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Pleiotropic scaling of gene effects and the ‘cost of
complexity’
Günter P. Wagner1, Jane P. Kenney-Hunt2, Mihaela Pavlicev2, Joel R. Peck3, David Waxman3 & James M. Cheverud2

As perceived by Darwin, evolutionary adaptation by the processes
of mutation and selection is difficult to understand for complex
features that are the product of numerous traits acting in concert,
for example the eye or the apparatus of flight. Typically, mutations
simultaneously affect multiple phenotypic characters. This phe-
nomenon is known as pleiotropy. The impact of pleiotropy on
evolution has for decades been the subject of formal analysis1–6.
Some authors have suggested that pleiotropy can impede evolu-
tionary progress (a so-called ‘cost of complexity’5). The plausibi-
lity of various phenomena attributed to pleiotropy depends on
how many traits are affected by each mutation and on our under-
standing of the correlation between the number of traits affected
by each gene substitution and the size of mutational effects on
individual traits. Here we show, by studying pleiotropy in mice
with the use of quantitative trait loci (QTLs) affecting skeletal
characters, that most QTLs affect a relatively small subset of traits
and that a substitution at a QTL has an effect on each trait that
increases with the total number of traits affected. This suggests
that evolution of higher organisms does not suffer a ‘cost of com-
plexity’ because most mutations affect few traits and the size of the
effects does not decrease with pleiotropy.

A set of quantitative traits in strains of inbred mice were chosen to
represent a broad cross-section of linear skeletal traits from all major
subsystems of the bony skeleton (see Supplementary Table 1). The
strains used were initially selected for increased (LG/J) and reduced
(SM/J) body size at 60 days post partum, respectively, and then inbred
for more than 100 generations7,8. A QTL mapping analysis of 70 such
phenotypic characters was performed on 1,040 mice of the F2 gene-
ration that were derived from a cross between the inbred LG/J and
SM/J lines. The number of scored markers used was 471, leading to an
average distance between them of 3.98 centimorgans. A total of
102 autosomal QTLs were detected9. These QTLs exhibited pleio-
tropy, as assessed by a specific statistical test10. The QTLs identified
by this test affected a variable number of characters, up to a max-
imum of 30, with a mean of 7.8 and a median of 6 (Fig. 1a). This
means that in our data, 50% of QTLs affect fewer than 10% of the
70 characters measured. This result suggests that pleiotropic
effects tend to be limited to subsets of the total phenotype rather than
being widespread, as assumed in models of universal pleiotropy, in
which all traits are affected by a mutation (see also Supplementary
Fig. 1).

To compare the mutational effects of different QTLs on the affec-
ted traits, we calculated a standardized effect for each character by
dividing the QTL effect by the trait’s phenotypic standard deviation
(see Supplementary Note 1). The standardized effect on trait i,
denoted by Ai, is half the difference in means between homozygotes.
The total effect, T, of a QTL is then defined as the euclidean distance

spanned by all the single character effects (Supplementary Note 6):

T~

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1

A2
i

vuut
In this equation, N represents the degree of pleiotropy; that is, the
number of characters affected by a QTL.

The distribution of the total mutational effect T arising from the
QTL data set is illustrated in Supplementary Fig. 2. The distribution is
estimated to have a mean of 0.59 and a standard deviation of 0.334.
We consider these estimates to be unbiased, because the well-known
bias of QTL effects11 is minimal in sample sizes above 500 as in our
study. We use these data to test two well-known models of how the
total effect depends on the degree of pleiotropy, the euclidean super-
position model and the invariant total effect model.

The euclidean superposition model assumes that the expected
squared effect of a mutation on a character Æm2æ is the same regardless
how many other characters are also affected4. Taking the phenotypic
standard deviation of a trait to be unity, the expected total effect of a
mutation then is hTi~

ffiffiffiffi
N
p ffiffiffiffiffiffiffiffiffiffi

hm2i
p

. Thus, the total effect of a mutation
is predicted to scale with the square root of the degree of pleiotropy N.
This model was used by Rechenberg2, for evolutionary optimization
problems in engineering, and by Turelli3, Wagner4,12, Waxman and
Peck13 and others, in a population genetic context. Orr5 and Wingreen
et al.6 proposed alternative models that we term invariant total effect
models. These models assume that the probability distribution of total
effect, p(T), and hence ÆTæ itself, is independent of the degree of pleio-
tropy. This assumption leads to progressively smaller mutational
changes on each trait as the degree of pleiotropy increases and to slower
rates of evolutionary adaptation with increased numbers of traits.

We first tested these predictions by considering the dependence of the
total effect T on the variable number of traits N affected by a mutation
(Fig. 1b). The total effect T is strongly increasing with pleiotropy with a
highly significant linear regression coefficient (t 5 24.05, P , 0.0001)
and a highly significant regression effect (F1,100 5 578.7, P , 0.0001).
This result decisively rules out the invariant total effect models of pleio-
tropy. However, it is also clear that the data do not support the euclidean
superposition model either, because that model predicts a square-root
dependence rather than the near-linear dependence that is apparent in
Fig. 1b (see Supplementary Note 2). The linear model has a higher R2,
suggesting a linear rather than a square-root dependence (linear regres-
sion adjusted R2 5 0.8512, square-root regression adjusted R2 5 0.7935;
for more detail see Supplementary Note 2). We compared the fit of the
two regression models by calculating their log-likelihood ratio, 3.638.
This ratio indicates that the data are about 40-fold less likely under the
square-root model than under the linear model. We thus conclude that
the data are not only severely inconsistent with the invariant total effect
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model but also suggest a stronger increase in the total effect with more
traits affected than are predicted by the euclidean superposition model.
The total effect of a mutation seems to be increasing more strongly with
pleiotropy than predicted if we assume that the effect on each character
remains the same.

One concern with this result is that a positive relationship between
the number of traits affected by a QTL and the total effect could be
caused by an artefact of QTL mapping. For instance, let us assume that
all the QTLs have the same degree of pleiotropy and the same total
effect on average. Let us further assume that for some QTLs the effects
on a few traits are too small to be detected with our experimental
design. This would lead to both an underestimate of the number of
traits affected and an underestimate in the total effect, because the
undetected effects are not added to the estimate of the total effect. In
this way QTLs for which fewer effects are detected will also have sys-
tematically smaller total effects, leading to a positive regression of the
total effect on the estimated pleiotropy (the number of traits affected).
To assess whether our result in Fig. 1b can be explained as such an
artefact, we calculated the predicted regression slope given the detec-
tion limit for QTL effects (see Supplementary Note 3). For our data
this slope is predicted to be 0.0033 or less. The observed slope is about
tenfold that predicted by this model: 0.047 6 0.0019. We conclude that
the result in Fig. 1b is unlikely to be caused by a detection artefact.

We considered two other ways in which the inferences about a
positive relationship between pleiotropy and total effect could be
flawed. First, the distribution of QTL effects revealed by this cross
might not be an unbiased sample of all mutational effects, because the
two lines used in this experiment were created by divergent selection
for body weight. Alleles with a larger impact on body weight therefore
had a greater chance of being fixed than alleles with smaller effects.
The distribution of QTL effects might thus not reflect the true muta-
tional distribution for skeletal traits but might over-represent alleles
with large effects on components of overall body size. Second, the
degree of pleiotropy might be overestimated because of correlations
between traits. We address these two concerns below.

To test whether our conclusions are influenced by the fact that the
strains were subject to directional selection on body weight rather

than mutation accumulation, we calculated the partial regression of
trait value on body weight and re-analysed the weight-corrected trait
values. Plausibly, these values are more representative of the distri-
bution of mutational effects. The results are shown in Fig. 1c and
Supplementary Fig. 3. There is still a clear positive relationship
between the total effect and the number of traits affected. The scatter
is greater, but the regression coefficient is clearly positive and signifi-
cant (t 5 9.887, P , 2 3 10216, F1,1005 97.74, P , 0.0001).

To test whether our inference could be due to an overestimate of
the degree of pleiotropy, we considered the hypothesis that the degree
of pleiotropy is less than the number of traits as a result of corre-
lations between the traits. To address this, we first tested whether
the phenotypic covariance matrix of the traits affected by a QTL
has fewer dimensions than the number of traits. As discussed in
Supplementary Note 5, error variance has the effect of inflating the
dimensionality of a covariance matrix. To correct for this effect, we
implemented an adjusted bootstrap procedure that uses an estimated
error threshold to test for the dimensionality of the covariance matrix
(see Supplementary Methods). All QTLs except one affect sets of
characters that have full dimensionality according to this criterion.
Another way of assessing the effect of trait correlations on our result
is to estimate an ‘effective number of traits’, Neff. We propose to use
the following simple equation (see Supplementary Note 4)

Neff ~N{Var(l)

where Var(l) is the variance of the eigenvalues of the error-corrected
correlation matrix. Figure 1d gives the result with QTL effects T and
the effective number of traits. Again there is a significant positive
relationship (linear regression coefficient t 5 10.99, P , 0.0001;
F1,100 5 548.7, P , 0.0001). We therefore conclude that the total effect
of a pleiotropic mutation increases with the degree of pleiotropy, even
when correlations between traits are taken into account. Regressing
weight-corrected mutational effects on effective trait number (Supple-
mentary Fig. 4) still gives a positive relationship between mutation
effects and degree of pleiotropy (t 5 8.974, P 5 1.75 3 10214;
F1,100 5 94.96, P 5 3.59 3 10216; R2 5 0.4819) but does not discri-
minate between the linear and the square-root regression models.
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Figure 1 | Distribution of QTL effects on 70
skeletal traits in the mouse. a, The frequency
distribution of the degree of pleiotropy of QTLs.
Note that 50% of QTLs affect only up to six traits,
but there is a set of QTLs affecting as many as
25–30 traits. b, Regression of uncorrected total
effect T on the number of traits N affected by a
QTL. Note the very tight relationship between T
and N. This result does not support the
assumption that T is independent of the degree of
pleiotropy. It also suggests that T increases more
rapidly than predicted by the euclidean
superposition model. Solid line, linear
dependence; dashed line, square-root
dependence. c, Regression of weight-corrected T
on the number of traits N. The residual effects
represent the distribution of mutational effects
better than the raw QTL effects, but there is still a
strongly positive relationship between corrected
T and degree of pleiotropy. Solid line, linear
dependence; dashed line, square-root
dependence. d, To account for the correlations
between the traits we calculated the ‘effective
number of traits’ affected by a QTL, as described
in the text. This correction reduces the maximal
number of pleiotropic effects from 30 (b, c), to at
most 24 effective traits. Even on this scale for
pleiotropy the positive regression remains
significant, suggesting that pleiotropy strongly
influences the total phenotypic effect of a
mutation. Solid line, linear dependence; dashed
line, square-root dependence.
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The observed linear relationship between total effect size and the
number of traits implies that the average mutational effect, per trait,
is increasing with the square root of the degree of pleiotropy.
Mutations with a high degree of pleiotropy have more substantial
effects on each trait than mutations with a more limited degree of
pleiotropy. This pattern is reminiscent of the decanalizing effects of
major mutations14 except that in this case the alleles are not patho-
logical, as other large effect alleles may be, but are part of the natural
variation of the species. In addition, this effect is not due to the release
of hidden genetic variation, which is a generic feature of genes with
epistasis15. We conclude that an increased degree of pleiotropy is
accompanied by an increase in the overall phenotypic effects of muta-
tions even among ‘minor effect’ alleles.

These findings affect predictions about the consequences of com-
plexity on evolvability in two ways. First, the reason that Fisher’s geo-
metric model suggests a decrease in evolvability with increasing
number of traits (complexity) is that his and all studies following his
approach assume that each mutation potentially affects all traits (‘uni-
versal pleiotropy’). Therefore with increasing complexity it becomes
increasingly unlikely that all traits are affected by a mutation in a way
that causes fitness to increase. However, the effects we detected in our
study are not nearly as widely pleiotropic as assumed by the model of
universal pleiotropy. QTL effects are more restricted to parts of the
phenotype as suggested by the idea of variational modularity16,17. Why
this is so is unclear, but there is increasing evidence that natural selec-
tion can change pleiotropy such that evolvability increases18. If, at any
one time, only one or a few characters are maladapted, modularity
increases evolvability19,20. The second factor that was cited as leading
to a lower evolvability of complex organisms is the assumption of
constant total effect5. This assumption was introduced to accommod-
ate the fact that most mutations have small effects5,6. In contrast, the
euclidean superposition model with universal pleiotropy predicts that
the probability of small-effect mutations becomes very small. This is so
because if many characters are affected by each mutation, then it would
be unlikely that the total effect is small. The constant-total-effect model,
however, has the consequence that the average effect per character
decreases and thus the rate of response to directional selection also
decreases, leading to another cost of complexity prediction.
However, our data show that the total effects of mutation actually
increase with pleiotropy. It therefore seems that in real organisms the
combination of restricted rather than universal pleiotropy, and increas-
ing total effects, could be seen as evolution’s answer to the challenges of
evolving complex organisms with random variation and selection.

METHODS SUMMARY
The experimental population results from an intercross of inbred mouse strains

LG/J and SM/J21–23. We measured 70 skeletal traits on 1,040 individuals of the F2

generation (see Supplementary Table 1). QTLs were calculated by interval map-

ping22,24, and correcting for multiple tests25. Tests for pleiotropy were per-

formed10. The additive effect of an allele is A 5 a/s.d., where a is half the

difference between the homozygotes. The total effect of a QTL is T~
ffiffiffiffiffiffiffiffiffiffiffiP

A2
i

p
.

To correct for the effects of selection on body size during the generation of

inbred lines, we included body weight as a covariate in the course of interval

mapping24. We determined the true dimensionality by comparing the eigenva-

lues with the thresholds derived from known trait-specific measurement errors.

For each QTL we constructed the phenotypic covariance matrix for the traits

affected, and determined its eigenvalues and eigenvectors. The error threshold

was estimated as the projection of the error variance onto the respective eigen-
vector. The significance of the eigenvalue is estimated by a bootstrap procedure.

We further estimated the ‘effective number of traits’ by accounting for corre-

lations between traits. The measured covariance matrix was corrected for mea-

surement error by subtracting the error variances from the diagonal. From the

corrected covariance matrix we calculated the eigenvalues of the correlation

matrix. The variance of these eigenvalues was subtracted from the number of

traits to obtain the effective dimensionality.

To compare the fit of the data between linear and square-root regression we

calculated the respective log-likelihood of the model from the regression resi-

duals, assuming a normal distribution of residuals. We used the log-likelihood

ratio to estimate the ratio between model fits. We consider a log-likelihood ratio
of less than –3.0 to be ‘significantly’ better support for the particular model.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Experimental populations. The experimental population results from an inter-

cross of inbred mouse strains LG/J and SM/J21–23. LG/J and SM/J were selected for

large and small body weight at 60 days of age, respectively22,24. In this study we

combine the data from the two replications of an intercross protocol (intercross I

and II) comprising a total of 1,040 F2 mice. For details on markers and map

resolution see ref. 9. Phenotypic traits comprise 70 skeletal measurements repre-

senting the cranium, axial and appendicular skeleton, as well as body weight at 10

weeks and at necropsy. For the list of measurements and their respective repeat-

ability measures see Supplementary Information. For details on measuring tech-
niques see ref. 9. Extreme outliers were eliminated to avoid biasing the data. The

effects of dam, litter size, experimental block, sex, age at necropsy, and intercross

were removed to reduce non-genetic variance, increasing the detectability of

QTLs9,21.

QTL analysis. QTL map positions and effects were calculated by interval map-

ping22,24. Genotypes were imputed every 1 centimorgan along each chromosome

by using the genotypic scores of the flanking markers and the recombination

rate24. The QTLs were positioned where there was the least probability (P) of the

genotype–phenotype correlation occurring by chance. To account for multiple

testing, overall significance level (P 5 0.05) was derived by correcting the single-

locus significance level for the number of tests by using a modified Bonferroni

correction25. Formal tests for pleiotropy were performed, as proposed in ref. 10

and described in ref. 26.

The additive effect of an allele is defined as A 5 a/s.d. To determine the total

effect of a QTL we calculate the euclidean distance of the genotype from the

origin in the phenotype space by T~
ffiffiffiffiffiffiffiffiffiffiffiP

A2
i

p
.

Correction for the effect of selection. The experimental population used is an

intercross of two inbred strains previously selected for low (SM/J) or high (LG/J)
body weight at 60 days of age. The correlated response to this selection regime is

manifested in the genotypic values of the traits. However, the pleiotropy scaling

models tested here make assumptions about the mutational effect distribution,

not the mutations fixed by a selective process. The observed distribution of allelic

effects might therefore be biased towards alleles with large effects on body size,

the target of selection. To correct for the effect of selection, we included the

weight measured at nine weeks of age (closest available to 60 days) as a covariate

in the multiple regression of traits in the course of interval mapping24 (see

above). The model thus estimates the genetic effects at the locus that accumu-

lated in these lineages independently of the selected trait.

Testing for matrix rank. Measurement error for each trait is stochastically inde-

pendent and therefore inevitably leads to a covariance matrix of full rank. If we

were to take the rank of the covariance matrix as an estimate of the dimensionality

of the phenotype, we could thus overestimate the pleiotropic range of a QTL.

Hence we determined the true dimensionality of the trait distribution. We tested

whether the eigenvalues were larger than zero as a result of the dimensionality of

the underlying variables or as a result of error variance by using information about

the repeatability of the measurements9. Measurement error variance was derived
from trait-specific repeatability measures (r2). Each r2 is a coefficient of deter-

mination for the regression of mean value of all measurements taken on an

individual onto a single repeated measurement. The error variance Ej
2 is obtained

by multiplying this value by the total variance of the trait across all individuals.

For each QTL we constructed the phenotypic covariance matrix for the traits

affected by that locus. Then we determined the eigenvalues and eigenvectors of

this matrix. The expected variance due to measurement error for each eigenvec-

tor was estimated as

ti~
Xn

j~1

v2
i,jE

2
j

that is, the projection of the amount of error variance onto the respective

eigenvector.

The significance of each eigenvalue was estimated by a bootstrap procedure on

the individuals (1,000 iterations). At each iteration we constructed the cova-

riance matrix and determined its eigenvalues and eigenvectors. For each eigen-

vector of the original covariance matrix we projected the amount of variance in

the bootstrap sample. The distribution of the projected bootstrap variances was

compared with a threshold value derived from the trait-specific error variances.

If at least 95% of the projected bootstrapped variances are larger than the thresh-

old, we consider the corresponding eigenvalue to be significantly larger than

measurement error. This procedure yielded the full rank for all pleiotropic

ranges, so the number of traits affected (N) was used.

Effective number of traits. Because the phenotypic traits are correlated, we

estimated the ‘effective number of traits’ by correcting the number of traits for

their correlations. Highly correlated traits contribute little unique variance. The

variance–covariance matrix was corrected for error variances by subtracting the

error variances from the diagonal elements of the measured covariance matrix.

Next, the correlation matrix was calculated from the corrected covariance matrix.

Subsequently, the eigenvalues of the correlation matrix were determined and the

variance of eigenvalues was calculated. The eigenvalue variance was then sub-

tracted from the number of traits to derive the effective number of dimensions:

Neff~N{Var(l)

This function returns the value of 1.0 if all the traits are perfectly correlated

and a value of N if no correlation exists among the traits.

Log-likelihood ratio calculation to compare regression models. To determine

whether a linear or square-root regression model better represents the data, we

calculated the log-likelihood of each model from the residuals of the regression.

We assumed that the residuals are normally distributed around the regression

expectation. Hence the log-likelihood of a regression model M is

L(M)!Pr(DatajM)~ P
n

j~1

1ffiffiffiffiffiffiffiffiffi
2pV
p exp {

s2
j

2V

" #

log L(M)~{
1

V

Xn

j~1

s2
j

where sj is the residual of the jth data point, and V is the variance of the residuals

for the model with the better fit. The log-likelihood ratio is then

log L(M1){ log L(M2). The factor

f ~exp½log� likelihood ratio�~ Pr(DatajM1)

Pr(DatajM2)

indicates the extent to which the data are less likely on the assumption of one

model versus the other. If this factor is less than 0.05 it means that the data are less

than 5% as likely with model 1 as with model 2. We consider this to ‘significantly’

better support for model 2 than for model 1.

26. Ehrich, T. H. et al. Pleiotropic effects on mandibular morphology I: developmental
morphological integration and differential dominance. J. Exp. Zool. B 296, 58–78
(2003).
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