
J .  Phys. A: Math. Gen. 23 (1990) 1137-1145. Printed in the U K  

Quantum dissipation of arbitrary strength from coupling to 
fermions 

D Waxman 
Physics and Astronomy Division, School of Mathematical and Physical Sciences, University 
of Sussex, Brighton B N l  9QH, Sussex, U K  

Received 5 September 1989 

Abstract. A single degree of freedom, analogous to the coordinate of a particle, is coupled 
to the density fluctuations of a filled sea of fermions. The fermions live in one spatial 
dimension and have a linear energy-momentum relation, as may be appropriate in the 
vicinity of the Fermi surface. 

By using the equivalence of fermions and bosons in one space dimension, we show 
that the classical limit of the above theory leads to a Langevin equation for the coordinate 
of the 'particle' in which there are no constraints on the strength of the friction constant. 
This is in distinction to existing models of fermionic heat baths which have upper limits 
on the value of the friction constant. 

The non-classical behaviour of the system is studied by determining the reduced 
equilibrium density matrix of the particle. The fermions, described by a functional integral 
over Grassmann fields, are uncoupled from the particle by a change of variables which is 
equivalent to a chiral gauge transformation. This generates a non-trivial Jacobian which 
is evaluated in an appendix and leads, in an appropriate limit, to identical results to those 
found by Caldeira and Leggett for an oscillator heat bath. 

1. Introduction 

In classical mechanics it is very common that a few key degrees of freedom (such as 
the coordinates of a particle) suffer dissipation of energy due to their coupling to many 
other degrees of freedom. In the recent past there has been a significant amount of 
work on the behaviour of these key degrees of freedom when the entire system (i.e. 
all degrees of freedom) are governed by quantum mechanics [ 13. This has been largely 
devoted to understanding the behaviour of the magnetic flux in certain superconducting 
systems. The classical limit exhibited by these systems corresponds to one dimensional 
Langevin-like equations of motion. 

The many degrees of freedom that are responsible for the dissipation in the classical 
limit were modelled, in the context of superconductivity, by Caldeira and Leggett as 
a heat bath consisting of harmonic oscillators?. Fairly soon after this a heat bath of 
fermions was considered by Chang and Chakravarty [3]. Their main conclusion was 
that there are great similarities between the effects of the two heat baths with one 
exception. The oscillator bath can have an arbitrarily large friction constant ( E  
coupling constant) while the fermion bath has (for a finite number of fermion species) 

t The literature on this subject is too extensive to be listed here. We simply note two review papers on the 
subject [ l ,  21. 
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a maximum value of the friction constant. Recent work on the subject [4] has not 
changed this conclusion. It is the purpose of this paper to present a fermionic model 
of a heat bath that is capable of yielding arbitrary dissipation, while restricting itself 
to a single species of fermions. 

2. Description of the model 

We shall denote by q the single degree of freedom that, in the classical limit, exhibits 
dissipative dynamics and obeys a damped equation of motion. In what follows we 
shall refer to q as ‘the coordinate of the particle’ although, as we made clear in the 
introduction, its physical significance may be quite different from this. In the model 
under consideration we couple the coordinate to the density fluctuations of a filled 
sea of fermions. The fermions move in one space dimension, x, and have two- 
component field operators $a(x) ( a  = 1,2) which satisfy canonical anticommutation 
relations: 

The total Hamiltonian that describes the particle coupled to the heat bath is given 
by (summation over repeated indices is implicit): 

where 

Hb is the 

P 2  H,=-+ V ( q )  
2m 

Hamiltonian describing the dynamics of the uncoupled fermionic heat 
bath and a3 is the third Pauli spin matrix. This Hamiltonian can be viewed as a model 
of (one spin species of) electrons in the vicinity of the Fermi surface where their 
energy-momentum relation has been linearised. A quick way to see this is to note that 
the full energy-momentum relation is E = (k’  - k$)/2m ( kF = muF = Fermi momentum) 
and if k = kF* 6k then E == * u,Sk, and making the replacement Sk + -id/dx leads, 
effectively to ( 2 6 ) .  Thus the upper (lower) component of the field operator describes 
fermions moving to the right (left) with velocity= uF (-uF). In the present work uF is 
taken to be unity. 

H ,  is the standard result for the Hamiltonian of a particle moving in a potential V( q ) .  
Hint is the part of the total Hamiltonian representing the interaction between the 

particle and the heat bath. As has been extensively discussed and motivated in [ l] ,  
we have taken this to be linear in the coordinate of the particle. There are two other 
factors in the interaction Hamiltonian. 
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One of these is the operator $[ +:, +a] which represents the density fluctuations of 
the Fermi field. The sense that $+:, +,I corresponds to the density fluctuations 
of the Fermi field is as follows. The deviation of the density from its mean value 
is +:+a -(+:+bo). We can write for each bilinear combination of +s, +'+= 
:[ $', $1 + +{ +', +}. The anticommutators cancel between the two terms in the density 
deviation (since both yield the state independent value 6(0)). We are thus left with 
&+', $1-(f[+', $3) for the density deviation. It is natural to take the expectation 
value of the commutator in an equilibrium state of the uncoupled Fermi bath. For 
the free fermion part of the total Hamiltonian of (2), Hb, this expectation value 
vanishes, leaving only the commutator for the density deviations. 

The other factor appearing in the interaction Hamiltonian is the function @(x) 
which we describe as a 'form factor', which characterises the locality of the coupling 
of q to the Fermi field. In the present work we take @(x)  to be a function that is 
strongly peaked about x = 0. Physically, the interaction Hamiltonian describes a 
particle moving in a space orthogonal to that of the fermions and interacting with the 
fermions only in the vicinity of x = 0. 

With hindsight we have also included in the total Hamiltonian a 'counter term' 
H,,, which has the effect of ensuring that V ( q )  is the observed potential-i.e. the one 
appearing in the classical Langevin equation (see section 3). 

3. Determining the equation of motion in the classical limit 

Having written down the total Hamiltonian, it remains for us to demonstrate that in 
the classical limit it is capable of reproducing a Langevin equation for q ( t ) .  

At first sight the procedure seems obvious: simply treat the variables appearing in 
the Hamiltonian (or Lagrangian) as classical quantities and work out their equations 
of motion. This procedure runs into difficulties when it is realised that the problem 
involves Fermi fields which, naively at least, do not appear to have a classical limit. 
There is a way out of this difficulty, however: namely to use the equivalence of fermions 
and bosons in one spatial dimension [5]. Once the theory is written in terms of bosons 
the original procedure may be used. To proceed, we write down, using standard 
principles [6], the Lagrangian equivalent to the Hamiltonian of (2) 

mq' dx L = dx[ &id,+ + $ ~ 7 ~ i d . ~ $  - q@&+] +- - V (  q )  - q2 I - a2. I 2 277 
(3)  

In this equation + and $ are independent Grassmann fields and the time evolution 
kernal is a functional integral over + and $ of exp(i L dt) .  By making the change 
of variables $ + $U' and identifying yo = a', y'  = -ia2, xo = t, X I  = x, we can make the 
fermion part of the Lagrangian look like that of a relativistic field theory 

mq ' dx L =  dx[$iy'dp+-q@&yo+]+-- V ( q ) - q 2  -@'. I 2 277 
(4) 

In this form the theory involving Fermi fields can be easily replaced by a theory having 
completely equivalent dynamics but now involving only boson fields. The replacement 
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is implemented by the standard bosonisation rules [ 5 ]  

@y’”a,+ +4(d,6)(dp6) = 

where 6 is the boson field replacing the fermions. 
We thus obtain a Lagrangian with equivalent dynamics to the original Hamiltonian 

V ( q ) - q ’ I  -Q2.  d x  
27T 

We are now in a position to determine the classical content of the theory. The 
Euler-Lagrange equations that follow from the Lagrangian of ( 6 )  are 

-mq- V’(q)-q ( 7 )  

Eliminating 6 from these (we have assumed that at t = -00, 6 = 0, 4 = 0) leads to 

mii(r)+ V’(s(t)) 
1 d x  =--I dxdx’dt ’Q(x)a lG(x-x’ ,  t- t’)q(t’)Q(x’)-q(t)  I --e2 (8) 

where we have introduced the retarded Green function G ( x  - x’, t - t ’ ) ,  which obeys 

7T 7T 

(df - 8;) G(x - x’, t - t ’ )  = 6 (  x - x’)S( t - t’) ( 9 )  
and is given by 

Let us assume that the form factor @(x)  is an even function whose Fourier transform 
is 

6 ( k )  = @(x) dx. (11) I 
The RHS of (8) may, using ( lo) ,  (1 I), be written in the form 

dt’ 6 ( t  - t’)[6( k)I2 cos k( t - t ’ ) ]  q(  t ‘ )  - q(  t )  *Q2. 
I T  

Integrating this by parts leads to 

with 

dk  
r ( t )= /  3 [ 6 ( k ) ] * c o s  kt (13)  

dx 
= 1 - @(x)@(x + t ) .  (14) 7T 
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Thus (8) is 

mq( t )  + V’( q( t ) )  = - dt’ y( t - t ’ ) q (  t ’ ) .  II, 
As in other studies of a heat bath interacting with a single degree of freedom, the 

coupling between them does not only produce dissipative terms in the equation of 
motion, but also additional potential terms [ l ,  21. As we have seen in the steps leading 
to (15), the role of H,, is to precisely cancel these additional terms, thereby ensuring 
that the potential appearing in H, V( q ) ,  is the one appearing in the equation of motion. 

Let us now consider a specific choice for the function @(x).  It is convenient to 
specify its Fourier transform 6( k ) ;  we take 

& ( k )  = A e-lkl/Wc w, = constant. (16) 

Then in the limit wc+ CO, y( t  - t‘) 4 ( A 2 / . r r ) S ( t  - t ’ )  and a Langevin equation is obtained 
(if w, is held to be finite, the system has a memory with a timescale - w ; ’ ) .  Note that 
there are no constraints on the value of the parameter A2/.rr,  which plays the role of 
a friction constant, hence we infer that despite having a fermion heat bath, the system 
can have an arbitrarily large friction constant. 

4. Quantised theory at finite temperatures 

To reinforce the last statement of section 3 we shall, in this section, show directly from 
the fermion model how to obtain the reduced density matrix for the particle, and hence 
make the connection with existing results. 

The reduced density matrix for the particle at temperature T =  1/P is 

d q ,  4’; P )  = Trb(qle-PHlq’)/Z (17) 

where Trb denotes a trace over the fermion degrees of freedom and 2 = Trb e-PHh is 
the partition function of the uncoupled Fermi bath. From this reduced description we 
can calculate all equilibrium quantities that relate to the particle alone. In functional 
integral representation, (17) has the form 

where 

d[$] d[4] exp- jo’ dt  dx ($(a, -iu3d, + q@)$ +- 

and d denotes evaluating the Grassmann integral over fields that are antiperiodic over 
p. In order to evaluate F [ q ] ,  we shall recast our theory in the form of a Euclidean 
field theory, we shall then be able to draw upon existing results in the literature. To 
this end we first make the change of variables $+ $cl, and furthermore define 

x4 = t XI = x y4= U1 y’ = -U2 

ys = iy4yl = u3 ieA, = -q@ ieA, = 0. 

(The y matrices obey y,yy = S,, +iEpvySr with & I 4  = -e4’ = 1, e l l  = E- = 0.) 
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With (20) we can write 

where 

We next perform a gauge transformation to make a,A, = a4A4 + a,A, = 0. 
We achieve this by making the change of variables 

CC, + e’,‘$ 6- (Le-“, (22.a) 
The transformed A that results from this is 

A, =A, -a,A/e. 

Then a,A, = 0 implies 

1 
A = - ea,A, (22c) a’ 

(a’ = a:+a:). 
Given the action S of (21 b )  with A obeying a,& = 0, we can completely decouple 

the fermions from the A field by using the chiral transformation of Roskies and 
Schaposnik [ 71 

II, + e’”Sm * (L +, (L eiysa (23a 

with a chosen to cancel the A dependence in S :  ey,A, = Y,a,(YSa). 
This has the solution 

1 - 
a = ie- aolEmpAb. (236 a’ 

A non-trivial consequence of the change of variables, (23), was discovered by Fujikawa, 
namely that the Jacobian of the transformation, J, is not unity [B]. After some 
calculation [7], it is found to be 

1 
27T 

J = e x p - -  J” dx J“ dtaa’a.  

Putting together the preceding equations we see that in (21a) the functional integral 
divided by Z reduces simply to the Jacobian J. Thus 

Details of the evaluation of F[q]  are contained in the appendix which obtains the 
result (in the limit w ,  + 00) 

We may therefore write for the reduced density matrix of the particle 

(27) 
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where the effective action Seff is given by 

This result is equivalent to that found by Caldeira and Leggett for a bath of oscillators 
[ 1,2]. We conclude that the Hamiltonian of ( l ) ,  involving fermions, leads to identical 
behaviour to the model considered by Caldeira and Leggett. In particular, there is no 
limitation on the strength of the dissipation. 

5. Discussion 

The model we have considered in this paper involves a particle coupled linearly to 
the density fluctuations of fermions. By using methods fairly specific to fermions 
moving in one space dimension, we have shown explicitly that this model reproduces 
the Langevin equation in the classical limit and the equilibrium results of the (oscillator) 
model of Caldeira and Leggett [l,  21. It should therefore be viewed as equivalent to 
their model-despite the apparently very different nature of the heat baths. We believe 
that the difference of the results of this paper compared with those of other authors 
who consider Fermi heat baths lies in the fact that we used a Fermi sea that was 
unbounded from below, whereas they had a finite energy bandwidth. Clarification of 
this point would be welcome. 

We have, in section 2, already noted that the particle does not move in the same 
space as the fermions-we have no notion of the particle moving along x. Rather, the 
picture we have is of the particle moving orthogonally to the fermions. It is possible 
to consider models of a different kind in which the particle shares a common space 
with-moves along-the fermions. The coupling in this case might be of the density- 
density form f dx @ ( q ( t )  -x)i[++(x),  $(x)] where, as previously, @ is a function 
peaked about zero argument. Such a situation is easily accommodated in the framework 
described above, although detailed consideration of the form of H,, , if it is required 
at all, is necessary in this case. 
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Appendix 

In this appendix we present the steps leading to the form of the functional F [ q ]  given 
in (25); F [ q ]  = J exp[-(1/2r)Sdx dtq2Q2].  

Equations (24) and (236) yield 

Replacing A by A (since E a p a a a p  = 0), using (20) and integrating by parts twice, 
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we obtain 

J = e x p n  

=L [ d x  d t  d x ‘ d t ’  q ( t ) q ( t ’ ) ~ ( x ) ~ ( x ’ ) a , a ,  G(x, x’; t - t ’ )  (‘42) 
2.T 

where the Green function G is given by 

G(x, x’; t - t ’ )  (a’ = at. +a:). (A3) 
1 --= 

a’ 
It is convenient at this point to specify the Green function G(x, x’; t - t’) of (A3). 

Going back to (22) of the main text, we note the following. The transformed Grassmann 
fields are chosen, like the original fields, to be antiperiodic functions of t over the 
interval p. This results in A, and hence G, being periodic functions of t over the same 
interval, P :  

(A41 

In order to have a well defined spatial behaviour of the Green function, we impose 

G(x, x’; t + P )  = G(x, x’; t )  

Dirichlet boundary conditions at - L  and L: 

G( -L ,  x‘; t )  = 0 = G( L, x’; t )  (-45) 

It is a straightforward matter to determine G: 

1 coshw,(x+x’)-cosh w , ( ~ L - ~ x - x ’ ~ )  
G(x, x’; t )  = -- C 2p n = - x  w, sinh 2w,L 

2 r n  
w, =-. 

P 
The original Hamiltonian, (2),  had the fermions moving over (-CO, CO), and we 

shall take the limit L+oo to recover this, although not in (A6), where the term with 
n = 0 diverges with L. 

Proceeding with the evaluation of J, we note that the limit L- .  CO can be straightfor- 
wardly taken in (A2), where d,a,,G(x, x’; t - 1 ’ )  appears. The differentiations annihilate 
constant terms which diverge in the limit L +  CO and we can, in (A2), effectively replace 
the limiting form of G(x, x’; t - t ’ )  by 

e-  U,, l r - x  1 e - i U , , ( t - l  1) I 3 G,(x-x’; t - f ’ ) = -  - X - x ’ I  . (A7) 

While G, obeys the same equation as G, it does not have the same spatial boundary 
behaviour. Henceforth we shall replace G by G,, and thus have taken the L + CO limit. 

Continuing, we use the identities 

q ( t ) q ( t ’ )  = ~ [ 4 ’ ( ~ ) + q 2 ( t ’ ) I - f [ q ( t ) - 9 ( ~ ’ ) I 2  (A8) 

=a:G,(x-x’; t -  t ‘ ) + s ( X - x ’ ) s ( t - t ’ )  (A91 

n = n, +n, (‘410) 

a,a,.G,(x -X I ;  t - t’) = -a’,G,(x - X I ;  t - r ’ )  

and write (A2) as 
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0, = - 
4Tr 

d x  dx’ d t  dt’  [ q 2 (  t )  + q2( t‘)] 

x [d:G,(x -x‘; t - t’) + S ( X - X ’ ) ~ (  t - ~’)]@(x)@(x’) ( A l l )  

R2 = - - dx dx’ d t  dt‘  [ q(  t )  - q(  t’)]’dfG,(x - x’; t - t‘)@(X)@(X’), (A121 

C l ,  can be simplified by using the fact that G ( x  - x’; t - t ’ )  is even and periodic (over p )  
in t - t ’ .  Thus 

‘ 5  
477 ‘i 

R I  = lop d t  f q 2 (  t )  5 dx dx’ lop dt’ 

x[d:,G,(x-x’; tf)+6(.x-x’)6(t  - t’)]@(X)@(X’), (A13) 
The time derivative of the Green function integrates to zero, being itself periodic in 
p, thus 

R ,  = lo’ d t  q2(  t )  1 @.’(x). 

This term exactly cancels with the contribution of H,,, i.e. the factor multiplying J 
in ( 2 5 ) .  

Equation (A12) can, with the use of the Poisson summation formula and the explicit 
forms for G, (A7) and 0 ( l l ) ,  (16), be expressed as 

Cl,=- lop d t  lop dt’K(t- t ’ ) [q( t ) -q( t ’ )12 (‘415) 

where 
A 2  1 

K ( t - t ‘) = - c 
87r2 ,, ( l t - t ’ + n @ I + w , ’ ) ‘ ’  

If, in (A16), we neglect a,’, then R2 may be written as 

We thus find that F [ q ]  is given by 

F [ q l =  exp(fl*[qI). (A181 
If we periodically continue q ( t )  such that q ( t + p ) = q ( t ) ,  then (A17) can be 

expressed in the same form as Caldeira and Leggett’s result [1,2]: 
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