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We calculate the spectrum of quasiparticle excitations in the core of isolated pancake vortices in clean
layered superconductors. We show that both the circular current around the vortex center as well as any
transport current through the vortex core is carried by localized states bound to the core by Andreev scattering.
Hence the physical properties of the core are governed in clean high-k superconductors~e.g., the cuprate
superconductors! by Andreev bound states, and not by normal electrons as it is the case for traditional~dirty!
high-k superconductors.@S0163-1829~96!00338-4#

I. INTRODUCTION

We discuss specific aspects of the core of a vortex line in
layered high-Tc superconductors. The physics of these vorti-
ces is governed by two distinct length scales, the London
penetration depth in the planes,l i'103 Å , and the coher-
ence length in the planes,j i'10220 Å. The penetration
depth is the electromagnetic length scale of a vortex. The
physics on this length scale is well described by a combina-
tion of macroscopic electromagnetism, London’s theory for
supercurrents along the layers, and interlayer Josephson cou-
pling. This description breaks down in the core of the vortex,
i.e., at distances of orderj i from the center of the vortex.
Thus, physical properties of the core carry information on
the microscopic physics of high-Tc superconductivity. The
small coherence length of high-Tc superconductors makes
the vortex core a good potential sensor for microscopic
mechanisms of superconductivity. Our discussion of the vor-
tex core in high-Tc superconductors is based on the Fermi-
liquid model of superconductivity. The physical properties of
the vortex core predicted by this model are spectacular,
unique, and could serve as fingerprints of the traditional pair-
ing theory of superconductivity.

The vortex core of traditional high-k superconductors is
well described by the Bardeen-Stephen model1 which repre-
sents the core by a region of normal electrons. The Bardeen-
Stephen model is justified as long as the mean free path,
l , is much shorter than the core size, so that the motion of an
electron gets randomized before it leaves the core. This con-
dition is not fulfilled in high-Tc superconductors which are
generally clean superconductors withl .j i . The core of a
vortex in a clean superconductor was first studied in the clas-
sic papers of Caroli, Matricon, and de Gennes.2,3 These au-
thors calculated the spectrum of quasiparticle states in the
core, and showed that electrons and holes form bound states
at energies below the bulk energy gap. Further early studies
of the excitation spectrum in the core can be found in Refs. 4
and 5. In particular, Bardeenet al.4 estimated the bound-state
contribution to the circulating current of a vortex and noted

that the bound states were most important in weakly type-II
superconductors (k.1), i.e., when the current is confined to
the core region,r&j.

More recent theoretical work was stimulated by the direct
observation of core states in NbSe2 by scanning tunneling
spectroscopy~STS!.6,7 The recent report of STS in YBCO
~Refs. 8 and 9! provides new information on the excitation
spectrum of vortices in the high-Tc cuprates. Consequently,
theoretical efforts focused on the tunneling density of states
of bound states in isolated vortices and vortex lattices.10–16

These calculations show that the bound states in the core
have a different nature compared with the usual quantum
mechanical bound states in a potential well. The core states
are coherent superpositions of particle states and hole states
and are formed by repeated Andreev scattering from the pair
potential~order parameter! in the core. Andreev scattering is
a process of ‘‘retroreflection’’ of excitations: spatial varia-
tions of the amplitude or the phase of the order parameter
induce branch conversion of electronlike excitations into
holelike excitations, and vice versa. Bound states occur at
energies at which the phases of multiply reflected electron-
like and holelike states interfere constructively. The charge
current carried by an incoming electron and an outgoing An-
dreev reflected hole is identical because the reversal of the
velocity in an Andreev reflection process is compensated by
the reversal of the charge due to electron-hole conversion.
Consequently, Andreev bound states can transport a charge
current, unlike bound states in a potential well. Charge con-
servation requires that the current carried by the bound states
inside the core is transported outside the core by bulk super-
currents. This leads to an interplay between supercurrents
flowing past the core and the bound states in the core. Hence,
the physics of the ‘‘normal core’’ in clean superconductors is
basically the physics of the bound states in contact and inti-
mate exchange with the superconducting environment out-
side the core.

Consider a stack of ‘‘pancake’’ vortices forming an iso-
lated vortex line whose axis is oriented perpendicular to the
layers. We investigate the current distribution in the core of a
pancake vortex, and show how this distribution changes if
the vortex is exposed to a bulk supercurrent, or the circula-
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tion is changed from 2p to 4p. We calculate thespectral
current density, which carries the information on the contri-
bution of the states in a given energy interval to the total
current density. A supercurrent in homogeneous supercon-
ductors is distributed over all continuum states. These states
exhibit Doppler shifts of their energies,de5vf•ps , in the
presence of a phase gradient in the order parameter@or su-
perfluid momentum,ps5(\/2)“x2(e/c)A#. The total cur-
rent is obtained by adding the contributions of states with
positive shifts from quasiparticles comoving with the flow
and the contributions with negative shifts from quasiparticles
that are countermoving relative to the flow field. We find that
the currents in the core have a very different spectral distri-
bution from bulk supercurrents. The continuum states~scat-
tering states! show smeared out Doppler shifts, and contrib-
ute very little to the total current. The dominant contributions
to the circulating currents around the vortex center, as well
as the currents through the core, come from Andreev bound
states. Hence, the physics of vortex cores in clean supercon-
ductors (j i!l ) is very different from the physics of the
vortex core in a dirty superconductor (l !j i), which is well
described by a continuum of normal electronic states. The
calculations presented in this paper concentrate on stationary
properties of the vortex core of clean layered superconduct-
ors. We expect more spectacular effects in the dynamic prop-
erties. The bound states react sensitively to the environment
outside of the core. This leads to a coupling of the collective
degrees of freedom in the London range of the vortex and the
bound states in the core, which will produce a rich spectrum
of largely unexplored dynamical phenomena.

Below we present analytical and numerical calculations
for the states in the vortex core. We use two versions of a
quasiclassical formulation of the BCS theory of supercon-
ductivity: ~a! Andreev’s theory17 which represents the quasi-
classical limit of Bogolyubov’s equations,18 and~b! thequa-
siclassical theory of Eilenberger,19 Larkin, and
Ovchinnikov20 which represents the quasiclassical limit of
Gorkov’s Green’s function theory. Andreev’s theory and the
quasiclassical theory are essentially equivalent for clean su-
perconductors, and in this limit the choice of approach is
largely a matter of taste. However, the quasiclassical theory
has a wider range of application. It is the generalization of
Landau’s Fermi-liquid theory to the superconducting state,
and is capable of describing a broader range of supercon-
ducting materials and phenomena, such as dirty supercon-
ductors or superconductors with short inelastic lifetimes
~strong-coupling superconductors!.21 Section II contains ana-
lytical results for the bound states and the spectral current
density for a pancake vortex with a superimposed bulk su-
percurrent. These results are obtained from Andreev’s
Hamiltonian17 by the methods described in Ref. 22. In Sec.
III we discuss the numerical results, which are obtained us-
ing the quasiclassical theory of Fermi-liquid superconductiv-
ity. We solve the quasiclassical transport equations to obtain
self-consistently the pair amplitude~order parameter! for
pancake vortices. Given the pair amplitude we calculate the
excitation spectrum in the core of the vortex, and deduce
from it the spectral current density. The numerical calcula-
tions are done for layered superconductors withs-wave pair-
ing. The analytical and numerical results confirm and
complement each other, and they establish the important role

of the bound states for the currents in the core region of a
vortex.

II. ANALYTICAL RESULTS

In this section, we investigate the spectrum of current
carrying states of a two-dimensional pancake vortex in equi-
librium at temperatureT, in the presence of an externally
imposed supercurrent. We ignore the spin degree of freedom
of a quasiparticle excitation;23 in this case it is sufficient to
work in the two-dimensional space of particle-hole degrees
of freedom. Operators in this space are 232 matrices, and
we use the notationt̂1, t̂2, t̂3, for the three Pauli matrices in
particle-hole space~Nambu space!, and l̂ for the unit matrix.
The Hamiltonian for the quasiparticle excitations,24 the
Bogolyubov Hamiltonian, then reads

ĤB5h0S p̂1
e

c
A~ r̂ ! D t̂31D̂~ r̂ !, h0~p!5S p22pf

2

2m D ,
~1!

wherep̂5( p̂x ,p̂y) and r̂5( x̂,ŷ) are the momentum and po-
sition operators appropriate to a particle moving in two di-
mensions,pf[mv f is the Fermi momentum andA is the
electromagnetic vector potential. The order parameter,D̂(r )
is an off-diagonal matrix and is generally represented by a
linear combination oft̂1 and t̂2.

In the absence of an externally imposed supercurrent, we
write the order parameter of the vortex as

D0~r !5D0F~r !t̂1exp~ iwt̂3!, ~2!

whereD0 is the magnitude of the order parameter of a bulk
superconductor at temperatureT, F(r ) is the normalized pro-
file of the vortex, which is a monotonically increasing func-
tion of r obeyingF(0)50, F(`)51, andw is the angular
coordinate ofr with x5r cosw, y5r sinw. The main as-
sumption we make in this section is that the order parameter
in the presence of a superflowps5\/2“x2e/cA has the
form

D̂~r !5expS 1
i

2
“x•r t̂3D D̂0~r !expS 2

i

2
“x•r t̂3D . ~3!

We assume throughout this section thatps is small compared
to the bulk critical current,v f ps!D0.

The principal physical quantities with which we shall con-
cern ourselves are thespectral current density, and the total
equilibrium current density which is related toj (r ,e) by

j ~r ,T!5E de j ~r ,e! f ~e!, f ~e!5
1

exp~e/T!11
. ~4!

We shall also make reference to the local density of states,
N(r ,e). The quantitiesj (r ,e) andN(r ,e) may be expressed
in terms of the one-particle Green’s function, 1/(e2ĤB) or,
equivalently, the ‘‘spectral function’’d(e2ĤB). Using the
spectral function, we find that in Dirac notation

j ~r ,e!52eK rUH p̂1~e/c!A

2m
,d~e2ĤB!J Ur L

1,1

, ~5!
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N~r ,e!52^r ud~e2ĤB!ur &1,1, ~6!

where the subscript 1,1 denotes the upper left element of the
232 matrices, thereby selecting out theparticle sectorof
the spectral function and the factor 2 takes into account both
spin projections of the quasiparticles.

A. Andreev Hamiltonian

Most calculations of the properties of superconductors
with inhomogeneous order parameters are simpler in the
quasiclassical limit, where one takes advantage of the sepa-
ration in the scales of the wavelength of quasiparticles near
the Fermi energy and the characteristic scale for spatial
variations of the pair potential, i.e.,\/pf!j0. The quasiclas-
sical limit of the Bogolyubov Hamiltonian~1! is the Andreev
Hamiltonian in which the kinetic energy in Eq.~1! is re-
placed by an operator that islinear in the gradient.17 Let us
define the normal-state density of states at the Fermi level,
Nf5pf /2pv f , and introduce the directions, k̂
5(coswk ,sinwk) and l̂5(2sinwk ,coswk), which are, respec-
tively, parallel and perpendicular to trajectories of a quasi-
particle wave packet in the quasiclassical description, i.e.,
vf5v f k̂. The coordinates along these directions are defined
by r5z k̂1h l̂. In addition we work in the limitl/j@1, in
which case the vector potential is approximately constant in
the vicinity of the vortex core and can be neglected. The
order parameter in Eq.~3! can be written as

D̂~r !5D0F~r !Û
t̂1z1 t̂2h

r
Û†,

Û5exp@1 ips• k̂zt̂3#. ~7!

By performing a gauge transformation that removes the fac-
tor of Û in Eq. ~7! we obtain the spectral current density and
the local density of states in terms of the Andreev Hamil-
tonian for an isolated vortex,

ĤA5v f p̂zt̂31D0

F~ r̂ !

r̂
~ t̂1ẑ1 t̂2h!, ~8!

j ~r ,e!.4pev f
2NfE

0

2pdwk

2p
k̂

3^zud~e2@ĤA1v fps• k̂# !uz&1,1, ~9!

N~r ,e!.4pv fNfE
0

2pdwk

2p

3^zud~e2@ĤA1v fps• k̂# !uz&1,1, ~10!

where uz& is an eigenvector of the ‘‘one-dimensional’’ tra-
jectory coordinate operator,ẑ: ẑuz&5zuz&. The operatorsẑ
and k̂•p̂5 p̂z appearing inĤA are canonically conjugate:
@ ẑ,p̂z#5 i\. The quasiclassical interpretation given to Eq.~8!
is as follows: quantum mechanical evolution in particle-hole
space takes place along classical trajectories parallel tok̂
having a fixed value ofh[ l̂•r . Thus,h is identified as a
c-number impact parameter.25

B. The current density of a vortex in a flow field

Let us write the current density at temperatureT as

j ~r,T!5E
2L

`

de j ~e,r ! f ~e!, ~11!

whereL is a high energy cutoff that serves to make manipu-
lations of j (r,T) well defined; large positive energies are
automatically cut off by the Fermi function,f (e). Where no
ambiguity arises, we shall takeL5`. Defining q5v fps ,
and using Eq.~8! we have

j ~r,T!54pev f
2NfE

0

2pdwk

2p E
2L2q• k̂

`

de k̂

3^zud~e2ĤA!uz&1,1f ~e1q–k̂!. ~12!

Next, we split up the energy integrals into the following
terms:

j ~r,T!5 j1~r,T!1 j2~r,T!1 j3~r,T!, ~13!

j1~r,T!54pev f
2NfE

0

2pdwk

2p
k̂~q–k̂!

3^zud~2L2ĤA!uz&1,1, ~14!

j2~r,T!54pev f
2NfE

0

2pdwk

2p E
2`

`

de k̂

3^zud~e2ĤA!uz&1,1@ f ~e1q–k̂!2 f ~e!#,

~15!

j3~r,T!54pev f
2NfE

0

2pdwk

2p E
2L

`

de k̂

3^zud~e2ĤA!uz&1,1f ~e!. ~16!

The three contributions to the current have different interpre-
tations.

~1! SinceL is large, ^zud(2L2ĤA)uz&1,1 may be re-
placed by its high energy, normal-state limit, 1/2pv f and

j1~r,T!5ev f
2Nfps . ~17!

This term coincides with theT50 current of a uniform su-
perconductor.

~2! The termj2(r,T) contributes to ‘‘backflow,’’ since it
always yields a current with a component in the2p̂s
direction.26 The termj2(r ,T) contains the current carried by
the bound states and also a correction to theT50 current
due to the thermal breaking of pairs. To appreciate these
points we look at this term in two limits, assumingq!D0. ~i!
For T50 we have

j2~r,0!54pev f
2NfE

0

2pdwk

2p E
0

2q–k̂
de k̂

3^zud~e2ĤA!uz&1,1. ~18!

The small size ofq ensures that the energy integral only
selects states in the gap, thusj2(r ,0) only obtains contribu-
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tions from the bound states.~ii ! For TÞ0 and assuming
D0(r ) to be that of a uniform system,D0(r )5D0t̂1 , we
write f (e1q–k̂)2 f (e)'q–k̂ f 8(e) and obtain

j2~r,T!52ev f
2NfpsE

2`

`

de
ueu

Ae22D0
2
Q~e22D0

2!@2 f 8~e!#

52ev f
2NfpsY~bD0! , ~19!

whereY(bD0) is the Yosida function which gives a quanti-
tative measure of the thermal breaking of Cooper pairs.

~3! The termj3(r ,T) is independent ofps and is simply
the current density of a vortex in the absence of an externally
imposed supercurrent.

C. Current carrying bound states at the center of the vortex

Consider the spectral properties at the center of the vor-
tex. Forh50

ĤAuh505v f p̂zt̂31D0F~ ẑ !t̂1 , ~20!

with F(2 ẑ)52F( ẑ) accounting for thep phase change
across the vortex core. This special case of the Andreev
Hamiltonian is identical in form to the continuum Hamil-
tonian used to describetrans-polyacetylene containing a
single topological soliton.27 It is known that this Hamiltonian
always has a nondegenerate bound state at zero energy.28

Whether or not it has other bound states depends on the form
of the profile,F(z). For the single quantum vortex and tra-
jectories through the center there are no other bound states.
The eigenfunction for the zero-energy bound state,c0(z), is
found by solving @2 iv f]zt̂31D0F(z) t̂1#c0(z)50. The
normalized solution is

c0~z!5
1

AL
expS 2

D0

v f
E
0

z

dz8F~z8! D S 1

A2

2
i

A2
D , ~21!

L52E
0

`

dz expS 2
2D0

v f
E
0

z

dz8F~z8! D , ~22!

whereL is a profile dependent quantity with the dimensions
of lengthL;v f /D0. Analytical estimates of the bound states
at distances far from the vortex are given in the Appendix.

For energiesueu,D0 only the bound state ofHA will
contribute to the spectral current density~and the local den-
sity of states!,

j ~e,0!.4pev f
2NfE

0

2pdwk

2p
k̂d~e2v fps• k̂!@c0~0!c0

†~0!#1,1

~23!

5F e

ps

2eNfD0

L/j

Q~~v f ps!
22e2!

A~v f ps!
22e2

G p̂s , ueu,D0 . ~24!

There is a simple relation betweenj (e,0) and N(e,0)
whenueu,D0 . In Eq. ~23!, thed function in the integrand of
j (e,0) effectively replacesk̂ by (e/v f ps)p̂s . Taking this fac-

tor outside the integral leaves an integral identical to that of
the local density of states. Consequently,

j ~e,0!5e
e

ps
N~e,0!p̂s , ueu,D0 . ~25!

Note that the contribution of negative energy~bound! states
to the total current density lies in the2p̂s direction, i.e.,
oppositeto the externally imposed supercurrent. At zero tem-
perature the total current density originates from the bound
states having energies2D0,e,0,

jbound~0,T50!5E
2D0

0

j ~e,0!de52
2eNfD0

L/j
v f p̂s .

~26!

The current density of an isolated vortex withps50 van-
ishes at the center of the vortex, i.e.,j3(0,T)50. We can
combine the result in Eq.~26! with j1 given in Eq.~17! to
obtain the total current density atT50:

j ~r50,T50!5ev f
2Nfps2

2NfeD0

L/j
v f p̂s . ~27!

Thus, for sufficiently smallp s the bound-state contribution
dominates Eq.~27! and j (r50,T50) will point in the2p̂s
direction.

D. Particle conservation

For equilibrium conditions the divergence of the current
density vanishes. From Eq.~17!, j1 has a vanishing diver-
gence, and for an undisturbed vortex we have“• j3(r )50.
Thus,S(r )5“• j (r )[“• j2(r ). At T50,

S~r !54pev fNfE
0

2p dwk

2p E
0

2q–k̂

de v f
]

]z

3~^zud~e2ĤA!uz&1,1!. ~28!

In Eq. ~A6! of the Appendix we show that

v f
]

]z
^zud~e2ĤA!uz&1,1

5D0

F~r !

r
Tr@~zt̂22ht̂1!^zud~e2ĤA!uz&#, ~29!

yielding

S~r !54pev fD0NfE
0

2pdwk

2p E
0

2q• k̂

de
F~r !

r

3Tr@~zt̂22ht̂1!^zud~e2ĤA!uz&#. ~30!

Sinceq!D0, only the bound state,c0(z;h), contributes to
the e integral. Thus,

S~r !54pev fNfD0E
0

2pdwk

2p E
0

2q–k̂

ded@e2e0~h!#

3c0
†~z;h!

F~r !

r
~ t̂2z2 t̂1h!c0~z;h!, ~31!
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wheree0(h) is the bound-state energy for an impact param-
eter h. At small distances from the center of the vortex
(r!j) F(r )'r /j, with j'v f /2D0, and the lowest energy
bound state is then

c0~z;h!5
1

p1/4

1

Aj
expS 2

z2

2j2D S 1

A2

2
i

A2
D , ~32!

e0~h!52D0

h

j
. ~33!

Substituting c0 and e0 into Eq. ~31! and setting

exp(21
2z

2/j2)'1 yields

S~r !'
4

Ap
NfD0

2 ~q/D0!•~r /j!

u~r /j!ŵ2q/D0u
, ~34!

which is nonzero, indicating that the ansatz of Eq.~3! is not
physically correct for any value ofps. This failure to satisfy
the conservation law is due to the lack of self-consistency of
the order parameter in Eq.~3! in the presence of the flow
field. In the absence of pinning, the vortex will move in
response to a flow field, even one of arbitrarily small
strength. The results in Sec. II implicitly assume apinned
vortex. Thus, there will be distortion of the vortex away from
its cylindrically symmetric equilibrium form in Eq.~3!. In
the following section we show that the self-consistently de-
termined vortex order parameter, which includes the defor-
mation by the flow field, restores the conservation law.

III. QUASICLASSICAL RESULTS

A versatile and efficient method for calculating local
spectral properties of superconductors is the quasiclassical
theory of superconductivity.19,20,29,30 This theory is well
adapted for a numerical approach to microscopic problems in
superconductivity, such as the calculation of the structure
and the excitation spectrum of vortex cores for supercon-
ductors with isotropic, anisotropic, or unconventional order
parameters. The quasiclassical theory is the only theoretical
formulation which can handle equally well clean and dirty
superconductors, as well as more complicated geometries
than that of an isolated vortex with cylindrical symmetry or a
perfect vortex lattice. It can be interpreted as the generaliza-
tion of Landau’s theory of normal Fermi liquids to the su-
perconducting state. The quasiclassical theory shares with
Landau’s theory the semiclassical description of the orbital
degrees of freedom of quasiparticle excitations. On the other
hand, the internal degrees of freedom, i.e., the spin and the
particle-hole degrees of freedom, are described by quantum
mechanics. Quantum mechanical coherence of particle and
hole excitations is the basis of all superconducting effects
such as persistent supercurrents, flux quantization, Josephson
effects, and Andreev reflection. Here we use the quasiclassi-
cal theory for our investigations of the vortex core. Numeri-
cal work on vortices in superconductors using the quasiclas-
sical theory started with a series of publications by Kramer,
Pesch, and Watts-Tobin.5,31,32 More recent work includes

pinning of vortices at small defects,33 vortices in superfluid
3He and other systems with unconventional pairing,34,35 the
excitation spectrum of bound quasiparticles,12,36 and the
spectrum of moving pancake vortices.37

We use in this work the notation of Refs. 38, 39 and 21.
The central objects of the quasiclassical theory of supercon-
ductors in equilibrium are the quasiclassical propagators
ĝR,A(pf ,r ;e), which are 232 matrices in the particle-hole
index,

ĝR,A5S gR,A~pf ,r ;e! f R,A~pf ,r ;e!

f R,A~pf ,r ;e! gR,A~pf ,r ;e!D . ~35!

The variablese andpf stand for the energy of an excitation
and its momentum~on the Fermi surface!. The momentum
variable reduces topf5pf(coswk ,sinwk) for an isotropic
Fermi surface in two dimensions~see Sec. II!. General sym-
metries lead to the following fundamental relation between
ĝR and ĝA:

ĝA5 t̂3~ ĝ
R!†t̂3 . ~36!

We use, as described in Section II, the notationt̂1, t̂2, t̂3, for

the three Pauli matrices in particle-hole space, and 1ˆ for the
unit matrix. The off-diagonal termsf R,A in Eq. ~35! are the
pair amplitudes. They vanish in the normal state, and mea-
sure the amount of particle-hole mixing in the superconduct-
ing state. The diagonal elements of the propagators deter-
mine the density of states,

N~pf ,r ;e!5Nf

gR~pf ,r ;e!2gA~pf ,r ;e!

22p i
, ~37!

and the equilibrium current density. The most detailed infor-
mation on the current distribution is obtained from thespec-
tral current density,

j ~pf ,r ;e!5evfNf@N1~pf ,r ;e!2N2~pf ,r ;e!#, ~38!

whereN6(pf ,r ;e)5N(6pf ,r ;e)/Nf is the dimensionless
density of states for comoving (1) and countermoving
(2) excitations along the trajectory line defined bypf , and
vf is the Fermi velocity at the pointpf on the Fermi surface.
This spectral density measures the contributions of quasipar-
ticle states with energye and momentum near the Fermi
surface pointpf to the current density at positionr . The full
current density is obtained by weighting the spectrally re-
solved current density by the occupation probability of the
quasiparticle states, then integrating over Fermi momenta
and energies. For equilibrium states,

j ~r !52E deE dpf j ~pf ,r ;e!S f ~e!2
1

2D , ~39!

where f (e) is the Fermi distribution function. The symbol
*dpf denotes a weighted integral over the Fermi surface. The
weight at pf is }uvf u21, and the integral is normalized,
*dpf151. The spectral current density is particularly well
suited for our study of the importance of Andreev bound
states for the current flow in a vortex core. These bound
states appear asd functions in the spectral current density at
energies below the bulk energy gap. The spectral weight of
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the d function, combined with the occupation of the bound
state, determine its contribution to the total current density.

We calculate ĝR(pf ,r ;e) from Eilenberger’s transport
equation19

F S e1
e

c
vf•A~r ! D t̂32D̂~pf ,r !,ĝ

R~pf ,r ;e!G
1 i\vf•“ĝ

R~pf ,r ;e!50 , ~40!

supplemented by the condition of analyticity in the upper
half of the complexe plane, and the normalization condition

ĝR~pf ,r ;e!252p21̂. ~41!

For a fixed Fermi momentumpf this is a first-order differen-
tial equation along a straight-line classical trajectory in the
direction of the Fermi velocity vf . The propagator
ĝR(pf ,r ;e) at a chosen point of interest,r , is determined by
the solution of Eq.~40! along the trajectory throughr in the
direction vf . Complete information on the local physical
properties at pointr , such as the current density, is obtained
by sampling all trajectories throughr . The propagator
ĝR(pf ,r ;e) is intimately related to the 232 density matrix
of the particle-hole degrees of freedom of a quasiparticle
moving along the classical trajectory specified bypf , r .
Thus, ĝR(pf ,r ;e) describes the state of the internal degrees
of freedom of the excitation. The internal state, i.e., the
amount of particle-hole mixing, may change along the tra-
jectory as a consequence of the off-diagonal pair potential,
D̂(pf ,r ), which acts as a driving term that ‘‘rotates’’ the
particle-hole pseudospin. The pair potential couples particle
and hole excitations, and is the origin of particle-hole coher-
ence. It depends on the real space position,r , and, for aniso-
tropic superconductors, on the Fermi surface position,pf ,

D̂~pf ,r !5S 0 D~pf ,r !

2D* ~pf ,r ! 0 D . ~42!

The pair potential must be calculated self-consistently from
the gap equation,

D~pf ,r !5E dpf8V~pf ,pf8!E de

2p
Imf R~pf8 ,r ;e!@122 f ~e!#,

~43!

whereV(pf ,pf8) is the pairing interaction, which determines
the orbital symmetry of the pair potential, its magnitude and
Tc .

Our procedure for numerical calculation of the currents in
the core of two-dimensional~2D! pancake vortices is the
following. We first solve self-consistently the gap equation
and Eilenberger’s equation at Matsubara energies. This al-
lows us to determine the pair potential and the supercurrent
density. We then insert the pair potential into Eilenberger’s
differential equation at real energies, and obtain from its so-
lution the excitation spectrum: the density of states and the
spectral current density. The differential equations are solved
by standard fourth-order Runge-Kutta and multiple shooting
methods, and self-consistency is achieved iteratively by us-
ing alternatively a relaxation method and the Mo¨bius-Eschrig
algorithm.40

We consider three examples of pancake vortices: isolated,
~i! singly quantized and~ii ! doubly quantizeds-wave vorti-
ces, and~iii ! a pinneds-wave vortex in the presence of a
uniform transport supercurrent. We choose a temperature of
T50.4Tc , unless otherwise noted, and assumek5l/j@1.
In this limit the vector potential is essentially constant in the
core region, and can be neglected.

A. Spectral current density of a singly quantized
s-wave vortex

Figure 1 shows the amplitude of the order parameter of a
singly quantizeds-wave vortex. The amplitude is isotropic
and vanishes linearly in the core. The variation of the ampli-
tude and phase along two trajectories are also shown in Fig.
1. For trajectorya passing through the center of the vortex,
the phase changes discontinuously and the amplitude van-
ishes linearly at the vortex center. For trajectoryb, with im-
pact parameterh53.0j0, there is only a small change in the
amplitude ofD. For singly quantized vortices the phase of
the order parameter is the more important factor determining
the spectrum of bound states.

Figure 2 shows the angle-resolved local density of states
for the two trajectories shown in Fig. 1. For trajectory~a!
through the center of the vortex, the spectrum shows a zero-
energy bound state separated from the continuum that begins
at the bulk gap. The bound state results from constructive
interference of particlelike and holelike quasiparticles that
undergo Andreev reflections from the vortex order param-
eter. This bound state corresponds to the zero angular mo-
mentum bound state found by Caroli, de Gennes, and
Matricon.2,3 A zero-energy bound state is always present for
trajectories in which the order parameter is real~up to a
constant phase factor! and has different signs when going to
6` along the trajectory.28

Bound states with nonzero energies are found for trajec-
tories with a nonzero impact parameter measured from the
vortex center. These bound states correspond to the spectrum
of bound states with nonzero angular momenta obtained by
Caroli et al.2 Figure 2~b! shows the spectrum for a trajectory
with an impact parameter ofh54.2j0 andvf•ps(r )>0 mea-
sured at the point of closest approach to the vortex center.
The bound state is shifted down in energy to
e/2pTc.20.22, and the continuum states are shifted and
inhomogeneously broadened by the Doppler energy,
De5vf•ps(r ). The spectrum near the onset at point 1 in Fig.
2~b! has low weight and corresponds to the continuum edge
at e5D far from the impact point, while the peak in the
spectrum at point 2 corresponds to the maximum Doppler
shift, e5D1vf•ps(R) at the impact pointR. Note the de-
velopment of the BCS coherence peak as the density of
states is sampled further from the vortex center.

The density of states ofs-wave vortices has been investi-
gated by several authors.31,12,15Our emphasis is on the im-
portance of the Andreev bound states for the current distri-
bution in the vortex core. We show in Fig. 2~c! the spectral
current density for the trajectory withh54.2j0 and
vf•ps(r )>0. The net current carried by the states at the point
6pf on the Fermi surface is obtained by weighting this spec-
trum by the equilibrium distribution and integrating over all
energies. Thus, forT→0 only the negative energy states
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contribute. It is clear from Fig. 2~c! that the current in the
vicinity of the vortex core is carried almost entirely by the
bound states with2uDu,e,0. The continuum states give

almost no net contribution to the current in the core. Figure
2~d! shows the spectral current density of the set of bound
states with trajectoriesvf56v f ŷ as a function of the impact
parameterh for 0<h<6j0. The peak ate/2pTc.20.027
corresponds to the trajectory with impact parameter
h50.2j0. The bound-state energy decreases with increasing
distance from the core. For smallh we obtain,
e0(h).22(h/j0)D, in reasonable agreement with the ana-
lytic estimate in Eq.~33!. As indicated in Fig. 2~d! the con-
tribution of the bound state to the current density decreases
as the impact parameter increases. However, even at a rela-
tively large distance,h56j0, the bound state still contrib-
utes significantly to the circulating current density of the
vortex.

The evolution of the bound-state energy for small impact
parameters can be written in terms of the angular momentum
of an excitation about the vortex center,Lz5pfh; i.e.,
e0(h)52Lzv0, where\v052\D/pfj0!D. This spectrum
was originally obtained by Caroliet al.2 by solving the
Bogolyubov equations. In the Bogolyubov or Gor’kov for-
mulation the spectrum is discrete:Lz5(m1 1

2)\ with
m5 integer and\v0 defining the level spacing of the low-
lying bound states in the core. The lowest energy bound state
in the core has a zero-point energy ofe05
1
2\v0.D2/Ef!D which is outside the resolution of the qua-
siclassical or the Andreev theory. The discrete spectrum of
the Bogolyubov theory corresponds to the continuous An-
dreev spectrum in the limit where the level spacing is small
compared to all other relevant energy scales, i.e.,
\v0!kBT,\/t, etc. This is generally an excellent approxi-
mation in conventional type-II superconductors. For the
high-Tc cuprates the discrete level structure is expected to
play a more important role, particularly in the transverse re-
sponse of vortices in the ultraclean limit, i.e.,v0@1/t, where
t is the mean scattering time.41,42

B. Spectrum of a doubly quantizeds-wave vortex

It is interesting to compare the single-quantum vortex
with the axially symmetric, 4p vortex, D(r )
5uD(r )uexp2iw. The double quantum vortex has higher en-
ergy than a pair of isolated single-quantum vortices; how-
ever, once created the double-quantum vortex is metastable
against dissociation into singly quantized vortices. The am-
plitude of the order parameter for the double-quantum vortex
decreases asuD(r )u;r 2 for r,j0 as shown in Fig. 3~a!.

In contrast to the 2p vortex there is no sign change of the
order parameter for trajectories passing through the center of
the vortex core. This difference has a profound effect on the
spectrum of Andreev bound states in the core. Figure 3~b!
shows the excitation spectrum of the doubly quantized vor-
tex at the center of a trajectory passing through the center of
the vortex core. A symmetric spectrum of two bound states
at e6/2pTc560.18 are separated from the continuum. Fig-
ure 3 also shows the current density of the doubly quantized
vortex. The remarkable feature is thereversalof the current
direction in the core, i.e., forr&2j0 @see Figs. 3~c! and
3~d!#. This current anomaly is associated with the appearance
of a countermoving Andreev bound state below the Fermi
level (e50). The evolution of the spectral current density is
shown in Fig. 4. The trajectories are parallel toŷ and the

FIG. 1. The magnitude of the pair potential,uD(r )u/2pTc , at
T50.4Tc for a singly quantized vortex in ans-wave superconductor
is shown in the 3D plot. The 2D plots show the order parameter
amplitude and phase of the order parameter along a trajectory~a!
passing through the center of the vortex, and~b! along a trajectory
with an impact parameter ofh53.0j0. The order parameter is real
along trajectory~a! and the phase changes discontinuously byp.
Along trajectory~b! there is little change in amplitude, but a sub-
stantial, continuous change of phase.
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spectral current density is shown as a function of the impact
parameter. At distances greater thanx.2j0 two bound states
lie below zero energy, and both states are comoving with the
circulating phase gradient,ps . As the vortex core is ap-
proached the comoving bound state nearest the Fermi level
moves to higher energy, and a countermoving bound state
above the Fermi level~not shown! moves to lower energy.
These two states cross the Fermi energy (e50) at approxi-
matelyx52j0, leading to a reversal of the integrated current
density inside the core. The cumulative current density for
each trajectory is shown as the thick solid line in each panel
of Fig. 4.

C. Spectrum of a pinneds-wave vortex in a transport current

Finally, consider the current and excitation spectrum of a
2p vortex in the presence of a uniform supercurrent
j tr5 j trx̂. In the absence of pinning the vortex will move in
the direction (2 ŷ) in order to reduce the kinetic energy.
Thus, in order to investigate the excitation spectrum in the
presence of a transport current we must pin the vortex to the
lattice. Our model for the pinning center is a normal metal
inclusion where the pairing interaction~or the localTc) van-
ishes.

Figure 5~a! shows the order parameter of a pinned vortex
for an s-wave superconductor and a pinning center with a

FIG. 2. ~a! Local density of states at the center of a vortex for a trajectory passing through the center of the core. The width of the bound
state is set atg/2pTc50.0004, the continuum edge is ate56D, and the temperature isT50.4Tc . ~b! Local density of states at
R5(4.2,0)j0 for the trajectoryvf5(0,1)v f . The bound state is shifted,e/2pTc.20.22, and the continuum states show the Doppler
broadening.~c! The spectral current density for the same position and direction as inb. The Fermi function forT50.4Tc is also shown. Note
that the current density is dominated by the negative energy bound state.~d! The spectral current density for a set of parallel trajectories as
a function of impact parameter for 0,h,6j0. The spatial separation between neighboring trajectories is 0.2j0.
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radius of 0.4j0. In the presence of a transport current the
amplitude of the order parameter deforms; it is suppressed on
the high current side of the vortex as shown in Fig. 5~a!. For
relatively small transport currents, e.g.,ps50.02j0

21(1,0),
the center for the phase winding lies within the normal in-
clusion. However, as shown in Fig. 5~b!, the vortex current
no longer vanishes at the center of the vortex core; there is
substantial currentthrough the vortex core region, including
the normal inclusion. The current density inside the normal
inclusion is carried by the Andreev bound states and is a
consequence of the proximity effect. The bound-state spec-
trum at the center of the vortex is shown for a trajectory
parallel to the transport current and passing through the vor-
tex center. The negative energy bound state carries the trans-
port current inside the normal inclusion. Figure 5~d! shows
the spectral current density measured at the center of the
normal inclusion for the trajectories withvf ips . Note that
the bound state dominates the current and that this current is
opposite to the applied transport current. This result was also

obtained in Sec. II, without taking into account the distortion
of the vortex core order parameter. This led to a violation of
charge conservation in the core. Our numerical calculation
shows that the main features of the analytic model for the
bound-state spectrum and the self-consistent determination
of the order parameter for the pinned vortex in the presence
of a transport current guarantees that charge is conserved.

IV. CONCLUSIONS

We have discussed the current carried by the excitations
of s-wave vortices in clean layered superconductors. The
spectral current densitywas introduced in order to identify
the excitations that determine the transport and circulating
currents of a vortex. The bound states of the vortex carry
most of the current in the vicinity of the core, including
transport currents that flow through the core of a pinned vor-
tex. Far from the vortex core currents are carried primarily
by the bound-pair continuum that forms the condensate. For

FIG. 3. ~a! The amplitude of the order parameter for a 4p vortex atT50.4Tc . Note the quadratic behavior forr!j0. ~b! Local density
of states at the center of the vortex for a trajectory passing through the center of the core.Two bound states are present at energies,
e/2pTc560.18.~c! The plot ofJy(x,0) vsx shows areversalof the direction of the current forx,1.9j0. ~d! The magnitude of the current
density for the 4p vortex. The corresponding quantities for the 2p vortex are shown for comparison~dotted curves!.
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currents flowing through a pinned vortex, current conserva-
tion is maintained by ‘‘spectral transfer’’ of the current car-
ried by the Andreev bound states to the continuum states
outside the core. A novel example of the evolution of the
spectral current density is provided by the double quantum
vortex which shows the connection between the spectrum of
bound states and the symmetry or topology of the order pa-
rameter. At low temperatures (T50.4Tc) the double quan-
tum vortex exhibits a ‘‘current reversal’’ relative to the as-
ymptotic direction of the circulation. The countercirculating
current in the core is due to a countermoving bound state that
appears below the Fermi level and dominates the current for
distances of order 0,r&2j0. At high temperatures,
T→Tc , this countermoving bound state is thermally depopu-
lated with the result that the current reversal in the core dis-
appears in the Ginzburg-Landau limit. In summary, we find
that the Andreev bound states dominate the current of vorti-
ces on the scale of a few coherence lengths. The nonequilib-
rium properties of vortices on this scale are expected to be
dominated by the spectral evolution and dynamics of these
bound states.
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APPENDIX

1. Matrix element

In this appendix we derive a form for a matrix element
used in Sec. II D. The matrix element in question is
^zu@ iv f p̂z ,d(e2ĤA)#uz&1,1 where we write

ĤA5v f p̂zt̂31D̂, ~A1!

FIG. 4. The spectral current density of the 4p vortex for impact parameters,x50.5j0 , . . . ,3.5j0. The cumulative spectral weight is
shown as the thick solid line in each panel. Note the appearance of thecountermovingbound state atx52.0j0 and the corresponding reversal
in the integrated spectral weight forx,2j0.
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D̂[D0

F~ r̂ !

r̂
~ t̂1ẑ1 t̂2h!.

We have

@ iv f p̂z ,d~e2ĤA!#5 i ~ t̂3~ĤA2D̂!d~e2ĤA!

2d~e2ĤA!~ĤA2D̂!t̂3! ~A2!

5 i @ t̂3e,d~e2ĤA!#2 i $t̂3D̂,d~e2ĤA!%.
~A3!

Then

^zu@ iv f p̂z ,d~e2ĤA!#uz&1,15 i Tr@ 1
2 ~11 t̂3!

3^zu~@ t̂3e,d~e2ĤA!#

2$t̂3D̂,d~e2ĤA!%!uz&#

~A4!

52 Tr@ i ^zu t̂3D̂d~e2ĤA!uz&#. ~A5!

Substituting the explicit form forD̂ yields the relation

^zu@ iv f p̂z ,d~e2ĤA!#uz&1,1

5D0

F~r !

r
Tr@~zt̂22ht̂1!^zud~e2ĤA!uz&#. ~A6!

2. Approximation of bound states at large distances

Equation ~12! gives the current density in terms of the
Andreev Hamiltonian~8! whose eigenvalue equation reads

F2 iv f]zt̂31D0

F~Az21h2!

Az21h2
~ t̂1z1s2h!Gc~z!5Ec~z!.

~A7!

FIG. 5. ~a! The amplitude of the order parameter for a pinned 2p vortex atT50.4Tc . The normal inclusion has a diameter of 0.4j0, and
the imposed transport current corresponds tops50.02j0

21(1,0). The dotted curve corresponds touD(x)u in the absence of the normal
inclusion.~b! Current density of the pinned vortex for a trajectory passing through the center of the core.~c! The bound-state spectrum at the
center of the core of the pinned vortex in a uniform flow field. The two nearly zero-energy bound states correspond to comoving and
countermoving trajectories.~d! The spectral current density for a trajectory through the core. The negative energy countermoving bound state
carries the backflow current in the core. The thick line is the cumulative spectral weight for the current density. Note the scale changes for
the two panels.
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The parameterh appearing in the above equation has the
semiclassical interpretation as ac-number impact parameter.
In this appendix we present approximations to the above
equation for large values of the impact parameter,h.

For uhu@j0 we are justified to replaceF(Az21h2) by its
asymptotic value of unity. Furthermore, making the some-
what crude approximation

~ t̂1z1 t̂2h!

Az21h2
→ t̂1

z

uhu
1 t̂2 sgn~h! ~A8!

yields for the bound state

c0~z!.const3expS 2
D0

2v f uhu
z2D S 1

A2

2 i

A2
D ,

E0.2D0sgn~h!. ~A9!

This indicates that at large impact parameters, the bound
states of the Andreev equation are found very close to the
threshold of the continuum.

When required, more refined estimates may be obtained
by writing

t̂1z1 t̂2h

Az21h2
5t1exp@ i arctan~h/z!t̂3# ~A10!

and then performing a unitary transformation
ĤA→ÛĤAÛ

21, c→c̃[Ûc, with Û5exp@(i/2)arctan(h/

z) t̂3] to remove the phase from the order parameter. The
transformed Andreev equation is

F2 iv f]zt̂31
v f
2

h

z21h2 1D0t̂1G c̃~z!5Ec̃~z!.

~A11!

This is a one-dimensional Dirac equation with a weak scalar
potential, which has weakly bound states with energies near
6D0. A ‘‘nonrelativistic’’ treatment is appropriate in this
case and we approximate the Dirac equation by a Schro¨-
dinger equation. For example, forh,0 we write

c̃5cLS 11D 1cSS 1

21D ~A12!

with cL,S scalars. Straightforward manipulations indicate
thatcL approximately obeys the Schro¨dinger equation

F2
v f
2

2D0

]2

]z2
2
v f
2

uhu
z21h2GcL~z!5~E2D0!cL~z!.

~A13!

All the machinery of Schro¨dinger theory may be used on this
equation to estimate, e.g., the bound states. We can put a
lower limit on the bound-state energy. This may be obtained
from the fact that the eigenvalues of the Schro¨dinger opera-
tor are >Vmin , the minimum of the potential. Thus,
E2D0> minh$2(v f /2)@ uhu/(z21h2)#%, i.e.,

E>D02
v f
2

1

uhu
, h,0. ~A14!
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