eq. (5) takes the form
V̂G=V̂G;0 ¼ n�1Pn

j¼1ðmjhðsD2=mjÞ=m0hðsD2=m0ÞÞ and ar-
guments presented in Appendix A yield V̂G=V̂G;0p1 for
stepwise mutations.

Appendix C

The fact that either the mutation rates (m’s), or the
mutational variances (v’s) are held constant in Fig. 1
allows us to use simplified forms of Eq. (13). These both
make use of the compound parameter, r ¼ 8m0=ðsv0Þ
and using the values adopted in the main text, s ¼ 0:025;

m0 ¼ 10�5 and v0 ¼ 0:05 yields r ¼ 0:064: When the v’s

are held constant, we have V̂G=V̂G;0Cð
ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
þ

1Þ½Gðq þ 1Þ
�1
R
N

0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yr=q

p
þ 1Þ�1yqe�y dy; and when

the m’s are held constant, we have

V̂G=V̂G;0Cð
ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
þ 1Þ½GðqÞ
�1

�
Z

N

0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y þ qr

p
þ ffiffiffi

y
p Þ�1yq�1=2e�y dy:
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