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Abstract. A thin film of superfluid 3He-A film containing a polar domain wall has a normal 
current flowing in it even at zero temperature. We calculate this current from the Gorkov- 
Nambu equations in a way similar to that of Volovik for bulk 3He-A. An earlier calculation 
by the authors working to first order in gradients yielded a singular normal current (pro- 
portional to a delta function). In the present work we show that the singular nature is an 
artefact of the gradient expansion. An additional length scale in the problem smooths out 
the delta singularity. We show that the current obtained has its origins in a zeroth Landau 
level. 

Recently the authors studied the mass current associated with a polar domain wall in a 
thin film of superfluid 3He-A (Pattarini and Waxman 1986 hereafter referred to as I). 

In I we implicitly made the following assumptions that we will also make in this work: 

(i) the polar domain wall of Ohmi er al (1982) exists at zero temperature (it was 

(ii) to a reasonable approximation, the thin film with the domain wall is described by 
determined at temperatures close to T,). 

the order parameter (cf Nakahara 1986) (see I for notation). 

c = + i q2 ) .p  (1) 

401 = & I  (2) 

p2 = tanh(Bx)&, (3) 

with 

(in this work we denote the wall width by I3-l). 
In I it was shown that the standard gradient expansion for the ‘anomalous’ part of 

the current (associated with a normal fluid component of Volovik (1985)) yielded 
(equation (15) of I) 

g c  = ( d m ) W ~ , .  (4) 
We commented at the time on the curious nature of this result: that it is singular and 

independent of the wall width B-’. It is the purpose of the present work to show that 
these features are an artefact of the gradient expansion and that equation (4) results from 
a ‘zeroth Landau level’ similar to the case of Volovik (1985) in bulk 3He-A. 
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The procedure we adopt bears many similarities to that of Volovik (1985) however 

The calculation for the current is in two steps; firstly one solves the Gorkov-Nambu 
there are also some differences. 

eauations 

for the Green function G and then the current is obtained from G in the standard way. 
The energy eigenvalue equation associated with (5) is 

in which 

A = A d v 1  + i(02) (7) 
with pl, q2 given by equations (2), (3). 

In equation (6) we impose vanishing boundary conditions at z = 0 and z = I ( / =  film 
thickness) and periodic BC inx, y over a square of side L.  A normalised solution is written 
in the form 

Using (8) in equation (6) and making the approximations (i) of neglecting the terms 
p2/2m and (ii) of linearising tanh Bx about x = 0 (tanh Bx = Bx)  we obtain 

in which 
k t  + k l  

&=-- P 2m 

and d are the Pauli spin matrices. 

and@;)- lk,lB@p:. 
Approximation (i) is justified since important values of k; are O(p:)  

It is straightforward to show that the eigenvalues of (10) are 

with eigen-functions 
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In the above, f n ( x )  are normalised energy eigen-functions of a harmonic oscillator of 
mass i(pF/Ao)2 and angular frequency 2(A0/pF)21kyIB and 

+ IPn12 = 1 (15) 

= 3(1 + &/En). (16) 

From the above, it follows that the mass current at T = 0 is 

the step function e( -En) arising from the zero-temperature limit of the Fermi function. 
The contribution to the current from states with n = 0 (the zeroth Landau level) 

only arises from positive ky since by equations (12), (15) and (16) the eigen-function 
in equation (14) vanishes identically (for n = 0). 

The spectrum of the zeroth Landau level exhibits asymmetry with respect to ky 
and from equation (12) we have 

k$ + k: 
2m EO(&) = E = - - P a  

This level has (in the approximations considered) a gapless spectrum and the 
current associated with this level is, accordingly, normal. 

We can calculate the normal mass current at T = 0 (associated with the zeroth 
Landau level) from equation (17) by approximating both sums by integrals (valid for 
pFl% l ) ,  replacing sin2(k,z) by 1 (valid for distances SpF' from the film edges), using 
equations (16), (18) and 

we obtain 

g,(r)  = 8." lo' > 2 8(p$ - k;, - k;)k, ('f) - exp( - k, B x 2 )  

On integrating over k, and transforming to a dimensionless variable U = k,/pF we 
obtain (a factor of two has been included for spin and p = m p $ / 3 n 2 )  

where 

h ( x )  = -- d u  u3'*(l - u 2 ) ' I 2  exp( -ux2/$) (22) 

It is easily shown that h(x)  has area unity, width --y and thus on length scales large 
compared with 17 has all the properties of a 6 function. Equation (21) exactly coincides 
with equation (4) in the limit 7 +. 0. The result of equation (21) is physically preferable 
to that of equation (4) since it is non-singular and does (as one would expect) depend 
on the wall width. 
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It is interesting to consider the length scale rl = (PFB)-'I2 that has appeared in the 

Taking B-' - logo, say, pF - U-', a the inter-particle spacing we have 
problem. 

rl - ( a f o ) " * .  (24) 

It is clear that from the viewpoint of the gradient expansion q is treated as zero 
rather than its small (on the scale of go) but finite value. 

We thank M Nakahara for a most informative discussion. One of us (D P) is in receipt 
of an SERC studentship. 
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