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Abstract. Relationships between the coupling constant and the binding energy of threshold bound states
are obtained in a simple manner from an iterative algorithm for solving the eigenvalue problem. The
absence of threshold bound states in higher dimensions can be easily understood.

PACS. 21.10.Dr Binding energies and masses – 03.65.Ge Solutions of wave equations: bound states –
02.60.Lj Ordinary and partial differential equations; boundary value problems

Recently there has been considerable interest in weakly
bound states in atomic [1–3] as well as in nuclear [4–11]
(and hypernuclear [12]) systems. Exotic nuclei, far from
the stable regions in the periodic table, are now rou-
tinely produced with present-day heavy-ion accelerators
and some, for example Li11, are barely bound [13]. Such
nuclei, particularly those close to the drip lines, are impor-
tant in astrophysical processes and are therefore of great
interest, both experimentally and theoretically [14]. In the
following paper we wish to point out that under certain
circumstances, at least in one and two dimensions, bound
states can occur for arbitrarily small values of the poten-
tial. Simple expressions for the binding energy of these
threshold bound states as a function of the interaction
strength can be obtained. Unfortunately this is not the
case in higher dimensions and we discuss in a simple man-
ner the reasons for this.

In a mathematically elegant paper, Simon stud-
ied the one- and two-dimensional Schrodinger operators
−∂2/∂x2 + λV (x) and −Δ + λV (x) where, in this work,
either λV (x) or λV (x) is described as the potential and
the parameter λ (> 0) is termed the strength of the poten-
tial. Simon provided necessary and sufficient conditions
for the existence of a bound state when λ is small [15].
In one dimension a threshold bound state (i.e., one just
bound) exists for many finite short-range potentials and
its binding energy is an analytic function of λ [16,17]. Fur-
thermore, using the theory of trace class determinants [18,
19], a simple expansion for the binding energy of the
threshold bound state has been obtained (see ref. [15]).
More recently, Gat and Rosenstein have pointed out that
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perturbative methods provide a suitable means for cal-
culating the binding energy of this state [20,21]. This is
somewhat peculiar since a convergent expansion for the
binding energy in λ exists, but no apparent poles appear
in the expansion of the S-matrix to any finite order in per-
turbation theory. Rather than use perturbation theory, we
wish to point out that the expression for the binding en-
ergy of the threshold bound state obtained by Simon in
one and two dimensions can easily be obtained from a
simple non-perturbative iterative algorithm [22] and we
provide an intuitive explanation of the form of the expan-
sion in different dimensions.

In the algorithmic approach, eigenvalues, and the asso-
ciated eigenfunctions, are determined as functions of the
strength of the potential, λ. To illustrate the method, we
consider the one-dimensional eigenvalue equation [22]

[−∂2
x − λV (x)]u(x) = −ǫu(x), (1)

subject to

lim
|x|−>∞

u(x) = 0. (2)

Here ∂x = ∂/∂x, λ > 0 and
∫

V (x)dx ≥ 0. We shall always
assume V (x) → 0 as |x| → ∞. The energy eigenvalue,
−ǫ (with ǫ > 0), is negative and corresponds to a bound
state. We can combine eqs. (1) and (2) in a single equation,
namely

u(x) = λ

∫ ∞

−∞
Gǫ(x − x′)V (x′)u(x′)dx′. (3)

Here Gǫ(x) is a Green’s function that satisfies

[−∂2
x + ǫ]Gǫ(x) = δ(x) (4)



358 The European Physical Journal A

and has the asymptotic behaviour appropriate to bound
states:

lim
|x|−>∞

Gǫ(x) = 0. (5)

We normalise u(x) at an arbitrary reference point, xref :

u(xref ) = 1 (6)

and using eq. (3), this allows λ to be written as

λ =
1

∫ ∞
−∞ Gǫ(xref − x′)V (x′)u(x′)dx′ . (7)

This equation can then be used to eliminate λ from eq. (3),
with the result

u(x) =

∫ ∞
−∞ Gǫ(x − x′)V (x′)u(x′)dx′

∫ ∞
−∞ Gǫ(xref − x′)V (x′)u(x′)dx′ . (8)

Equations (7) and (8), allow the bound-state eigen-
value, ǫ, to be determined as a function of the strength of
the potential, λ. For simplicity, we assume that V (x) has a
finite range and, for a particular choice of ǫ, determine the
solution of eq. (8), via iteration. That is, from a starting
point u0(x), we iterate

un+1(x) =

∫ ∞
−∞ Gǫ(x − x′)V (x′)un(x′)dx′

∫ ∞
−∞ Gǫ(xref − x′)V (x′)un(x′)dx′ (9)

to convergence. The conditions on u0(x) are fairly mild;
this function must be non-negative and normalisable, and
have some overlap with V (x). Given this, u1(x), and all
subsequent un(x), will have inherited the property of the
Green’s function of extending over all x, and u0(x) need
only be sufficient to “get the iteration going”.

Once the converged solution, u(x) ≡ u∞(x), is found,
it is used in eq. (7) to determine λ and an (ǫ, λ) pair is
found. From a practical point of view, u(x) is only re-
quired (and hence only has to be found) for those x where
V (x) is non-zero, since u(x) only appears, above, in the
combination V (x)u(x).

Repeating the iterative procedure for a different value
of ǫ yields the corresponding value of the strength of the
potential, λ. When a number of (ǫ, λ) pairs have been de-
termined, a simple interpolation procedure can be used
to determine the dependence of ǫ on λ. Furthermore, for
larger values of ǫ a simple relationship between λ and ǫ can
be obtained for non-singular symmetric potentials which
vanish asymptotically, which can be used to make the al-
gorithm more efficient [23].

For small values of ǫ, corresponding to states close to
the threshold of being bound, the analytical dependence
of ǫ on λ may be obtained by approximating the Green’s
function (which satisfies eq. (4)). We have

Gǫ(x) =
e−

√
ǫ|x|

2
√

ǫ
(10)

and expanding in ǫ yields

Gǫ(x) =
1

2
√

ǫ
+ . . . (11)

Substituting this result into eq. (8) gives

u(x) = 1 + . . . (12)

to leading order in ǫ. From eq. (7) one therefore easily
obtains the following approximate relationship between
the strength of the potential, λ, and ǫ:

λ =
2
√

ǫ
∫ ∞
−∞ V (x)dx

. (13)

This is valid for small values of ǫ. Indeed for small cou-
pling it provides an analytical approximation for the low-
est bound state for a large class of potentials in one di-
mension provided

∫ ∞
−∞ V (x)dx ≥ 0 [15]. Furthermore, had

we included the standard factor of 1/2 in the first term
of the eigenvalue equation, eq. (1), then we would have
obtained

ǫ =
1

2
λ2

(
∫ ∞

−∞
V (x)dx

)2

, (14)

which is precisely the result obtained by Simon, to O(λ2).
For a finite square-well potential of depth λ and x < |a|,
ǫ ≈ λ2 for the ground-state eigenvalue [24] which agrees
well with eq. (13), for small values of λ.

An important feature of eq. (3) is that it has a solution
for ǫ, for arbitrarily small λ. This follows from the property
of the Green’s function, eq. (10), that it is unbounded from
above, as ǫ → 0:

lim
ǫ→0+

Gǫ(x) = +∞. (15)

Hence for very small values of λ, the value of ǫ can always
be adjusted until the product λGǫ(x), which appears in
eq. (3), is non-negligible, and hence there is a solution
for ǫ.

We note these results can be generalized to higher di-
mensions, since it can easily be seen that eqs. (3) and (8)
become

u(x) = λ

∫

all space

Gǫ(x − x′)V (x′)u(x′)dnx′ (16)

and

u(x) =

∫

all space
Gǫ(x − x′)V (x′)u(x′)dnx′

∫

all space
Gǫ(xref − x′)V (x′)u(x′)dnx′ . (17)

The essential difference arises only from the different form
the Green’s function takes in different dimensions.

In two dimensions

Gǫ(x) =
1

2π
K0(

√
ǫ|x|), (18)

where K0(·) is a Bessel function of the second kind of order
zero [25]. Expanding K0(

√
ǫ|x|) for small ǫ yields

K0(
√

ǫ|x|) = ln(1/
√

ǫ) + ln
(

2e−γ/|x|
)

+ O(ǫ2), (19)

where γ = 0.57721 . . . is Euler’s constant. Thus from
eq. (17) we obtain, for sufficiently small ǫ,

u(x) = 1 + . . . (20)
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and using eq. (16) we obtain λ ln( 1√
ǫ
) 1
2π

∫

V (x)d2x ≃ 1.

That is

ln ǫ = − 4π

λ
∫

V (x)d2x
+ O(λ0). (21)

As in one dimension, a threshold bound state exists
for arbitrarily small λ, provided

∫

V (x)d2x ≥ 0. More
precise conditions on the existence of threshold bound
states require

∫

|V (x)|1+βd2x < ∞ (for some β > 0) and
∫

(1 + x2)β |V (x)|d2x < ∞ [15].
To illustrate the above, consider a finite spherically

symmetric potential well

−λV (x) =

{

−λ, ‖x‖ < a,

0, ‖x‖ > a.
(22)

Equation (21) yields

ln ǫ ≃ − 4

λa2
. (23)

The ground-state eigenvalue, −ǫ, in the above potential
well can be shown to be the solution of

√
λ − ǫ

J1(a
√

λ − ǫ)

J0(a
√

λ − ǫ)
=

√
ǫ
K1(a

√
ǫ)

K0(a
√

ǫ)
, (24)

where Jn(·) is a Bessel function of the first kind, of
order n. Expanding the left and right sides, assuming
λα2 and ǫa2 ≪ 1 yields (λ − ε)a/2 + O((λ − ε)2) . . . =
[−a ln(2e−γ/(

√
ǫa))]−1 + O(ǫ). This leads to a result for

ln ǫ that coincides with eq. (23), to the same level of ac-
curacy.

We are thus able to make the observation that again it
is the divergence of the Green’s function, at fixed spatial
argument, when ǫ → 0, that results in a threshold bound
state at arbitrarily small λ.

On the other hand, in three dimensions the Green’s
function is

Gǫ(x) =
exp(−√

ǫ|x|)
4π|x| . (25)

At fixed |x|, this does not diverge as ǫ → 0. This is sugges-
tive of the known fact that in three and higher dimensions
an arbitrarily weak attractive potential does not possess
a bound state [15]; there has to be a certain strength of
the potential before it can support a bound state. We note
that the leading term in an expansion of ǫ of the Green’s
function, in n = 3 and higher dimensions, is not inde-
pendent of x. This is in contrast to the corresponding
behaviour of the Green’s functions when n = 1 and n = 2
and suggests that n = 1 and n = 2 which may be thought
of as being atypical of all other dimensions.

To understand the property of an arbitrarily weak at-
tractive potential to bind a particle in n = 1 and n = 2
two dimensions but not in three or more dimensions, we
can relate it to an apparently different problem of how
much time a random walk in n dimensions spends in the
vicinity of its starting position. To see this, we use Dirac
notation in the general n-dimensional case where p̂ is the

momentum operator and |x〉 (〈x|) is an eigenket (eigen-
bra) of the coordinate operator. We then can write the
Green’s function as

Gǫ(x) = 〈x|(p̂2 + ǫ)−1|0〉 =

∫ ∞

0

dt〈x|e−(p̂2+ǫ)t|0〉 (26)

and

lim
ǫ→0

Gǫ(x)=

∫ ∞

0

dt〈x|e−p̂
2t|0〉=

∫ ∞

0

e−|x|2/(4t)

(4πt)n/2
dt. (27)

In a random walk in discrete space and discrete time, let
P (x1, t1;x0, t0) denote the probability that the random
walker is at position x at time t, given it was at position
x0 at time t0. Then the mean time spent at position x is
∑∞

t=0 P (x, t;0, 0) [26]. The distribution P (x, t;0, 0) is the
discrete analogue of the continuous time and space diffu-
sion density (4πt)−n/2 exp(−|x|2/(4t)) which appears in
eq. (27). We thus see that limǫ→0 Gǫ(x) has the interpre-
tation as the mean time a random walker spends in the
vicinity of a site at position x, given it was at position 0

at time t = 0. In n = 1 and n = 2 dimensions, it follows
from eq. (27) that limǫ→0 Gǫ(x) is infinite, implying an
infinite amount of time is spent in the vicinity of any po-
sition, x. By contrast, when n ≥ 3, G0(x) is finite. In the
quantum-mechanical problem considered here, it is pre-
cisely the finiteness (or lack of finiteness) of limǫ→0 Gǫ(x)
that determines the dimensionalities where an arbitrarily
weak potential can possess a threshold bound state. Thus
there is the intimate relation between the mean time spent
by random walks and the existence of bound states of ar-
bitrarily weak potentials.

At first glance our results seem to be in disagreement
with recent three-dimensional mean field calculations [27–
33] in exotic nuclei which suggest that threshold bound
states exist. However we wish to point that this need
not necessarily be so as mean-field calculations are not
simple eigenvalue problems. They are, intrinsically, non-
linear problems for which the analysis we have presented
is not directly appropriate. Secondly, because mean-field
calculations yield mean values for the ground-state ener-
gies, quantum fluctuations should not be ignored. Hence,
if there are no threshold bound states in three dimensions,
mean field predictions may not be able to ascertain this
because of the presence of quantum fluctuations.

We conclude by pointing out that at least for small
values of λ, good approximate analytical relationships be-
tween ǫ and λ exist in one and two dimensions which
may be used to improve the convergence rate of the
afore-mentioned iterative algorithm [22]. Such simple re-
lationships do not occur in higher dimensions as threshold
bound states cannot occur. For example, for a square well
in 3 dimensions there is no s-wave eigenstate unless V0a

2 >
π2h̄2

8m , where a is the radius of the well and V0 its depth

and there is one bound state if π2h̄2

8m < V0a
2 ≤ 9π2h̄2

8m [24].
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