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Current carried by bound states of a superconducting vortex
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We calculate the spectrum of quasiparticle excitations in the core of isolated pancake vortices in clean
layered superconductors. We show that both the circular current around the vortex center as well as any
transport current through the vortex core is carried by localized states bound to the core by Andreev scattering.
Hence the physical properties of the core are governed in clean<higperconductorge.g., the cuprate
superconductojsby Andreev bound states, and not by normal electrons as it is the case for traditiotyal
high-« superconductorgS0163-1826)00338-4

[. INTRODUCTION that the bound states were most important in weakly type-I
superconductorsi=1), i.e., when the current is confined to

We discuss specific aspects of the core of a vortex line ithe core regionf<¢&. ) .
layered hight . superconductors. The physics of these vorti- More recent theoretical work was stimulated by the direct

; foti bservation of core states in NbSby scanning tunneling
ces is governed by two distinct length scales, the Londor? .
penetration depth in the planes;~10° A , and the coher- spectroscopY(STS.>’ The recent report of STS in YBCO

ence length in the planeg~10—20 A. The penetration (Refs. 8 and P provides new information on the excitation

depth is the electromagnetic length scale of a vortex. Th spectrum of vortices in the high cuprates. Consequently,

fheoretical efforts focused on the tunneling density of states

physics on this length scale is well described by a combinag 4 states in isolated vortices and vortex lattis%

tion of macroscopic electromagnetism, London’s theory fofrpege calculations show that the bound states in the core
supercurrents along the layers, and interlayer Josephson coyse 4 different nature compared with the usual quantum
pling. This description breaks down in the core of the vorteX,nechanical bound states in a potential well. The core states
i.e., at distances of ordej; from the center of the vortex. are coherent superpositions of particle states and hole states
Thus, physical properties of the core carry information onand are formed by repeated Andreev scattering from the pair
the microscopic physics of highs superconductivity. The potential(order parametgiin the core. Andreev scattering is
small coherence length of highs superconductors makes a process of “retroreflection” of excitations: spatial varia-
the vortex core a good potential sensor for microscopidions of the amplitude or the phase of the order parameter
mechanisms of superconductivity. Our discussion of the vorinduce branch conversion of electronlike excitations into
tex core in highT, superconductors is based on the Fermi-holelike excitations, and vice versa. Bound states occur at
liquid model of superconductivity. The physical properties ofenergies at which the phases of multiply reflected electron-
the vortex core predicted by this model are spectaculadike and hoI_eIike states intgrfere constructively. The _charge
unique, and could serve as fingerprints of the traditional paircurrent carried by an incoming electron and an outgoing An-
ing theory of superconductivity. dreev reflected hole is identical because the reversal of the
The vortex core of traditional higk-superconductors is velocity in an Andreev reflection process is compensated by

well described by the Bardeen-Stephen mbdeiich repre- the reversal of the charge due to electron-hole conversion.
sents the core by a region of normal electrons. The BardeerfzonS€duently, Andreev bound states can transport a charge

Stephen model is justified as long as the mean free patl%:urren_t, unlike bound states in a potential well. Charge con-
/" is much shorter than the core size. so that the motion of as’ervatlon requires that the current carried by the bound states

: [hside the core is transported outside the core by bulk super-
o : ST . "Currents. This leads to an interplay between supercurrents
dition is not fulfilled in highT, supe_rconductors which are flowing past the core and the bound states in the core. Hence,
generally clean superconductors with>¢ . The core of & e physics of the “normal core” in clean superconductors is
vortex in a clean su_percon_ductor was first studied in the C|a90asically the physics of the bound states in contact and inti-
sic papers of Caroli, Matricon, and de GenfiéSthese au- mate exchange with the superconducting environment out-
thors calculated the spectrum of quasiparticle states in thgide the core.

core, and showed that electrons and holes form bound states Consider a stack of “pancake” vortices forming an iso-
at energies below the bulk energy gap. Further early studieiated vortex line whose axis is oriented perpendicular to the
of the excitation spectrum in the core can be found in Refs. 4ayers. We investigate the current distribution in the core of a
and 5. In particular, Bardeast al? estimated the bound-state pancake vortex, and show how this distribution changes if
contribution to the circulating current of a vortex and notedthe vortex is exposed to a bulk supercurrent, or the circula-
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tion is changed from 2 to 47. We calculate thespectral of the bound states for the currents in the core region of a
current densitywhich carries the information on the contri- vortex.

bution of the states in a given energy interval to the total

current density. A supercurrent in homogeneous supercon- II. ANALYTICAL RESULTS

ductors is distributed over all continuum states. These states

exhibit Doppler shifts of their energiese=v;-p;, in the In this section, we investigate the spectrum of current

presence of a phase gradient in the order paranietesu- fgr_rymg .:,t?tes of attw_c|>_-d_|m(tahnS|onaI pancal;e vorte? n elthw—
perfluid momentumpg=(%/2)V y—(e/c)A]. The total cur- forum at temperaturet, In the presence ot an externally
. . . e ... imposed supercurrent. We ignore the spin degree of freedom
rent is obtained by adding the contributions of states with L e . L L
. i & ; . of a quasiparticle excitatioft in this case it is sufficient to
positive shifts from quasiparticles comoving with the flow . . : :
S ; ) . .~ . work in the two-dimensional space of particle-hole degrees
and the contributions with negative shifts from quasmartlclesOf freedom. Operators in this space arg 2 matrices. and
that are countermoving relative to the flow field. We find that - P b ’

the currents in the core have a very different spectral distri¥/ Us€ the notatiom,, 7, 75, for the three Pauli matrices in

bution from bulk supercurrents. The continuum statest-  Particle-hole spacéNambu space and| for the unit matrix.
tering statesshow smeared out Doppler shifts, and contrib- 1The Hamiltonian for the quasiparticle excitatidisthe
ute very little to the total current. The dominant contributionsB090lyubov Hamiltonian, then reads

to the circulating currents around the vortex center, as well s
as the currents through the core, come from Andreev bound 5+AF), hy(p)= ( P~— pf)
states. Hence, the physics of vortex cores in clean supercon- 3 ' 0 2m /'
ductors </ is very different from the physics of the 1)

vortex core in a dirty superconductor < ¢), which is well Wheref)=(|6x,f)y) andf=(%,§) are the momentum and po-

descrlbgd by a continuum .Of normal electronic states. Th%ition operators appropriate to a particle moving in two di-
calculations presented in this paper concentrate on stationaf . — . . .
ensions,ps=mo; is the Fermi momentum and is the

properties of the vortex core of clean layered superconduc | . ial. The ord o
ors. We expect more spectacular effects in the dynamic progz/€ctromagnetic vector potential. The order parametér)

erties. The bound states react sensitively to the environmett 2" off-di;goqal mgtrix ?jrld is generally represented by a
outside of the core. This leads to a coupling of the collectivdnear r?om ination ? 1 anady. v i
degrees of freedom in the London range of the vortex and the " the absence of an ext?rr;]a y imposed supercurrent, we
bound states in the core, which will produce a rich spectruny\/ite the order parameter of the vortex as
of largely unexplored dynamical phenomena. B - A

Below we present analytical and numerical calculations Ao(r) =AoF(r)TiexplieTs), )

for the states in the vortex core. We use two versions of ghereA, is the magnitude of the order parameter of a bulk
quasiclassical formulation of the BCS theory of superconsyperconductor at temperattfeF(r) is the normalized pro-
ductivity: (&) Andreev’s theorlf which represents the quasi- fie of the vortex, which is a monotonically increasing func-
classical limit of Bogolyubov’s equatiort§,and(b) thequa-  tion of r obeyingF(0)=0, F(=)=1, ande is the angular
siclassical _theory of Eilenberger’ Larkin, and  .oordinate ofr with x=r cosp, y=" sing. The main as-
Ovchinnikov which represents the quasiclassical limit of sumption we make in this section is that the order parameter

Gorkov’s Green’s function theory. Andreev's theory and thej, the presence of a superflope=%/2 Vy—elcA has the
quasiclassical theory are essentially equivalent for clean syg

perconductors, and in this limit the choice of approach is

largely a matter of taste. However, the quasiclassical theory i . i

has a wider range of application. It is the generalization of A(r)zex;{ + EVX~r3-3)AO(r)exp{ — EVX~r3-3>. (3
Landau’s Fermi-liquid theory to the superconducting state,

and is capable of describing a broader range of superconwe assume throughout this section thats small compared
ducting materials and phenomena, such as dirty SUpercoy the bulk critical currenty ;ps<Ao.

ductors or superconductors with short inelastic lifetimes The principal physical quantities with which we shall con-
(strong-coupling superconductpfS Section Il contains ana- cern ourselves are trepectral current densityand the total

lytical results for the bound states and the spectral currerdquilibrium current density which is related jir, €) by
density for a pancake vortex with a superimposed bulk su-

percurrent. These results are obtained from Andreev’'s 1

Hamiltoniart” by the methods described in Ref. 22. In Sec. j(r,T)=J dej(r,e)f(e), f(e)= exp(el M)+ 1 (4)

Il we discuss the numerical results, which are obtained us-

ing the quasiclassical theory of Fermi-liquid superconductiviye shall also make reference to the local density of states,
ity. We solve the quasiclassical transport equations to obtaiN(r,e). The quantitieg(r,e) andN(r,e) may be expressed
self-consistently the pair amplituderder parameterfor iy terms of the one-particle Green’s function, d4Hg) or,

pan_cake vortices. Gi\_/en the pair amplitude we calculate th%quivalently, the “spectral function"s(e—Hg). Using the
excitation spectrum in the core of the vortex, and deducespectral function. we find that in Dirac notation

from it the spectral current density. The numerical calcula-
r> .
1,1

. e
s=ho| P+ EA(F)

tions are done for layered superconductors witlave pair-
ing. The analytical and numerical results confirm and j(r,e)=2e<r
complement each other, and they establish the important role

p-+(elc)A -
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N(r,e)=2(r|8(e—Hg)|r)11, 6)

where the subscript 1,1 denotes the upper left element of the

2X 2 matrices, thereby selecting out tparticle sectorof
the spectral function and the factor 2 takes into account both
spin projections of the quasiparticles.
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B. The current density of a vortex in a flow field

Let us write the current density at temperatiliras

j(r,T)=chAdej(e,r)f(e), (11

whereA is a high energy cutoff that serves to make manipu-

A. Andreev Hamiltonian

Most calculations of the properties of superconductor

with inhomogeneous order parameters are simpler in th@

guasiclassical limit, where one takes advantage of the sep

ration in the scales of the wavelength of quasiparticles near

the Fermi energy and the characteristic scale for spatial
variations of the pair potential, i.6t/p;<&,. The quasiclas-
sical limit of the Bogolyubov Hamiltoniarfil) is the Andreev
Hamiltonian in which the kinetic energy in Eql) is re-
placed by an operator that lisear in the gradient’ Let us

lations of j(r,T) well defined; large positive energies are
Sautomatically cut off by the Fermi functiori(e). Where no
mbiguity arises, we shall tak& =o0. Defining q=v¢ps,
and using Eq(8) we have

2wd 00 ~
j(r,T) :47TeU%Nf ﬂf .dek
—-A—qg-k

0277

X (| 8(e—Hp|O1af(e+q-k). (12

Next, we split up the energy integrals into the following

define the normal-state density of states at the FermiAIeveterms;

Ni=p¢/2mv¢, and introduce the directions, k
= (cospy,Sing,) and = (—singy,cosp,), which are, respec-
tively, parallel and perpendicular to trajectories of a quasi-

j(r,T)=j1(r,T)+j2(r,T)+j3(r,T), (13)

particle wave pack.et in the quasiclassi'cal fjescription, 'i.e., Jl(r,T)=4weu$NfJZw%ﬁ(q.k)
vi=vk. The coordinates along these directions are defined o 27

by r=k+ #l. In addition we work in the limitn/é>1, in ~

AN ; X (28~ A=F) |21, 14

which case the vector potential is approximately constant in
the vicinity of the vortex core and can be neglected. The

order parameter in Eq3) can be written as jz(r,T):4wev$fo2w%fw dek
0 — o0

A ~ T L T - -
AN =AgF(NU———U", X (| s(e=HM|D1Lf(et+a-k)—f(e)],
. . (15
U=exd +ips-k{Ts]. (7) .
2 o0 ~
By performing a gauge transformation that removes the fac- j3(r,T)=47Tev]?fo %f dek
tor of U in Eq. (7) we obtain the spectral current density and 0 “mI-A
the local density of states in terms of the Andreev Hamil- X(¢|8(e—Hp)|O)a4f(€). (16)
tonian for an isolated vortex, ’
The three contributions to the current have different interpre-
. . F(f) .~ . tations. A
Ha=vip 73+ Ag——(71{+ 127m), tS) (1) Since A is large, ({|8(—A—Hp)|{),, may be re-

' placed by its high energy, normal-state limit, & and

ja(r,T)=eviN¢ps. (17)

This term coincides with th&=0 current of a uniform su-
perconductor.

(2) The termj,(r,T) contributes to “backflow,” since it
always yields a current with a component in thepg
direction?® The termj,(r,T) contains the current carried by
the bound states and also a correction to Twe0 current

o T due to the thermal breaking of pairs. To appreciate these
X(Zlote=[Hatvps kDI O1a, (10 points we look at this term in two limits, assumigegAg. (i)
where|{) is an eigenvector of the “one-dimensional” tra- For T=0 we have
jectory coordinate operatot; {18y=¢|¢). The operatorg
and k-p= f’g appearing inH, are canonically conjugate:
[g,f){]=iﬁ. The quasiclassical interpretation given to ER).
is as follows: quantum mechanical evolution in particle-hole ~
space takes place along classical trajectories paralléd to X({|8(e=Hp)| )11 (18
having a fixed value ofy=I-r. Thus, 7 is identified as a The small size ofg ensures that the energy integral only
c-number impact parametét. selects states in the gap, thiyér,0) only obtains contribu-

2nd o ~
j(r,E)=47TeU%fo K

o 27
X (¢ 8(e~[Ha+vPs-KD)| L) 11, 9

2rd ey
N(r,e)—47rvaff0 o

2ndoy (—g.k
; _ 2 q
jz(r,O)—471'evaff0 TP fo dek
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tions from the bound stategii) For T#0 and assuming tor outside the integral leaves an integral identical to that of
Ao(r) to be that of a uniform system\q(r)=Aq7,, we the local density of states. Consequently,

write f(e+q-|2)—f(e)~q-kf '(e) and obtain

. € N
* B ](e,O)=ep—N(e,0)ps, le[<Ao. (25
S

i»(r,T)=—eviN f de——=0(2—A3)[—f'(e) o ,
2 Fifs — \/csz—Ao2 ol ] Note that the contribution of negative ener@ound states
to the total current density lies in the pg direction, i.e.,

= —evZNipsY(BA,) (19 ; :
fNPs 0/ s oppositeto the externally imposed supercurrent. At zero tem-

whereY(BA,) is the Yosida function which gives a quanti- perature the total cgrrent density originates from the bound
tative measure of the thermal breaking of Cooper pairs. ~ States having energiesA,<e<0,

(3) The termj;(r,T) is independent ops and is simply
the current density of a vortex in the absence of an externally  j, (0 T=0)= f
imposed supercurrent.

0 (.0 2eN;Ay
J(€,0)de=— UPs-
0 L/& S

(26)
C. Current carrying bound states at the center of the vortex The current density of an isolated vortex with=0 van-

Consider the spectral properties at the center of the voriShes at the center of the vortex, i.¢;(0,T)=0. We can
tex. Forp=0 combine the result in Eq26) with j; given in Eq.(17) to

obtain the total current density @t=0:

|:|A|n:0:UfFA3gATs+AoF(2)}1, (20

~ ~ . _ _ _ 2 A
with F(—¢)=—F(¢) accounting for ther phase change j(r=0T=0)=eviNips— ——=—vPs. (27)

across the vortex core. This special case of the Andreev

Hamiltonian is identical in form to the continuum Hamil- Thus, for sufficiently smalb the bound-state contribution
tonian used to describ&rans-polyacetylene containing a dominates Eq(27) andj(r=0,T=0) will point in the —ps
single topological solitoR’ It is known that this Hamiltonian ~ direction.

always has a nondegenerate bound state at zero effergy.

Whether or not it has other bound states depends on the form D. Particle conservation

of the profile,F(¢). For the single quantum vortex and tra-
jectorigs through the center there are no other bound. State&ensity vanishes. From E@17), j; has a vanishing diver-
The elgenfunctl_on for _the erro-energyAbound Stat{), is gence, and for an undisturbed vortex we ha&vg(r)=0.
found Iby solvmg [-_|Uf(9§T3+AoF(§)Tl]l/lo(§):o. The Thus, S(1) =V -j(1)=V -j,(r). At T=0,

normalized solution is

For equilibrium conditions the divergence of the current

2w dq)k —q-k
i S(r)—47TeUfof0 Efo de Uf(g_g
1 Ao e, 2 R
¢o(§):WeX —U—Jodé F(") . (21 X ((¢|8(e—Hp)|{)10)- (28
2 In Eq. (A6) of the Appendix we show that
" 240 (¢ 2 (dlote- Al
LZZJ d¢ ex ——f d¢'F(") |, (22 Ufag €~ Hall6)11
0 Ut Jo
wherelL is a profile dependent quantity with the dimensions F(r) . - N
of lengthL~uv/A,. Analytical estimates of the bound states =4 r Tl ({ro— p7)(¢lo(e=HAID)] (29
at distances far from the vortex are given in the Appendix.
For energies|e| <A, only the bound state oH, will  Yielding
contribute to the spectral current densignd the local den- 2md ek E(r)
sity of statey S(r)=4mev;AgN¢ ﬂf de
0 2 0 r
. . 2 Z”dQDklz K t ~ . ~
(e 0)=dmevily | 57 kolemvibs Olo(0)¢5(0)]11a XTH (L= nr)(Z Be=FRAIO].  (30)

(23 Sinceq<A,, only the bound statejq({; n), contributes to

the e integral. Thus,
€ 2eNiAg O((v1pg)®—€?)

Ps L& J(vips)®— €
There is a simple relation betwegf(e,0) and N(e,0)

when|e|<A,. In Eq.(23), the § function in the integrand of < l(g: )F(f)
j(€,0) effectively replacek by (e/vps)ps. Taking this fac- ote: )y

Ps, |E|<AO- (24)

de(pk _Q'R
S(r):4’7TevafAOJ' _f dE(S[G_Eo(n)]
o 2mJo

(T2l = T1m) ho(L5m), (31)
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whereey(7) is the bound-state energy for an impact param-pinning of vortices at small defectd vortices in superfluid
eter ». At small distances from the center of the vortex *He and other systems with unconventional paiffig, the
(r<&) F(r)=rl¢, with £~v/2A,, and the lowest energy excitation spectrum of bound quasipartictlés® and the
bound state is then spectrum of moving pancake vortic¥s.

We use in this work the notation of Refs. 38, 39 and 21.

1 The central objects of the quasiclassical theory of supercon-
1 1 2 ﬁ ggc;\tors in equil_ibrium are the q_uasic_:lassical p_ropagators
o(lim)= —ex;{ - _) , (32 g™ (ps.r;€), which are 2<2 matrices in the particle-hole
0 P JE 2¢° index,

2 an [IFAPrIE) TRA(DIe) -
7 T R e g*A(prrie))
€o(m=—R07. (33 _ - = N
The variables andp; stand for the energy of an excitation
Substituting ¥, and €, into Eg. (31) and setting and its momentunton the Fermi surfage The momentum
exp(—322/¢2)~1 yields variable reduces t@;=p;(cosp,sing,) for an isotropic
2 Fermi surface in two dimensiorisee Sec. )| General sym-

metries lead to the following fundamental relation between

o, (alAg)-(r/§) (34) gR and §*:

iNonA—,
Va6 e—alA| -
which is nonzero, indicating that the ansatz of E).is not 07=75(0") 5. (36)
physically correct for any value qfs. This failure to satisfy We use, as described in Section Il, the notatignr,, 73, for
the conservation law is due to the lack of self-consistency ofne three Pauli matrices in particle-hole space, arfidr the
the order parameter in E¢3) in the presence of the flow it matrix. The off-diagonal term&R in Eq. (35) are the
field. In the absence of pinning, the vortex will move in hair amplitudes. They vanish in the normal state, and mea-
response to a flow field, even one of arbitrarily smallgre the amount of particle-hole mixing in the superconduct-

strength. The results in Sec. Il implicitly assumepianed g state. The diagonal elements of the propagators deter-
vortex. Thus, there will be distortion of the vortex away from ine the density of states

its cylindrically symmetric equilibrium form in Eq(3). In

the following section we show that the self-consistently de- 9%(pr.r;€)—g"(py.rie)
termined vortex order parameter, which includes the defor- N(ps,r;€)=N;
mation by the flow field, restores the conservation law.

S(r)~

—27i ' (37)
and the equilibrium current density. The most detailed infor-
Ill. QUASICLASSICAL RESULTS mation on the current distribution is obtained from gpec-

. . . tral current densit
A versatile and efficient method for calculating local y

spectral properties of sgpercg)r;gggtorg is the quasiclassical  j(p; rie)=eviN{N,(p;.r;e)—N_(ps.rie)], (39
theory of superconductivit}??%2°% This theory is well

adapted for a numerical approach to microscopic problems iwhere N (ps,r;e)=N(*=ps,r;€)/N; is the dimensionless
superconductivity, such as the calculation of the structurelensity of states for comoving+H) and countermoving
and the excitation spectrum of vortex cores for supercon{—) excitations along the trajectory line defined joy, and
ductors with isotropic, anisotropic, or unconventional orderv; is the Fermi velocity at the poimg; on the Fermi surface.
parameters. The quasiclassical theory is the only theoreticdlhis spectral density measures the contributions of quasipar-
formulation which can handle equally well clean and dirtyticle states with energg and momentum near the Fermi
superconductors, as well as more complicated geometriesurface poinp; to the current density at positian The full
than that of an isolated vortex with cylindrical symmetry or acurrent density is obtained by weighting the spectrally re-
perfect vortex lattice. It can be interpreted as the generalizasolved current density by the occupation probability of the
tion of Landau’s theory of normal Fermi liquids to the su- quasiparticle states, then integrating over Fermi momenta
perconducting state. The quasiclassical theory shares wittind energies. For equilibrium states,

Landau’s theory the semiclassical description of the orbital

degrees of freedom of quasiparticle excitations. On the other i ) 1

hand, the internal degrees of freedom, i.e., the spin and the J(r)=zf d“f dpsi (s 'r;é)( fle)— 5)' (39
particle-hole degrees of freedom, are described by quantum

mechanics. Quantum mechanical coherence of particle anthere f(e) is the Fermi distribution function. The symbol
hole excitations is the basis of all superconducting effectd dp; denotes a weighted integral over the Fermi surface. The
such as persistent supercurrents, flux quantization, Josephsoight at p; is =|vg ", and the integral is normalized,
effects, and Andreev reflection. Here we use the quasiclassjf-dp;1=1. The spectral current density is particularly well
cal theory for our investigations of the vortex core. Numeri-suited for our study of the importance of Andreev bound
cal work on vortices in superconductors using the quasiclasstates for the current flow in a vortex core. These bound
sical theory started with a series of publications by Kramergstates appear a$functions in the spectral current density at
Pesch, and Watts-Tobit1? More recent work includes energies below the bulk energy gap. The spectral weight of
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the & function, combined with the occupation of the bound We consider three examples of pancake vortices: isolated,
state, determine its contribution to the total current density.(i) singly quantized andii) doubly quantizeds-wave vorti-
We calculategR(ps,r;e) from Eilenberger's transport ces, and(iii) a pinneds-wave vortex in the presence of a
equatiort® uniform transport supercurrent. We choose a temperature of
T=0.4T., unless otherwise noted, and assure\/&>1.
e aAon ~R ) In this limit the vector potential is essentially constant in the
e+ Vi Ar) | 73~ A(Pr.1),g7(Pr. T €) core region, and can be neglected.

+ifhve- V¥ (pr.r;€)=0, (40)
-~ o A. Spectral current density of a singly quantized
supplemented by the condition of analyticity in the upper s-wave vortex

half of the complexe plane, and the normalization condition . .
Figure 1 shows the amplitude of the order parameter of a

GR(py .1 €)2= 22 (41) singly qgantize_cb—wavg vortex. The amplﬁtqde is isotropic_
Y ' and vanishes linearly in the core. The variation of the ampli-
For a fixed Fermi momentum this is a first-order differen- tude and phase along two trajectories are also shown in Fig.
tial equation along a straight-line classical trajectory in thel. For trajectorya passing through the center of the vortex,
direction of the Fermi velocityv;. The propagator the phase changes discontinuously and the amplitude van-
g(p;,r;€) at a chosen point of interest, is determined by ishes linearly at the vortex center. For trajectbrywith im-
the solution of Eq(40) along the trajectory throughin the  pact parameter;= 3.0&,, there is only a small change in the
direction v;. Complete information on the local physical amplitude ofA. For singly quantized vortices the phase of
properties at point, such as the current density, is obtainedthe order parameter is the more important factor determining
by sampling all trajectories through. The propagator the spectrum of bound states.
gR(ps,r;€) is intimately related to the 2 density matrix Figure 2 shows the angle-resolved local density of states
of the particle-hole degrees of freedom of a quasiparticldor the two trajectories shown in Fig. 1. For trajectagy
moving along the classical trajectory specified py, . through the center of the vortex, the spectrum shows a zero-
Thus,gR(ps.r;€) describes the state of the internal degree£nergy bound state separated from the continuum that begins
of freedom of the excitation. The internal state, i.e., theat the bulk gap. The bound state results from constructive
amount of particle-hole mixing, may change along the trainterference of particlelike and holelike quasiparticles that
jectory as a consequence of the off-diagonal pair potentiayndergo_ Andreev reflections from the vortex order param-
A(pf,r), which acts as a driving term that “rotates” the eter. This bound state corresponds to t_he zero angular mo-
particle-hole pseudospin. The pair potential couples particlE?€NtUm 2b30und state found by Caroli, de Gennes, and
and hole excitations, and is the origin of particle-hole coherMatricon”~ A zero-energy bound state is always present for

ence. It depends on the real space positioand, for aniso-  traiectories in which the order parameter is réap to a
tropic superconductors, on the Fermi surface positign, constant phase factoand has different signs when going to
+ along the trajectory®

R 0 A(ps.r) Bound states with nonzero energies are found for trajec-
A(ps ,r)=( N (42)  tories with a nonzero impact parameter measured from the
—A%(pr1) 0 vortex center. These bound states correspond to the spectrum
The pair potential must be calculated self-consistently fronff ound states with nonzero angular momenta obtained by
the gap equation, C_arol| et. al” Figure 2Zb) shows the spectrum for a trajectory
with an impact parameter of=4.2¢, andv;- ps(r)=0 mea-
de sured at the point of closest approach to the vortex center.
A(ps ,r)zf dpsV(ps ,p§)f ZlmfR(pf’ e [1-2f(e)], The bound state is shifted down in energy to
(43) el2wT.=—0.22, and the continuum states are shifted and
inhomogeneously broadened by the Doppler energy,
whereV(ps,p;) is the pairing interaction, which determines A e=V¢-pg(r). The spectrum near the onset at point 1 in Fig.
the orbital symmetry of the pair potential, its magnitude and2(b) has low weight and corresponds to the continuum edge
T.. at e=A far from the impact point, while the peak in the
Our procedure for numerical calculation of the currents inspectrum at point 2 corresponds to the maximum Doppler
the core of two-dimensional2D) pancake vortices is the shift, e=A+v;-pg(R) at the impact poinR. Note the de-
following. We first solve self-consistently the gap equationvelopment of the BCS coherence peak as the density of
and Eilenberger's equation at Matsubara energies. This aptates is sampled further from the vortex center.
lows us to determine the pair potential and the supercurrent The density of states aiwave vortices has been investi-
density. We then insert the pair potential into Eilenberger'sgated by several authot$!*!°Our emphasis is on the im-
differential equation at real energies, and obtain from its soportance of the Andreev bound states for the current distri-
lution the excitation spectrum: the density of states and théution in the vortex core. We show in Fig(c? the spectral
spectral current density. The differential equations are solvedurrent density for the trajectory withp=4.26, and
by standard fourth-order Runge-Kutta and multiple shooting/s- ps(r)=0. The net current carried by the states at the point
methods, and self-consistency is achieved iteratively by us# p; on the Fermi surface is obtained by weighting this spec-
ing alternatively a relaxation method and thé biles-Eschrig  trum by the equilibrium distribution and integrating over all
algorithm?° energies. Thus, foTf—0 only the negative energy states
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FIG. 1. The magnitude of the pair potentigd(r)|/2# T, at
T=0.4T for a singly quantized vortex in aswave superconductor

almost no net contribution to the current in the core. Figure
2(d) shows the spectral current density of the set of bound
states with trajectorieg;= + vy as a function of the impact
parametery for 0<7<6&,. The peak ak/27T,~—0.027
corresponds to the trajectory with impact parameter
n=0.2¢,. The bound-state energy decreases with increasing
distance from the core. For smally we obtain,
eo(m)=—2(n/&y)A, in reasonable agreement with the ana-
lytic estimate in Eq(33). As indicated in Fig. &) the con-
tribution of the bound state to the current density decreases
as the impact parameter increases. However, even at a rela-
tively large distancey=6¢&,, the bound state still contrib-
utes significantly to the circulating current density of the
vortex.

The evolution of the bound-state energy for small impact
parameters can be written in terms of the angular momentum
of an excitation about the vortex centef,=p;7; i.e.,
€o(n)=— L,wq, Wherefiwyg=2hA/p;&r<<A. This spectrum
was originally obtained by Carolet al? by solving the
Bogolyubov equations. In the Bogolyubov or Gor’kov for-
mulation the spectrum is discretef,=(m+3)% with
m= integer andh wq defining the level spacing of the low-
lying bound states in the core. The lowest energy bound state
in the core has a zero-point energy ofy=
$hwo=A?/E{<A which is outside the resolution of the qua-
siclassical or the Andreev theory. The discrete spectrum of
the Bogolyubov theory corresponds to the continuous An-
dreev spectrum in the limit where the level spacing is small
compared to all other relevant energy scales, i.e.,
hwo<kgT,%i/T, etc. This is generally an excellent approxi-
mation in conventional type-ll superconductors. For the
high-T cuprates the discrete level structure is expected to
play a more important role, particularly in the transverse re-
sponse of vortices in the ultraclean limit, i.@y> 1/7, where
7 is the mean scattering tinfé?2

B. Spectrum of a doubly quantizeds-wave vortex

It is interesting to compare the single-quantum vortex
with the axially symmetric, 4 vortex, A(r)
=|A(r)|expd¢. The double quantum vortex has higher en-
ergy than a pair of isolated single-quantum vortices; how-
ever, once created the double-quantum vortex is metastable
against dissociation into singly quantized vortices. The am-
plitude of the order parameter for the double-quantum vortex
decreases da(r)|~r? for r<&, as shown in Fig. @).

In contrast to the Zr vortex there is no sign change of the
order parameter for trajectories passing through the center of
the vortex core. This difference has a profound effect on the
spectrum of Andreev bound states in the core. Figut® 3

is shown in the 3D plot. The 2D plots show the order parameteshows the excitation spectrum of the doubly quantized vor-

amplitude and phase of the order parameter along a trajetpry
passing through the center of the vortex, &hdalong a trajectory
with an impact parameter aof=3.0¢,. The order parameter is real
along trajectory(a) and the phase changes discontinuouslyzy
Along trajectory(b) there is little change in amplitude, but a sub-
stantial, continuous change of phase.

contribute. It is clear from Fig. (8) that the current in the

tex at the center of a trajectory passing through the center of
the vortex core. A symmetric spectrum of two bound states
ate./27T.,=*0.18 are separated from the continuum. Fig-
ure 3 also shows the current density of the doubly quantized
vortex. The remarkable feature is theversalof the current
direction in the core, i.e., fors2¢, [see Figs. &) and
3(d)]. This current anomaly is associated with the appearance
of a countermoving Andreev bound state below the Fermi

vicinity of the vortex core is carried almost entirely by the level (e=0). The evolution of the spectral current density is

bound states with-|A|<e<0. The continuum states give

shown in Fig. 4. The trajectories are parallelytcand the
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FIG. 2. (a) Local density of states at the center of a vortex for a trajectory passing through the center of the core. The width of the bound
state is set aty/2#T.=0.0004, the continuum edge is at=*A, and the temperature i§=0.4T.. (b) Local density of states at
R=(4.2,0)%, for the trajectoryv;=(0,1)v;. The bound state is shifte@&/27T.=—0.22, and the continuum states show the Doppler
broadening(c) The spectral current density for the same position and directionlkasTihe Fermi function foff =0.4T is also shown. Note
that the current density is dominated by the negative energy bound (sbalde spectral current density for a set of parallel trajectories as
a function of impact parameter for<On<<6&,. The spatial separation between neighboring trajectories &.0.2

spectral current density is shown as a function of the impactC. Spectrum of a pinneds-wave vortex in a transport current

parameter. At distances greater than2¢, two bound states Finally, consider the current and excitation spectrum of a
lie below zero energy, and both states are comoving with the - vortex in the presence of a uniform supercurrent
circulating phase gradienps. As the vortex core is ap- j,=j.X. In the absence of pinning the vortex will move in
proached the comoving bound state nearest the Fermi levele direction ¢y) in order to reduce the kinetic energy.
moves to higher energy, and a countermoving bound stat€hus, in order to investigate the excitation spectrum in the
above the Fermi levelnot shown moves to lower energy. presence of a transport current we must pin the vortex to the
These two states cross the Fermi energy Q) at approxi- lattice. Our model for the pinning center is a nhormal metal
matelyx=2¢,, leading to a reversal of the integrated currentinclusion where the pairing interactigor the localT,) van-
density inside the core. The cumulative current density folishes.

each trajectory is shown as the thick solid line in each panel Figure 5a) shows the order parameter of a pinned vortex
of Fig. 4. for an s-wave superconductor and a pinning center with a
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2 Quantum Vortex Bound states at the Center
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FIG. 3. (a) The amplitude of the order parameter for & ®ortex atT=0.4T.. Note the quadratic behavior fork &,. (b) Local density
of states at the center of the vortex for a trajectory passing through the center of th@worbound states are present at energies,
€l2mT,==*0.18.(c) The plot ofJ,(x,0) vsx shows areversalof the direction of the current for<<1.94,. (d) The magnitude of the current
density for the 4r vortex. The corresponding quantities for the 2ortex are shown for comparisddotted curves

radius of 0.4,. In the presence of a transport current theobtained in Sec. II, without taking into account the distortion
amplitude of the order parameter deforms; it is suppressed aof the vortex core order parameter. This led to a violation of
the high current side of the vortex as shown in Fig@)5For  charge conservation in the core. Our numerical calculation
relatively small transport currents, e.g,=0.02%,(1,0), shows that the main features of the analytic model for the
the center for the phase winding lies within the normal in-bound-state spectrum and the self-consistent determination
clusion. However, as shown in Fig(l9, the vortex current of the order parameter for the pinned vortex in the presence
no longer vanishes at the center of the vortex core; there igf a transport current guarantees that charge is conserved.
substantial currenthroughthe vortex core region, including

Fhe nqrma}l incIu;ion. The current density inside the norl_”nal IV. CONCLUSIONS

inclusion is carried by the Andreev bound states and is a

consequence of the proximity effect. The bound-state spec- We have discussed the current carried by the excitations
trum at the center of the vortex is shown for a trajectoryof s-wave vortices in clean layered superconductors. The
parallel to the transport current and passing through the vorspectral current densityvas introduced in order to identify
tex center. The negative energy bound state carries the trarthe excitations that determine the transport and circulating
port current inside the normal inclusion. Figuredbshows currents of a vortex. The bound states of the vortex carry
the spectral current density measured at the center of thmost of the current in the vicinity of the core, including
normal inclusion for the trajectories withx|ps. Note that transport currents that flow through the core of a pinned vor-
the bound state dominates the current and that this current iex. Far from the vortex core currents are carried primarily
opposite to the applied transport current. This result was alsby the bound-pair continuum that forms the condensate. For
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currents flowing through a pinned vortex, current conserva- ACKNOWLEDGMENTS
tion is maintained by “spectral transfer” of the current car-

ried by the Andreev bound states to the continuum states
outside the core. A novel example of the evolution of thi‘?
spectral current density is provided by the double quantu ; : . . .
vgrtex which shows thgconpnection be¥ween the sp(gctrum upported in part by th_e Engineering and Physical Sciences
bound states and the symmetry or topology of the order pa- esearch Council, while that of D.R. and J.A.S. was sup-
rameter. At low temperaturesT €0.4T,) the double quan- ported in part by NSF Grant No. DMR 91-20000 through the

- f " ; Science and Technology Center for Superconductivity, the
tum vortex exhibits a “current reversal” relative to the as- Max Planck Gesellschaft. and the Alexander von Humboldt
ymptotic direction of the circulation. The countercirculating !

current in the core is due to a countermoving bound state th"i‘ tiftung. We_also thank Dr. M. J. Graf for his comments on
. : € manuscript.

appears below the Fermi level and dominates the current for

distances of order €@r=<2£,. At high temperatures,

T—T,., this countermoving bound state is thermally depopu- APPENDIX

lated With the res_ult that the current _reversal in the core plis- 1. Matrix element

appears in the Ginzburg-Landau limit. In summary, we find ] . ] ]

that the Andreev bound states dominate the current of vorti- 1N this appendix we derive a form for a matrix element

ces on the scale of a few coherence lengths. The nonequilitiSed in Sec. 1ID. The matrix element in question is

rium properties of vortices on this scale are expected to bé|[ivip;,8(e—Ha)]|{)11 where we write

dominated by the spectral evolution and dynamics of these . .

bound states. Ha=vip,73+A, (A1)

This work was initiated when the authors were patrtici-
ants at a workshop at the Institute for Scientific Inter-
hange, Villa Gualino, Torino. The research of D.W. was
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the two panels.

N F(f) . ~ .
A=A, : (114 +T27m).

We have
[iviD,, 8(e—Hp)]=i(T3(Ha—A)S(e—Hp)
— 8(e—Hp)(Ha—A)73) (A2)

—i[Ts€,8(e—Hp)]—i{73A, 8(e—Hp)}.
(A3)

Then
(livips,8(e—HW)11=1 T3 (1+75)
X ({|([7s€,8(e—Hp)]

—{73A,8(e—HA | O]
(A4)

=— Tri(Z|7A8(e—HA)|O]. (A5)

Substituting the explicit form for yields the relation

(livips. 8(e=HW D11

F(r) . . “
:AOT T ({To— p71){L|8(e=HA)|{)].  (AB)

2. Approximation of bound states at large distances

Equation(12) gives the current density in terms of the
Andreev Hamiltonian(8) whose eigenvalue equation reads

FWC+7) .
(;;T;mzwzn) WO =Ed(0).

(A7)

—ivfé’g}g-i- AO
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The parametem appearing in the above equation has thel)7;] to remove the phase from the order parameter. The
semiclassical interpretation axanumber impact parameter. transformed Andreev equation is
In this appendix we present approximations to the above

equation for large values of the impact parametgr, ) . Uf 7 e
For| 7|> &, we are justified to replace(\/¢?+ 7°) by its —lvidTet & L + 807 | Y()=EH(D).
asymptotic value of unity. Furthermore, making the some- (A11)

what crude approximation o _ . _ . _
This is a one-dimensional Dirac equation with a weak scalar

(Til+Tm) . . potential, which has weakly bound states with energies near
Vi _’Tlm“LTZ sgn(7) (A8) +Ao. A “nonrelativistic” treatment is appropriate in this
_ case and we approximate the Dirac equation by a Schro
yields for the bound state dinger equation. For example, far<0 we write
L _ 1 1
s L\ V2 AR (A12)
$o({)=const< ex ~ % |77|§ >
f —! with ¢ s scalars. Straightforward manipulations indicate
J2 that ¢, approximately obeys the Sclilimger equation
Eg~—A A9 vi @ _ve_lnl —(E-A
0=—A0sgn 7). (A9) 20, 02 2 Tt 2 ()= ( 0 ¥L(d).
This indicates that at large impact parameters, the bound (A13)

states of the Andreev equation are found very close to the ) . :
threshold of the continuum. All the machinery of Schrdinger theory may be used on this

When required, more refined estimates may be obtaine§auation to estimate, e.g., the bound states. We can put a
lower limit on the bound-state energy. This may be obtained

by writing : s
from the fact that the eigenvalues of the Sainger opera-
T+ Ton _ . tor are =Vpp,, the minimuzm 2f thg potential. Thus,
N miexdi arctar 7/ ¢) 73] (A10)  E—Ao= min{— (vd2)|nl/(£%+ 7)1}, e,
and tﬂhepil perfoLm_lng a_ urjltf\ry _transformatlon E=Ay— vt i 7<0. (A14)
Ha—UHAU™Y, ¢—3P=Uy, with U=exd(i/2)arctanfy/ 2 |7
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