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Abstract

The implications of stabilising selection on a quantitative trait, in the absence of other evolutionary
forces, are theoretically investigated in a randomly mating population. The dynamics of various statistics
that describe the alleles contributing to the trait are determined and used to infer the behaviour of the trait.

Dynamical solutions of the distribution of allelic effects and the distribution of the trait are found when
all initial distributions of allelic effects are Gaussian and linkage disequilibria are neglected. Some results
for the behaviour of the mean and the variance of genotypic effects of the population, when subject to a
moving optimum, are derived.

When the initial distributions of allelic effects are not Gaussian, but possess a small asymmetry, the mean
and the variance of the allelic effects differ only slightly from the Gaussian results. By contrast, the third
central moments of allelic effects, are, at all loci, strictly zero in the Gaussian case but are generally non-
zero for non-symmetric initial distributions. To leading order in a quantitative measure of the asymmetry
of the distribution, we determine the third central moment of allelic effects.
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1. Introduction

Many of the traits that are significant for subjects such as evolutionary adaptation, have a poly-
genic origin and constitute continuously varying quantitative characters. In this work we consider
a population, where, during the time-scales of interest, only stabilising selection on a quantitative
trait is of importance and other evolutionary processes such as mutation, genetic drift, and migra-
tion can be neglected. In this case, the selection-driven dynamics of pre-existing genetic variation
is the primary focus of attention and we investigate some of the possible transient phenomena that
such a population can experience.

Fully understanding such a model should also prove useful in understanding more complex
models, where purely selective phenomena inevitably become entangled with other processes such
as mutation. This, ultimately, is the motivation for this work, since there are aspects of dynamics
involving selection on a quantitative trait that remain obscure and require further clarification and
understanding. As an example, results involving biased mutation [1] indicate that selection at the
trait level can be effectively evaded, at the gene level. This means that while the trait equilibrates,
there may be an allelic turnover (or running of allelic effects) that continuously occurs in a large
population – at least until genetic variation is exhausted or some sort of genetic constraint
manifests itself [1].

The present investigation is made in the framework of a sexual, diploid model with a continuum
of alleles, where a quantitative trait is additively determined from allelic effects of a number of
unlinked loci [2,3]. If a Gaussian or similar function of genotypic values is adopted to describe
fitness then there are only a small number of parameters characterising the model, namely a mea-
sure of the intensity of selection, the number of loci and the optimal phenotypic value. These
parameters are not, however, the whole story. The initial distribution of the population generally
has a substantial influence on the population�s subsequent dynamics, since no new variation orig-
inates during the time-interval of interest and all that can occur is an irreversible change of the
population over time.

The model described above appears to be one of the simplest descriptions of a quantitative
character, with only selection of a particularly simple type occurring. Indeed, one might expect
to find such a model solved in text-books on quantitative genetics, but this is not the case, perhaps
because despite the conceptual simplicity of the problem, it is not mathematically trivial. In par-
ticular the dynamical equations are intrinsically non-linear and possess a degree of mathematical
complexity since selection at any locus is influenced by the genetic background of that locus.

Apart from the classic paper of Robertson [4], on the effects of stabilising selection on genetic
variation, other more recent studies of explicitly dynamical phenomena have considered aspects of
strong selection [5,6], the complex response of populations to change of the optimal phenotype [7]
and the dynamics at the phenotypic level [8].
2. Model

Consider an effectively infinite population of sexual organisms that are diploid, randomly mat-
ing and dioecious. Individuals do not exhibit any sexual dimorphism, and are characterised by a
single phenotypic trait that is controlled by 2n alleles at n unlinked loci. We assume additive genet-
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ics, where an individual�s genotypic value is given by G ¼
Pn

j¼1ðxj þ yjÞ, where xj (yj) is the effect
of the maternally (paternally) originating allele at locus j. Thus at the level of the trait, there is no
dominance or epistasis. Following Crow and Kimura [2], Kimura [3] and many subsequent
authors, we take allelic effects, such as xj, to be continuous and range from �1 to 1. Allelic ef-
fects are also used as a unique label of different alleles.

Fitness is taken to be determined entirely by stabilising viability selection on the phenotypic
value of the trait. Phenotypes consists of a sum of a genotypic value and a statistically indepen-
dent random environmental effect that is normally distributed, with mean zero and variance unity.
The viability of individuals of genotypic value G arises from an average over environmental effects
(see e.g. [9]). If a noroptimal selection scheme [10] is adopted, then relative to the fittest individ-
uals, the viability has the form exp[�s(G � Gopt)

2], where s is a positive constant characterising the
intensity of selection and Gopt is the optimal genotypic value (which coincides with the optimal
phenotypic value). Generally, Gopt depends on time t, although we shall only show this time
dependence when it clarifies matters.

When only small values of (G � Gopt)
2 occur with any appreciable frequency, as we shall as-

sume, the noroptimal viability may be well approximated by
wðGÞ ¼ 1� sðG� GoptÞ2 ð1Þ
and this is the form of relative fitness that we shall adopt in what follows.
We assume discrete generations, weak selection (s � 1, sVar(G) � 1, where Var(G) is the var-

iance of G) as is appropriate to naturally occurring populations [11] and neglect linkage disequi-
libria. Investigations of the full multilocus problem indicate that neglect of linkage disequilibria is
a very reasonable approximation when selection is weak (see e.g. [9,12]).

Census is made at the zygotic stage, prior to the action of selection. At the time of cen-
sus, the population is in Hardy–Weinberg equilibrium. The consequence of this, and the neglect
of linkage disequilibria, is the statistical independence of all alleles both across and between
loci.

Let /j(x, t) denote the probability density of allelic effects of maternal origin at locus j in gen-
eration t. Apart, possibly, from the first generation, the distributions of allelic effects of paternal
and maternal origin coincide, as we shall henceforth assume. Given that the intensity of selection,
s, is small, it follows that the difference between /j(x, t) and /j(x, t + 1) is also small and a conti-
nuous-time approximation is justified. We can then replace /j(x, t + 1) � /j(x, t) by o/j(x, t)/ot
and from this and the description of the model, we arrive at a dynamical equation for /j(x, t).
The resultant equation coincides with the continuous time equation, associated with a Malthusian
fitness function that depends quadratically on trait values, and reads
�o/jðx; tÞ=ot ¼ s ðx� �xj þ G� GoptÞ2 � ðxj � �xj þ G� GoptÞ2
h i

/jðx; tÞ: ð2Þ
Here overbars denote an average appropriate to generation t, e.g. �xj ¼
R
x/jðx; tÞdx, G ¼ 2

Pn
j¼1�xj

and ðxj � �xj þ G� GoptÞ2 ¼
R
ðx� �xj þ G� GoptÞ2/jðx; tÞdx (we use the convention, both here and

elsewhere, that all integration variables range from �1 to 1, unless explicitly stated to the
contrary).
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3. Basic properties of the long time dynamics

Basic properties of Eq. (2) may be inferred, when Gopt is independent of time and we make the
assumption (borne out by numerical approaches) that the solution equilibrates at long times. In

such a case, as t! 1, quantities approach equilibrium values: �xjðtÞ ! �̂xj, GðtÞ ! bG and

/jðx; tÞ ! /̂jðxÞ. Then Eq. (2) collapses to ðx� �̂xj þ bG � GoptÞ2/̂jðxÞ ¼ ðx� �̂xj þ bG � GoptÞ2b/jðxÞ
and the only way this equation can hold and also be consistent with

R
x/̂jðxÞdx ¼ �̂xj is if (i)

/̂jðxÞ ¼ dðx� �̂xjÞ where d(•) denotes a Dirac delta function and (ii) bG ¼ Gopt. This means that
for a static Gopt, the assumption of equilibrium ultimately results in a monomorphic population
where the mean trait value coincides with the optimal phenotypic value and at any given locus, all
individuals have the same allele.

While the assumption of equilibrium determines the value of the sum of mean allelic effects:
2
P

j�̂xj ¼ Gopt, it does not determine unique values of the mean allelic effects, �̂xj, at different loci:
the values of the �̂xj depend on parameters in the initial distribution /j(x, 0), as is shown below.
4. Formal solution of the dynamical equation

The solution of Eq. (2) is shown in Appendix A to be
/jðx; tÞ ¼
exp½�stðx� F jðtÞÞ2�/jðx; 0ÞR
exp½�stðy � F jðtÞÞ2�/jðy; 0Þdy

; ð3Þ
where F jðtÞ ¼ t�1
R t
0
½�xjðvÞ � ðGðvÞ � GoptðvÞÞ�dv.

We view Eq. (3) as only a formal solution of the problem, since /j(x, t) is given in terms of the
function Fj(t). However Fj(t) depends on time averages of �xj and G and these require knowledge of
the unknown distribution /j(x, t

0) for values of t 0 earlier than t. Working analytically, we have
found that the formal solution, Eq. (3), is a useful way of proceeding. In doing so, we note that
a feature of Eq. (3) is that the distribution at time t is significantly influenced by the initial distri-
bution and in what follows, we make the assumption that for all loci, /j(x, 0) is continuous and
non-vanishing over 1 > x > �1 (a property possessed, for example, by a Gaussian distribution).
Forms of /j(x, 0) that consist of just a sum of Dirac delta functions lead to results equivalent to a
model with only discrete alleles and are not covered in the present work.
5. Initial distribution

An exactly soluble case of Eq. (3) follows, when all initial distributions, /j(x, 0), are taken to be
Gaussian distributions. In this case all /j(x, t) (for all t > 0) are Gaussian distributions and below,
we give the variance of these distributions and the equations that determine their means. How-
ever, an initial distribution that is completely symmetric about its mean, of which a Gaussian
is an example, is a rather special and possibly contrived situation. Thus to increase the generality
of the analysis presented, we consider the properties of the population, when the initial distribu-
tions of allelic effects posses a non-zero level of asymmetry. We shall adopt initial distributions
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that deviate from a Gaussian – yet are sufficiently �close� to a Gaussian, that we can exploit the
exact solubility arising when all distributions are initially Gaussian.

We take the initial distribution to be
Fig. 1
a case
values
/j;eðx; 0Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ej
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ej

p ffiffiffiffiffiffiffiffiffiffi
1

2pr2
j

s
�

exp � ðx� ajÞ2

2r2
j ð1þ ejÞ

 !
; x > aj;

exp � ðx� ajÞ2

2r2
j ð1� ejÞ

 !
; x < aj:

8>>>>><>>>>>:
ð4Þ
This is continuous for all values of x, but for ej 5 0 is asymmetric. An example of this distribution
is plotted in Fig. 1.

Initial distributions of the type in Eq. (4) lead to very complex expressions, hence to simplify
matters, we shall assume all �asymmetry parameters,� ej, are small in magnitude: jejj � 1. For
all quantities of interest, we shall calculate only the leading non-zero term, in an expansion in
the ej. For our purposes, this entails keeping terms no higher than linear order in the ej. Neglecting
terms of Oðe2j Þ and higher order is equivalent to working with an initial distribution that follows
from Eq. (4) by expansion in ej, namely
/j;eðx; 0Þ ¼ /j;0ðx; 0Þ �
1þ ej

2r2
j
ðx� ajÞ2; x > aj;

1� ej
2r2

j
x� aj
� �2

; x < aj;

8>><>>: ð5Þ
where /j;0ðx; 0Þ ¼ ð2pr2
j Þ

�1=2 expð�ðx� ajÞ2=ð2r2
j ÞÞ.

While the distribution of Eq. (5) is not positive everywhere, it contains the leading two terms, in
an expansion in ej, of a genuinely positive distribution. Consequently, its usage correctly gives the
expected value of quantities, to linear terms in ej.
. The initial distribution of allelic effects, /j,e(x, 0), of Eq. (4), is plotted against allelic effect, x. The plot illustrates
where ej 5 0 so the distribution is not symmetric about its maximum, which occurs at x = aj. The parameter
adopted are ej = 0.4, rj = 0.5 and aj = 2.
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6. Results for various statistics

6.1. Definitions

We shall concentrate on three important statistics of allelic effects that describe the population,
namely the mean, the variance and the third central moment about the mean. These are defined by

�xj � �xjðtÞ ¼
R
x/jðx; tÞdx, vj � vjðtÞ ¼ ðx� �xjÞ2 ¼

R
ðx� �xjÞ2/jðx; tÞdx and l3j � l3jðtÞ ¼ ðx��xjÞ3 ¼R

ðx� �xjÞ3/jðx; tÞdx. From these results we can determine the corresponding statistics describing

the trait: G ¼ 2
Pn

j¼1�xj, VartðGÞ ¼ ðG� GÞ2 ¼ 2
Pn

j¼1vj and ðG� GÞ3 ¼ 2
Pn

j¼1l3j; the last two re-

sults following from Hardy–Weinberg equilibrium and the neglect of linkage disequilibria.

6.2. Results for time t = 0

For aid of comparison, we have determined the corresponding moments of allelic effects at time
t = 0. Keeping only the leading non-zero term, in an expansion in ej, we find, from Eq. (5), that

�xjð0Þ ¼ aj þOðejÞ, vjð0Þ ¼ r2
j þOðe2j Þ and l3jð0Þ ¼

ffiffi
2
p

q
r3
j ej þOðe3j Þ and in what follows, we as-

sume that aj and rj are not small compared with ej (i.e. aj and rj are Oðe0j Þ for all j).

6.3. Results for times t > 0

For fixed t, the mean allelic effect, �xjðtÞ, and the variance in allelic effects, vj(t) both remain finite
as ej ! 0 (see Appendix B for details of all calculations for this subsection). Thus, just like their
t = 0 counterparts, they are both non-zero to Oðe0j Þ and are the leading non-zero terms, in an
expansion in ej. By contrast, the third central moment, l3j(t), vanishes as ej ! 0, and in an expan-
sion in ej, the term linear in ej is the leading non-zero term. We write �xjðtÞ ¼ �xj;0ðtÞ þOðejÞ,
G0ðtÞ ¼ 2

Pn
j¼1�xj;0ðtÞ so GðtÞ ¼ G0ðtÞ þOðeÞ and vj(t) = vj,0(t) + O(ej). Then with
Kj � KjðtÞ ¼ ð1þ 2sr2
j tÞ

�1 ð6Þ
the variance in allelic effects, to zeroth order in ej, is
vj;0ðtÞ ¼ r2
jKjðtÞ: ð7Þ
The mean allelic effect, to zeroth order in ej, namely �xj;0, follows from solution of
d�xj;0ðtÞ=dt ¼ �2svj;0ðtÞ½G0ðtÞ � GoptðtÞ� ð8Þ
subject to the initial condition �xj;0ð0Þ ¼ aj.
The quantities �xj;0ðtÞ and vj,0(t) are the mean and the variance of allelic effects, to zeroth order in

ej. They can be directly calculated by taking ej = 0 in all initial distributions of allelic effects, i.e. by
taking all initial distributions to be Gaussian. They correspond to the mean and the variance of
the resulting distributions of allelic effects, which are all Gaussian, for all times.

A quantity that is substantially more complicated than �xj;0ðtÞ and vj,0(t) is the third central mo-
ment of allelic effects, l3j. To leading non-zero order in the asymmetry parameter ej, we find l3j
has the time dependent form
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l3jðtÞ ¼ ej

ffiffiffi
2

p

r
r3
jK

5=2
j exp �ðaj � �xj;0Þ2

2r2
jKj

 !
þOðe2j Þ: ð9Þ
We discuss a special case of l3j in the following section.
The procedure used to actually solve Eq. (8) for �xj;0ðtÞ, is to sum twice Eq. (8) over all j. This

yields the following equation for the mean trait value, to zeroth order in e:
dG0ðtÞ=dt ¼ �4s
Xn
j¼1

r2
jKj

 !
½G0 � Gopt�: ð10Þ
This linear equation may be solved for G0 and the result, when used in Eq. (8), allows �xj;0ðtÞ to be
determined by direct integration.

The variance of the trait is given by
VartðGÞ ¼ 2
Xn
j¼1

vj;0ðtÞ þOðeÞ: ð11Þ
When all ej = 0, the reduction of the variance of the trait, with time, as seen from Eqs. (6) and
(11), is in accordance with the result of Schnol and Kondrashov [13], for the effect of selection on
genetic variance.

The trait also has a generally non-zero (time dependent) third central moment that is given by
ðG� GÞ3 ¼ 2
Xn
j¼1

l3j ¼ 2
Xn
j¼1

ej

ffiffiffi
2

p

r
r3
jK

5=2
j exp �ðaj � �xj;0Þ2

2r2
jKj

 !
þOðe2Þ: ð12Þ
Since the trait is additively determined from allelic effects, it follows, from Hardy–Weinberg
equilibrium and the approximation of linkage equilibrium, that to zeroth order in asymmetry,
the trait is normally distributed with mean G0ðtÞ and variance 2

Pn
j¼1vj;0ðtÞ.

We note that an equation equivalent to Eq. (10) has appeared in the approximate analysis of
Barton and Turelli [8] – see their Eq. (5.2). Their accompanying differential equation for the var-
iance, which in our notation reads dVart(G)/dt ’ �s[Vart(G)]

2/n (derived from their Eqs. (5.2)
and (6.3)) only follows from Eq. (11) when all initial allelic variances, i.e. all r2

j , are identical
at all loci. When this is not the case, and all allelic variances are not initially identical, then
allelic variances at different loci change at different rates and generally, no differential equa-
tion for Vart(G) appears to exist. Also, in contrast to the approach of Barton and Turelli [8],
we have not assumed a �moment closure� scheme, where high moments are expressed in terms
of lower moments. Rather we have consistently worked out the moments, to leading non-trivial
order, in a controlled expansion in a parameter characterising the asymmetry of the initial
distribution.
7. Special case

The results of the previous section lead to somewhat complicated expressions for all quantities
other than the variances of allelic or genotypic effects. To simplify matters, we shall therefore
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consider a special case where the optimal phenotypic value, Gopt is independent of time and where

all initial allelic variances, r2
j , have the same value, namely r2. We then find that Eq. (10) yields
Fig. 3
The c
allelic
r = 0

Fig. 2
Gauss
deviat
G0ðtÞ ¼ Gopt þ ð1þ 2sr2tÞ�2n G0ð0Þ � Gopt

� �
: ð13Þ
It follows from this result and Eq. (8) that
�xj;0ðtÞ ¼ aj � ðG0ð0Þ � GoptÞ½1� ð1þ 2sr2tÞ�2n�=ð2nÞ: ð14Þ
. The third central moment, of the trait, relative to its value at time t = 0, l3(t)/l3(0), is plotted against time, t.
ase illustrated corresponds to the result of Eq. (15), which was calculated for the case where the distributions of
effects of all loci have identical standard deviations. Parameter values adopted are G0ð0Þ ¼ 9, Gopt = 3, s = 0.05,
.5 and n = 20.

. The mean trait value of Eq. (13) is plotted against time, t, for the case where all initial allelic distributions are
ian. For the case illustrated, the distributions of allelic effects of all loci are taken to have identical standard
ions. Parameter values adopted are G0ð0Þ ¼ 9, Gopt = 3, s = 0.05, r = 0.5 and n = 20.



D. Waxman / Mathematical Biosciences 194 (2005) 81–93 89
We thus have explicit information on the way G0ðtÞ and �xj;0ðtÞ approach their equilibrium values,
namely both approach them as t�2n. Furthermore, at large times, �xj;0ðtÞ approaches aj � ðG0ð0Þ�
GoptÞ=ð2nÞ, and is thus determined from the initial state of the population.

Fig. 2 contains an illustration of how G0ðtÞ changes with time.
For the special case of this section, rj = r, Kj = K � (1 + 2sr2t)�1 and all l3j�s are identical. We

can then write ðG� GÞ3 ¼ 2nl3 where
l3ðtÞ ’ e

ffiffiffi
2

p

r
r3K5=2 exp �

1� K2n
� �2

2K
G0ð0Þ � Gopt

2nr

� �2
 !

: ð15Þ
We note that irrespective of the value of G0ð0Þ, l3(t) vanishes, at large t, at least as fast as t�5/2,
because of the K5/2 � (1 + 2sr2t)�5/2 factor in Eq. (15).

In Fig. 3 we have plotted l3ðtÞ=l3ð0Þ / ðG� GÞ3 as a function of time.
8. Special case

As a second special case, we shall consider how the population responds to a varying pheno-
typic optimum when initially, all allelic distributions are Gaussian and have identical variances,
i.e. ej = 0 and r2

j ¼ r2 and Kj = K(t) � (1 + 2sr2t)�1 for all j.
We then find, from Eq. (11) that, independent of the behaviour of Gopt, the variance is 2nr2/

(1 + 2sr2t) = 2nr2K(t), i.e. it continuously decreases with time, t. The mean genotypic value,
for this case, can be written as
G0ðtÞ ¼ K2nðtÞG0ð0Þ þ 4nsr2

Z t

0

K2nðtÞ
K2n�1ðuÞ

GoptðuÞdu

¼ GoptðtÞ þ K2nðtÞ½G0ð0Þ � Goptð0Þ� � K2nðtÞ
Z t

0

K�2nðuÞ dGoptðuÞ
du

du: ð16Þ
This last form indicates that if dGopt(t)/dt > 0 then at large t, when initial information has decayed
away, G0ðtÞ < GoptðtÞ. For example, if Gopt(t) = a + bt then G0ðtÞ ’ ða� b=½2sr2ð2nþ 1Þ�Þþ
bt½2n=ð2nþ 1Þ� which is less than a + bt when b > 0.

Generally, we infer that in the pure Gaussian case, the variance decreases, independently of
what the optimal phenotype does and the mean genotypic value lags behind a linearly increasing
optimal phenotypic value. The mean relative fitness, �wðtÞ ¼ 1� s½G0ðtÞ � GoptðtÞ�2 � sVartðGÞ
will, asymptotically, be dominated by 1� s½G0 � Gopt�2 since the variance term vanishes rapidly
at large t. In the case of a linearly increasing optimal phenotype: Gopt(t) = a + bt, the fitness will
decrease quadratically with time since ½G0 � Gopt�2 ¼ ½bðð2sr2Þ�1 þ tÞ=ð2nþ 1Þ�2. Of course the
approximate form of fitness given in Eq. (1) will not be valid indefinitely, when fitness declines
quadratically with time.
9. Discussion

In this work we have performed an analysis where essentially the only approximation was the
neglect of linkage disequilibria – an approximation that other studies have validated. We have
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shown that in the presence of stabilising selection, but in the absence of mutation etc., the initial
state of a large population influences both its dynamics and – in the case of a static phenotypic
optimum – its ultimate equilibrium. We have considered initial conditions that corresponds to
allelic distributions being close to a Gaussian distribution. When all initial allelic distributions
are exactly Gaussian, the resulting distributions at later times remain Gaussian. While the mean
genotypic value was found to depend on the history of the optimal phenotypic value, Gopt, the
genetic variance was independent of any changes in Gopt. Given that the genetic variance asymp-
totically decreases as 1/t (t = time), this indicates that in such a Gaussian case, any motion of the
optimal phenotypic value cannot maintain genetic variation in the population. If the analysis is
extended to include leading corrections arising from a small initial asymmetry of the allelic distri-
butions, then following from Appendix B, we obtain a variance that to linear order in ej is given

by: vj ¼ Kjr2
j 1� ejKjerfððaj � hxij;0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2r2

jKj

q
Þ

h i
. The quantity aj � hxij,0 can be negative or posi-

tive, thus to linear order in ej we have the bound Kjr2
j ð1þ ejKjÞ > vj > Kjr2

j ð1� ejKjÞ. Since at
large times, Kj vanishes as 1/t, we find that to linear order in ej, and independent of the movement
of Gopt, vj still asymptotically approaches zero as 1/t.

When Gopt is static, we have found that in the Gaussian case, the mean value of the trait ap-
proaches its equilibrium value (of Gopt) as a power of time: G� Gopt � t�2n where n is the number
of loci. Indeed the power law approach of the genotypic value to equilibrium can be directly
attributed to the power law behaviour of the genetic variance (see Eqs. (10) and (11)). When Gopt

has a fixed rate of change, we find that the mean trait value cannot keep up with the moving opti-
mum, unlike what can happen when mutation occurs [14] and as a consequence, genetic loads in-
crease over time – ultimately to unsustainable levels.

This work has also allowed analytic access to the third central moment of allelic effects and
the third central moment of genotypic effects. Such terms exist only because the initial distri-
butions of allelic effects are asymmetric, and for the form of asymmetry considered here, the
third central moments fell off rapidly with time, t, at least as quickly as t�5/2. This indicates that
third central moments will not exist for a long time, unless there is an input into them via some of
the evolutionary processes we have omitted from consideration. We note that third central
moments are crucial for some of the non-monotonic behaviour seen in the theory of biased
mutation [1].

Let us conclude, with a brief discussion of the solutions we have found for the equation that
determines the behaviour of the distributions of allelic effects, Eq. (2). We restrict discussion to
the case where all distributions of allelic effects are initially – and at later times – Gaussian. Since
we are in the position of possessing solutions, it is worthwhile to explore some of their properties.
Perhaps, the most interesting seems to be what happens when we make the replacement s !�s in
Eq. (2). In this case the fitness function takes the form w(G) = 1 + s(G � Gopt)

2 and corresponds
to selection not being stabilising, but rather of a disruptive type. Note that now, G = Gopt corre-
sponds to the fitness minimum and w(G) has the interpretation as the viability, relative to individ-
uals with the minimum viability.

With the replacement s! �s the Gaussian distributions of allelic effects, found previously, con-
tinue to apply. Without addressing questions about the range of parameters where linkage dis-
equilibria remain neglectable (which requires a separate analysis), we note that the solutions
obtained cease to be meaningful for times larger than t0 ¼ minjð2sr2

j Þ
�1. This natural boundary
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in time arises since the variance of locus j is now proportional to ð1� 2sr2
j tÞ

�1 and this ceases to be

positive and hence correspond to a meaningful solution for t > ð2sr2
j Þ

�1. Thus one or more of the
allelic distributions cease to be non-negative for t > t0 and there is a breakdown at t = t0. Indeed,
as t approaches t0 from below, it may be verified that the variance of one (or more) of the allelic
distributions diverges and that generally G0ðtÞ diverges. Such divergent behaviour is a genuine fea-
ture, and not an artefact of any approximations that lead to Eq. (2); it even occurs in simple, one
locus asexual models that evolve in discrete time, as may be simply demonstrated from dynamics
of the form /(x, t + 1) = w(x)/(x, t)/�w(x)/(x, t)dx, with w(x) = exp(sx2) (s > 0) and /
(x, 0) / exp(�x2/(2r2)). The solution, at generation t, is /(x, t) = [w(x)]t/(x, 0)/�[w(x)]t/(x, t)dx
and this also ceases to be meaningful for times t larger than (2sr2)�1.
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Appendix A

In this appendix, we derive Eq. (3), which is the formal solution to the dynamical equation, Eq.
(2). It is convenient to introduce F jðtÞ ¼ 1

t

R t
0ð�xjðuÞ � ½GðuÞ � GðuÞ�Þdu. This allows us to write the

right hand side of Eq. (2) as o½sx2t � 2sxtF jðtÞ � wðtÞ�=ot � /jðx; tÞ where w(t) is independent of x
and taken to vanish when t = 0. We can then rewrite Eq. (2) as o ln/jðx; tÞ=ot ¼ o½�sx2tþ
2sxtF jðtÞ þ wðtÞ�=ot and this has the solution
/jðx; tÞ ¼ exp½�sx2t þ 2sxtF jðtÞ þ wðtÞ�/jðx; 0Þ: ð17Þ
Using the fact that /j(x, t) is normalised to unity for all t, yields 1 = �exp(�sx2t + 2sxtFj(t) +
w(t))/j(x, 0)dx. We use this last result to eliminate exp(w(t)) from Eq. (17) and obtain a result
equivalent to Eq. (3) of the main text.
Appendix B

In this appendix, we derive the exact solution to Eq. (2) when distributions of allelic effects, at
all loci, are initially Gaussian. We then extend the analysis to include the leading effects of the
asymmetry of Eq. (4).

When the distributions of allelic effects at all loci are initially Gaussian, we take /j(x, 0) to be
given by /j0ðx; 0Þ ¼ ð2pr2

j Þ
�1=2 expð�ðx� ajÞ2=ð2r2

j ÞÞ. Substituting this into Eq. (3) yields a Gauss-
ian distribution for /j(x, t) whose variance is r2

j=ð1þ 2sr2
j tÞ and whose mean is
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�xj;0ðtÞ ¼
aj þ 2sr2

j tF jðtÞ
1þ 2sr2

j t
; ð18Þ
where Fj(t) is evaluated at the function �xj0, i.e. F jðtÞ ¼ 1
t

R t
0
ð�xj;0ðuÞ � 2

Pn
k¼1�xk;0ðuÞ � GðuÞ

� �
Þdu. On

differentiating Eq. (18) with respect to t, we quickly find a result equivalent to Eq. (8) of the main
text.

To incorporate the asymmetry of Eq. (4) we define an average, denoted by h� � �ij, so that for any

function g(x) hgðxÞij ¼
R
gðxÞe�st½x�F jðtÞ�2/j0ðx; 0Þdx=

R
e�st½x�F jðtÞ�2/j0ðx; 0Þdx. We also introduce the

function fjðxÞ ¼ 1þ ejðx� ajÞ2 sgnðx� ajÞ=ð2r2
j Þ where sgn(x) denotes the �sign� of x and takes the

values ±1 when x ? 0. Then using Eqs. (3) and (5), we can write xrj ¼
R
xr/jðx; tÞdx ’ hxrfjðxÞij=

hfjðxÞij ¼ hxrij þ ejwrj þOðe2j Þ where wrj � wrjðhxijÞ ¼ fhxrðx� ajÞ2 sgnðx� ajÞij � hxrijhðx� ajÞ2

sgnðx� ajÞijg=ð2r2
j Þ.

To determine the moments of interest, we require the functions w1j, w2j and w3j, and these can

be straightforwardly obtained, using a computer algebra system (such as MapleTM), and are not
given here.

The mean allelic effect, �xj, follows from solution of �xj ¼ hxij þ ejw1j. Note that generally, �xj de-
pends not only on ej but also on ek for k5j. However, to zeroth order in asymmetry parameters
(i.e. the ek), the mean allelic effect follows by simply setting all e�s to zero in �xj ¼ hxij þ ejw1j with
the result �xj;0 ¼ hxij;0. In setting all e�s to zero, we must remember that hxij depends on Fj(t), which,
in turn depends on �xj and G, and these latter quantities must also have all e�s set to zero. The solu-
tion for �xj;0 obeys Eq. (8) of the main text.

To determine the mean allelic effect to first order in asymmetry parameters requires a substan-
tially more complicated calculation; it is necessary to expand both the left and right hand sides of
�xj ¼ hxij þ ejw1j to linear order in all asymmetry parameters (i.e. to linear order in all ek). While
such a calculation can be explicitly carried out, details are not given here.

The variance in allelic effects, ðxj � �xjÞ2 ¼ hx2ij � hxi2j þ ej½w2j � 2hxijw1j� þOðe2j Þ and with

Kj ¼ ð1þ 2sr2
j tÞ

�1, we obtain ðxj � �xjÞ2 ¼ r2
jKj � ejr2

jK
2
j erf ðaj � hxijÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2r2

jKj

q� 	
þOðe2j Þ where

erf(•) denotes the error function [15]. Since r2
jKj is independent of the e�s we can read off the part

of the variance that is of zeroth order in e.
The third central moment of allelic effects is ðxj � �xjÞ3 ¼ ej½w3j � 3hx2ijw1j � 3w2jhxij þ

6hxi2jw1j� þOðe2j Þ (the combination of terms: hx3ij � 3hx2ijhxij þ 2hxi3j is identically zero and hence

absent from ðxj � �xjÞ3, because h� � �ij is an average with respect to a Gaussian distribution). Eval-

uating all wrj in the expression for ðxj � �xjÞ3 at hxij,0 yields an explicit expression for this moment
that is correct to linear order in e and is given by Eq. (9) of the main text.
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