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Abstract. We present a simply applied numerical technique that allows the accurate
determination of the bound-state eigenfunctions and eigenvalues of a differential operator such as
the one-particle Scbdinger Hamiltonian. The method applies for potentials that asymptotically
vanish. The eigenvalues and eigenfunctions are determined as functions of the strength of
the potential and the method is able to determine the bound-state energies for arbitrarily weak
strengths of the potential. At no point is a matrix diagonalized thus the method may be applied
to problems with space dimension greater than unity.

1. Introduction

In this work a numerical technique is presented that determines the bound-state eigenvalues
(assumed discrete) of linear differential operators such as thé@ober Hamiltonian of
one-particle quantum mechanics. Other operators for which the method applies are matrix
differential operators such as first quantized Dirac or Bogoliubov Hamiltonians. The method
determines the bound-state energy eigenvalues and the associated eigenfunctions once the
potential is specified.

One virtue of this work is the simplicity with which it may be implemented. All that
is required is iteration of an integral equation which, when discretized, becomes a matrix
equation. Since the iteration has good convergence properties it is never necessary to
diagonalize a matrix.

A second virtue is that, provided the potential vanishes rapidly (e.g. exponentially) the
bound-state eigenvalues and eigenfunctions may be determined to high accuracy, irrespective
of the weakness of the potential. This is a highly non-trivial feature of the method we present
since very weak potentials have bound states which typically extend very great distances
beyond the region where the potential is non-zero and it is often hard to accurately determine
the eigenfunctions and eigenvalues in this situation.

2. Method for the ground state

To describe the method in its simplest form, we consider the one-dimensionéidSaier
eigenvalue equatiord{ = 9/dx)

[—82 — AV (0)]u(x) = —eu(x) (1)
|_||im u(x)=0 2
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where we have written the potential a3.V (x) andx (> 0) is a parameter that determines
the strength of the potential. Henceforth we shall éalhe ‘strength of the potential’.

In this work, we consider potentialsAV (x) that are attractive< 0) for somex and
which vanish asx| — oco. The energy eigenvalue in (1) has been writter-aswith ¢ > 0,
hence the eigenvalue is negative and corresponds to a bound state.

Let us write (1) as

[—02 + elu(x) = AV (x)u(x) 3)
and introduce the Green functidgn, (x) that obeys

[—02 + ]G, (x) = 8(x) (4)

|||im G.(x) =0. (5)

Then (1) and (2) are equivalent to

o0
ulx) = X/ G.(x = xHYV(xHu(x"dx'. (6)
—0o0
Note that no solution to the homogeneous equatier?[+ ¢]u(x) = 0, can be added to
the right-hand side of (6) since such a solution will not vanish for at least one of the two
limits x — —o0 or x — oo.
So far we have not specified a normalizationudf); a convenient choice is

u(xrer) = 1 (7)

where x¢f is arbitrary. Making the choicees = 0f and substituting this value into (6)
allows XA to be written as

1
PTGV A @
Using this equation to eliminate from (6) yields
u(x) = [ Ge(x — X))V (xu(x") dx . ©)

S G(xHV(xu(x") dx’

Equations (8) and (9) are the starting point from which a rapidly convergent iteration
scheme may be formulated for the lowest energy bound state (excited states may also be
obtained—see later). The procedure is slightly indirect in that we solve an inverse problem:
we do not determine the eigenvalueg, as a function of., but ratherir as a function ok.

Thus we make a particular choice foriterate the equation

[ Ge(x — XYV (x"uy (x) dx’
[ Ge(xX)V (x)uy(x") dx’

until it converges tat(x) = u(x) and then use the.,(x) obtained from this procedure to
determine the value df, using (8). In this way we determine the strength of the potentjal,
that leads to a bound state of energy, i.e. we findi(¢). Repeating the process for a set of
different values ok, say k1, €2, ..., &,] yields a set of potential strengths,i[ 12, ..., A,]
and at this point we can infer the dependence oh A by e.g. making a plot of against
A or by numerically interpolating the results.

Before we give a proof of the convergence of (10), we note that the iteration scheme
of (10) can be formulated for two somewhat different cases.

(10)

Mn+1(x) =

1 Sometimes (e.g. with symmetric potentials) the chaige= 0 may cause problems since the very function we
are trying to determine may vanish at this point. In this case another choieg.f@hould be made.



Numerical determination of bound states 1331

(i) For the first case, the potential is appreciably different from zero only for a finite
range ofx. This would apply to attractive potential wells where the potential vanishes
beyond a certain range. Alternatively, potentials that fall rapidly to zero \itie.g. as
an exponential ofx|) can be treated by setting the potential strictly to zero|idrlarger
than some lengtla. The lengtha is chosen so that computed quantities do not change,
to a given numerical accuracy, whenis increased. A feature of this case (i.e. potentials
effectively vanishing beyond a certain range) is that knowledge of the eigenfunction is only
required in the region of whereV (x) is effectively non-zero. This follows since, on the
right-hand side of (10), only the combinatidn(x’)u,(x’) is present. We thus use (10)
to directly determine«(x) only in this range. Outside this range we can determine the
eigenfunction using (6), since for a giventhe quantities. andu(x) (in the region where
V (x) is effectively non-zero) are determined via iteration, so all information needed for (6)
is known and we can determingx) at all points. It follows that the virtue of calculating
u(x) only in the region of non-zer® (x) is that e.g. weakly bound states may extend very
great distances beyond the range of the potential but the information contained in the long
tails is essentially trivial and need not be followed numerically.

(i) The second case occurs when the bound-state eigenfunction becomes negligible for
sufficiently largelx|, say|x| > a. The integration in (10) can then terminated.gt= a. For
this case, convergence of the integrals appearing on the right-hand side of (10) is controlled
by the behaviour of the eigenfunction and it thus allows the treatment of problems where
the potential does not fall rapidly to zero. One example is the s-wave radial problem for the
Coulomb potential. Later in the paper we give numerical results for this potential, which is
a numerically interesting case, because of the singular nature of the potential.

A variety of the linear operators met in physics yield an integral equation for bound
states that can be written in the same form as (9). Once this form is established, all that
is needed to determine bound states and their eigenvalues is the ‘fre& (=e0) Green
function.

To put our work in context, we note that a related paper is [1] where an integral
equation (‘heat kernel’) method was used to convert the@lthger equation to an integral
equation, which was then used to extract bound states. The method of this reference suffers
(in the case of the Hydrogen atom) with slow convergence to the ground state and yields
results of less than ideal numerical accuracy. In [2], the results of [1] were improved using
extrapolation techniques that accelerated its convergence. A second relevant piece of work
is [3], where the Lippmann—-Schwinger equation is treated invatevel approximation.

This method appears to have limitations on the accuracy of the results it produces. The last
related piece of work we shall mention is [4], where the strength of the potential yielding a
bound state with a specified number of nodes and a specified energy was determined. The
method of [4] required the numerical integration of the $dmger equation from the left

and the right and as already noted, this may be problematic in the case of weakly bound
states. Additionally, the generalization of the method of [4] to non-symmetric potentials in
dimensions greater than unity or to different differential operators is not obvious.

The method we present in this work generally yields very rapid convergence to
the ground state and does not require any special treatments of convergence. It yields
eigenvalues and eigenfunctions to high numerical accuracy for both weakly and non-
weakly bound states and possesses natural generalizations to operators other than those
of Schibdinger type.
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3. Proof of convergence to the ground state

In this section we shall prove convergence of the iteration scheme of (10) to the ground
state using Dirac notation. We shall only provide a proof of convergence to the ground
state for the one-dimensional Sodinger operator considered in the previous section but
with the necessary changes, the proof can be extended to other operators.

To proceed with the proof, we start with (10) which, in Dirac notation is

i) = e 1)
where (0| is an eigenstate of the-coordinate operator with eigenvalue 0 &nd
Ge=(p2+e)™ (12)
Then
lug) = G Vluo) 1) = G.Vlua) _ (G:V)?|uo)
(01G¢Vluo) (OIG:Vu1)  (OI(G:V)?|uo)

and generally

(G V)" uo)
(OI(G: V)" uo)

Consider now the right eigenvectag), of G,V that is associated with eigenval%e

(13)

[tpy1) =

G.VIo) =, 10). 14)
Note that the behaviour af,(x) at large|x|, (5), ensures thap(x) = (x|¢) obeys

|x||iLnoo¢(X) =0. (15)
Using the definition of (12) allows (14) to be written as

(P2 — uV)g) = —¢l9). (16)

This result, combined with (15), tells us tha! is aboundstate of the potential- uV. The
possible values of. correspond to the different strengths of the potential that all lead to a
bound-state at the same energy, namely The vector|¢) may therefore be the ground
state or an excited state of the potentighV and only by choosing: appropriately will
the energy of the state bees. Let ug be the smallest value qgi that leads to a bound
state with energy-¢ and let the eigenvector associated with be |¢g). The fact thatug
is the smallest value gf that results in a bound state means tlfa} must be the ground
state of the potential-oV. The next smallest value gi, namely u;, corresponds to
an eigenvectot¢;) (with energy—e) that is the first excited state of the potentigl,V .
Larger values ofx correspond td¢)’s that are higher excited states of the potentialV'.
This reasoning indicates that only takes on aliscreteset of valuesug, i1, .. ..

Let us write

> 1
G:V=>" 190 Wl (iln) = b (17)
s=0 s

1 We thus normalize the eigenfunction so théd) = 1. More generally we will write the normalization condition

as (reflu) = 1 where (ref| is a suitable reference vector. If the method described here is applied to a matrix
differential operator such as a Dirac Hamiltonian, theef| will incorporate spinor structure as well as containing
e.g. eigenvectors of the coordinate operator.
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wher¢ §,; a Kronecker delta
Although |ug) will generally not be representable as a superposition over thiggséef,
since{|¢,)} does not generally constitute a complete set, we can write

Z |ps) == 1,0?|M0) def o
5| Ps 18
) = Z<0|¢> IAPERPRLE (18)

wherec; are coefficients that are determined |y).
Application of (13) yields

D Csity ")
25 csits " (Olgs)
thus as long asg # 0, we have

colo) + X2y s (22 194)
co(Ogo) + L% ¢ (42) (0lgy)

o) no )"
— () - . 20
Ogo) T ((ul) ) (20)

We thus have exponential convergence to the stage which is the ground state of the
potential — V. Additionally, the value ofx, computed from (8) after convergence has
been achieved, igo.

[tpy1) = (19)

|Mn+1>

4. Determination of higher bound states

The reason the iteration of (10) converges to the ground state is that in (3u#),islthe
largest eigenvalue of;, V. We can ensure convergence to the first excited bound state by
performing the iteration with the operator

MiZG.V — 90) 1/fo| 3 I8 — (sl (21)

s#0 Hs
Thus the difference equation

. Miluy,)
|un+l) = <O|M1|M”> (22)

will converge to|u.,) = |¢1)/(0|¢1), the first excited bound state (with energy) of the
potential — 1V where g = 1/(0|Mi|us) = (Ol¢h1)/ (0| M1|¢1).
One possible way of determining the projection operamv 1 = (Yol is to iterate the

‘left’ equation (v,1| = (v:‘"(‘fv“/o to convergence. This yielda.| = \/fﬁ% and smce—“ﬁg>

and o have already been found the projection operator may be immediately constructed
from these.
Higher excited states may be similarly found by constructig, M3, ... where

=GV = Y05 160 (vl

T We use the notatioi/,| to denote the left eigenvector 6f, V belonging to eigenvalue/L;. (| is not the
dual (‘conjugate’) of the right eigenvector belonging to the same eigenvilile,sinceG.V is not a Hermitian
operator.

1 We have written the values ofranging from 0 toco, however the set of eigenvalues Gf V may be finite in
which case the sum overshould terminate at a finite value.
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5. lllustrative examples

5.1. Double delta function potential in one dimension

A single delta function potential converges in one iteration of (10) to the exact (and unique)
bound state of the potential. More interesting and illuminating is the case of the double
delta function potential

—AV(x) = —A[6(x —a) +8(x +a)] (23)
whose bound states can, of course, be found in closed form.
The decompositio,V = ) |¢_Y)i(ws| has, in this case, only two terms in #:= 0
ands = 1 and a straightforward calculation shows
2./ 2./¢
T Irev = 1_eov
Thus the action ofG.V on an arbitrary initial functionug(x) first projects it into the
two-dimensional space of bound statggix) = exp(—+/e|x — al) + exp(—+/¢|x + a|) and
d1(x) = exp(—+/g|lx —al) — exp(—+/¢|x +a|) and in each subsequent iteration the relative
contribution of¢,(x) is reduced by a factor

K0 _ tanh/za). (25)
Mn1

This result shows that small values ©fead to the most rapid convergence to the ground
state.

Mo M1 (24)

5.2. sechr potential

Another example that has analytically known eigenvalues and provides a further example
of the method presented in this work is the potentialV (x) = —i sec x. This potential
vanishes exponentially for large| and may be set to zero at large] with negligible
influence on the bound states calculated. The bound-state eigenvalues of the potential are
known in closed form [5]. They satisfy

(P? = AV)|p) = —emld). (26)

2
sm:(,/%—i—)\—%—m)
m:QLZ””L&+A—4

and ] denotes the largest integef «.

Let us now view (26) and (27) from the alternative perspective of this work and imagine
that the bound-state energye is specified. Then the ‘quantized’ strengths of the potential,
us, that lead to the specified bound-state energy are

ps = (e +s)(e+s+1) s=0,1,2,.... (28)

A convenient way to see the convergence of the iteration of (10) is to define for the
ground state, the effective strength of the potential aftéerationg:
1

" TGOV @ de

with

(27)

A

(29)

1 For the case of states other than the ground state, we defibhy replacingG.V in (29) by the appropriate
M,, operator, see section 4.



Numerical determination of bound states 1335

Effective strength, A,

1 2 3 4 5 8 7 8 9 10
Number of iterations

Figure 1. The effective strength of the potential,, is plotted against iteration number, for
V(x) = sectf x when the binding energy of the bound statesis- 1. The iteration sequence
plotted is the one that converges to the ground state. The iteration was initiated with a random
function and the space interval3.5, 3.5) was discretized into 101 points. The exact value for
the strength of the potential is,, = 2.

The arguments of section 3 indicate thgatbehaves as

Ap = Mo = \/E(\/E"‘ 1) (30)

when iteration, usings.V, is carried out, while if the operatadd; of (21) is used, it behaves
as

A= 1= e+ D(We +2). (31)

To illustrate the above, we have approximated the integral in (10) by using an elementary
midpoint integration rule with 101 space points and plotted the results of iterating (10),
whene = 1. Despite the fact thatis not small, there is rapid convergencexgfto a value
that is very close to the exact value of (30), as is illustrated in figure 1. Similarly, replacing
G.V by M; (see (21)), again for = 1, yields rapid convergence to the result of (31), i.e.
the strength appropriate for the first excited state, as may be seen in figure 2.

In figure 3 we plote as a function of the strength of the potentia),for the sechx
potential. We obtain this figure by first calculating this corresponding to a set of different
e’s (by iterating (10) to convergence). To the eye there is no discernible difference between

the exact results(= (| /;11 +A— %)2) and the numerically determined results. For a midpoint

integration rule with 101 space points, the exact and numerical results differ by less than
0.1%, for 201 space points the difference is less th&4%.

5.3. Random potential

It is also possible to consider random potentials and see effects of localization on the
eigenfunctions. As an example, we considered the potential to be non-zero in the space
interval (—1, 1) and zero outside this. We took the potential to -b&V (x) with V(x)

taken to be uncorrelatated at different spatial points and at each spatial point, uniformly
distributed in the rang€0, 1). To define the problem further we applied a midpoint rule

1 By a midpoint integration rule, we meajﬁ’ f(x)dx =~ § Z;V:l fj—- %)8) with § = a/N.
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Effective strength, A,

o
o2

1 2 3 4 5 6 7 8 9 10
Number of iterations

Figure 2. The effective strength of the potential, is plotted against iteration number, for
V(x) = sectf x when the binding energy of the bound statesis- 1. The iteration sequence
plotted is the one that converges to the first excited state. The iteration was initiated with a
random function and the space interyal3.5, 3.5) was discretized into 101 points. The exact
value for the strength of the potentialis, = 6.

+ numerical result
- exact result

@ 4
% 0.5 1
A
Figure 3. The eigenvalue equatioﬂ—ax2 — rseck x)¢(x) = —e¢(x) was solved, using the

iteration method of the text, far as a function of.. The points labelled by are the result of
the method of this work and the full curve is the known exact result. The iteration was initiated
with a random function when the intervat-3.5, 3.5) was discretized into 201 points.

to the integral equation (10) with 41 spatial points, thus effectively, the potential may be
considered piecewise constant over an interval.050We specified an energy eigenvalue

and determined the strength of the potentigl,and the ground-state eigenfunction. In
contrast to the previous cases, it took many iterations to achieve convergence (e.g. as
signalled by (29) it sometimes took as many as 500 iterations to achjegenstant from

one iteration to the next, to 16 significant digits). This is not surprising since a random
potential has many low-lying states and a slight change in the strength of the potential may
cause any of these to become the ground state at the specified energy. An alternative way
of saying this is that the eigenvalueg.d, of (14) are closely spaced and hence convergence

is not rapid.
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Figure 4. This figure illustrates results for a random potential. Space was discretized into 41
points between-1 and 1 and a random potential was generated at these points. Outside the
interval (—1, 1) the potential vanishes. The ground and first excited states in this potggtial

andg¢1 (x) are plotted along with the random potentiaV (x) used. Note that the eigenfunctions
plotted both correspond to an eigenvalue-af = —225 but the values of (which are a result

of the iteration) are different in the two cases. For the ground state357.51 and for the first
excited statej = 36814.

In figure 4 we plot the ground and first excited statggx) and ¢;(x) along with the
random potential-V (x) used. Note that the eigenfunctions plotted both correspond to an
eigenvalue of—¢ = —225 but the values of (which are a result of the iteration) are
different in the two cases. For the ground states 357.51 and for the first excited state,

A = 36814,

5.4. Coulomb potential

The s-wave radial problem associated with the Coulomb potential provides an example of
a potential that does not tend rapidly to zero and has the further interesting complication
that it is singular at the origin.

If u(r) denotes the eigenfunction for the s-wave problem, thén = ru(r) is taken
to satisfy

d2
(_@ - AV(r)) x(r) =—ex(r)

2 32
V)=~ (32)
.
x(©0) =0 x(00) =0.
Exact results for this problem are
x(r) = r exp(—Ar) £ =A% (33)
To numerically treat this problem, we modified (10) to
Jo  Ge(r. YV () xu (r') dr’

4
I Ge(reets PV () xn () O (34)

Xn+1(r) =
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whereG,(r, r’) obeys

d2
( —AV(r)) G.(r,rY=8(r—7r")

~32
G.(0,r)=0 G (oo, r)=0.

The singularity of the potential at = 0 was treated by integrating in (34) upwards
from 10°° rather than zero. The rapid decrease of the eigenfunction at/avgas used to
terminate the”’ integral atr’ = 15. These choices yielded numerically robust resultsifor
ranging from 07 to 14 when (34) was discretized and iterated. Splitting the radial interval
into 200 parts led to results far with an error smaller than.6%. With the numerical and
exact x (r) normalized so that Maxy (r)) = 1, a global measure of the goodness of the
eigenfunction was obtained by evaluating

(35)

fooo[Xnumerica(") - Xexacl(”)]2 dr
fooo[Xexact(’”)]z dr
For the parameters we considered, the value of this quantity \2&8s<110~* or smaller.

(36)

5.5. Threshold behaviour

Interesting information about threshold behaviour may also be obtained.
For definiteness let us consider the finite square-well potential

0 x < -1
—AV(x) =1 —x 1>x>-1 (37)
0 x> 1.

We can straightforwardly apply the technique of section 4 to determine the strength of the
potential that leads to a first excited state of energy If we now consider progressively
smaller values ot, the value ofd obtained will tend to the smallest value that just binds a
particle in the first excited state. The program written to determine the threshold behaviour
dealt with the quantity/e rather thare itself and we found, in practise, that allowige to
range from 107 to 108 yielded a value of. that was constant to seven significant figures,
allowing a good indication of the threshold value. Note that = 1078, while being a
small number, is still sufficiently large compared with machine precisieril(~°) that
rounding errors etc do not have any significant effect on the results.

The threshold value of in this problem can, of course, be solved exactly. We have
that within the well the eigenfunction obeys

du(x)
=0 38
dx x=%1 ( )

the derivative condition ensuring that at threshaltk) joins smoothly to a constant solution
outside of the well. The solution for% x > —1is

. X

u(x) = sin (7) (39)
and the threshold value af namelyimreshold SUCh that any larger value afwill yield an
odd-parity bound state, is

7T \2

)\threshold— (E) . (40)
Numerically we obtained the reSL(I§)2 to 0.01% accuracy using a midpoint rule with 101
space points.

[—92 — AJu(x) =0
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5.6. Higher-dimensional case

As we have already noted, it is possible to apply the iteration method to higher-dimensional
cases. As an example, consider a two-dimensional problem where the potential is the finite
square well

—AV(r,0) = =201 —r) (41)

where ®(r) denotes a Heaviside step function. We have chosen this potential since
we can readily determine its ground-state eigenvalue and hence test the method. It is,
of course, possible to reduce this case to a one-dimensional (radial) problem; we have
not done so, but instead have determined the full two-dimensional behaviour of the
eigenfunction. We find that for this potential, and, indeed, for non-central potentials such as
V(r,8) = ®(1—r) cos 6 with smooth angular behaviour, the iteration converges reasonably
rapidly (e.g. for the eigenvalue = 1, we find convergence in around 30 iterations). We
have achieved accuracies better that?® in £(1) when we have used a midpoint rule to
evaluate the integrals required, with only 10 radial points and 32 angular points.

6. Discussion

In this work we have presented a simple technique for numerically determining the bound-
state eigenvalues and eigenfunctions of 8dirger and other linear operators. All that has
been required is a knowledge of the ‘free’, i¥.= 0, Green function and in computer
languages which incorporate matrix algebra, the entire program for a simpléd8uer
operator can, typically, be written in less than 20 lines of code. The evaluation of the
eigenvalues and eigenvectors requires iteration of a matrix equation and nothing more
complicated than matrix multiplications (or loops) need to be performed.

Convergence of the iterations of the method presented is, with the exception of random
potential problems, rapid (typical times for calculations on a standard PC are measured in
seconds).

Limitations on the accuracy of the method originate primarily from the accuracy of the
integration rule used and, as we have seen, even these can be made acceptably small using
the very crudest of integration rules with a sufficiently fine grid.

We have presented results here for one- and two-dimensionab@ober operators,
however we have applied the method successfully to other operators such as Dirac
Hamiltonians.
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