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Amirau. Tie iree energy o i  condensed matter systems containing fermions coupied io 
small topological solitons is investigated. The exactly soluble continuum model of poly- 
acetylene, with a hyperbolic tangent soliton profile. is shown to yield non-analytic terms 
in the free energy o f the  form A" In A where A is a parameter proponional to  the size of 
the soliton. A representation of the free energy that is suitable for a small &expansion is 
derived for general soliton profiles. The non-analytic expansion of the free energy about 
A = 0 is found for a general soliton profile for the case of  zero temperature. 

1. lnttoduction 

A number of different condensed matter systems that contain fermions also have the 
ability to support topological solitons. Examples that come to mind (the list is not 
exhaustive) are polyacetylene, type I1 superconductors and superfluid 'He. In poly- 
acetylene it is the dimerization which can interpolate between degenerate ground states, 
thereby forming a topological soliton. In the Fermi superfluids there can be vortices 
or domain walls in the order parameter and these may also be described as solitons. 
The objective we ultimately have in mind is to understand the low-temperature structure 
of vortices of type I1 superconductors. There have been conflicting claims made on 
whether the vortex core shrinks to effectively zero size at zero temperature [ l ]  or 
whether the core remains finite ii j. i t  seems ciear that a necessary step in the understand- 
ing of this problem is to be able to accurately calculate the free energy of such systems 
when the soliton size becomes small. The vortex possess cylindrical symmetry and thus 
has a two-dimensional character. It has additional complexity in that it is not just a 
coupled fermion-soliton problem since the vortex also has a magnetic field associated 
with it and it may be that a full treatment including consideration of the magnetic 
iieid is necessary. 

The present paper deals with the simpler one-dimensional problem of calculating 
the free energy of small-size solitons in polyacetylene where only fermions and a 
soliton are present. This is a system for which the free energy is known for all soliton 
scales when the soliton is assumed to have a hyperbolic tangent (tanh) profile [3]. In 
section 2 we obtain the free energy for small-size solitons from the integral representa- 
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free energy is derived and in section 4 we evaluate this in the zero-size (sharp soliton) 
limit. Section 5 is concerned with extracting the corrections to the free energy for 
soliton profiles with a small but finite width and comparisons are made with the exact 
results. Section 6 discusses some aspects of the work and is followed by four appendices. 
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2. Exact results for the tanh profile 

In an earlier paper the free energy of polyacetylene was obtained for the case where 
the soliton profile had a hyperbolic tangent form [3]. With A, denoting the equilibrium 
dimerization of a uniform system the soliton was written as 
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A(x) = A. tan( 2) 
where uF is the Fermi velocity and A is a dimensionless parameter that characterizes 
the size of the soliton. 

Explicit results for the zero-temperature limit of the free energy associated with 
the soliton (this quantity is denoted by E - E,) is derived in [3] and in this section we 
shall extract the small A-behaviour of this quantity. A convenient starting point is 
equation (D.6) of [3] which we rewrite in the slightly different form ( K O  denotes the 
Bessel function of imaginary argument with order zero [41) 

This may he now integrated by parts and rearranged to yield 

Using the integral representation of the Bessel function [4] 

K , ( f ) =  f j ,mdu(u2-l)1 '2e-" '  (2.4) 

it quickly follows that the first two terms in equation (2.3) add to yield unity, and thus 
we can write 

E - € ,  2 -- - 1 +- "(A) 
A0 77 

where 

In appendix 1 the behaviour of "(A) for small A is derived. An interesting non-analytic 
behaviour involving logarithms is found. Up to and including terms of order A' In A 
and A' the function "(A)  has the form 

"(A) = (a,A + a,A'+. , .) In A +  (b,A + b,A'++. . .) (2.7a) 

a , = l  (2.7b) 

a3 = 1 ( 3 )  ( 2 . 7 ~ )  

b, = y-In 2 (2.7d) 

b,= (:-In 2)5(3)+5'(3) (2.7e) 
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(here and elsewhere in the paper, 'denotes diffetentiation with respect to the argument 
of any function). In the following sections we shall provide a method to extract the 
leading terms in the small-A expansion of the soliton creation energy for general soliton 
profiles. Note in particular that at precisely A = 0 we have "(0) = 0 and thus 

(2.8) 

3. General expression for the free energy 

The model of polyacetylene we consider consists of a continuum field theory of fermions 
moving in one spatial dimension (labelled by x) and coupled to a static dimerization 
field A(x) [5 ] .  Denoting the free energy of the soliton-bearing system by F and that 
of the uniformly dimerized system by Fo the quantity F - Fo may be obtained from 
the ratio of two functional determinants (more details of this can be found in section 
2 of [3]). Let @ and & be independent Grassmann fields which are functions of the 
Euclidean time variable T and are antiperiodic in T over the interval p (- ' -inverse 
temperature). Then we can write 

where 

H = -iu,J,u3+A(x)u, 

Ho = - iuFJp3 + Aoul 

(3.lb) 

(3 .1~)  

R is a combination of spring and coupling constants (that need not concern us here) 
and uk ( k  = 1,2,3) are the Pauli matrices. They describe the physics of electrons moving 
at f u F ;  they are not connected with spin which merely results in a factor of two 
appearing in the free energy. The functional integrals can be carried out and yield a 
raiio of iwo iunciionai deierminanis, ihus 

F - Fa = --In ( Det(JT+H))+Cl 1 dx(A*-A;) 
P Det(J,+Ho) 

where the factor of two results from the two spin contributions. It is convenient at this 
stage to diagonalize a, (eigenvalues io, = i(2m + 1)7i/p, m = 0, *l,  * 2 . .  .) and to 
combine the contributions of on and -om (with a requisite factor of 1 in front of the 
logarithm; this point is discussed in appendix A of [3]). The result is (det denotes the 
determinant taken over reduced space where the eigenfunctions depend only on x and 
Pauli indices) 

Next we introduce the Green function 

(3.4) 
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which we regard as an operator in which the states are labelled by spatial coordinates 
as well as by the suppressed Pauli indices: 
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(xIGo(w,)Ix')= Go(x, x'; U,). (3.5) 

Finally to obtain the desired form for F - Fo we (i) use the identity 

In det = TI In (3.6) 

where Tr denotes the trace taken over the reduced space noted above (with only spatial 
and matrix degrees of freedom) and (ii) employ the alternative representation of the 
dimerization contribution appearing in equation (3.la): 

1 a dx(A2- Ai) =-E TI G0(wm)(H2- Hi) .  I P m  
(3.7) 

This equation follows from stationarity of the free energy Fo of a uniformly dimerized 
system with respect to variations of A, and is derived in appendix 2. It straightforwardly 
follows that 

1 

P -  
F- Fo= --E {TI In[l+ G0(w,)(H2 - Hi)] -TrIG,,(w,)(H2 - Hi)]) 

and this is an expression we shall make use of in the remainder of this work. 

4. Evaluating the free energy in the sharp solution (A =0) limit 

The form nf !he free energy given in equation (3,R) rather naturally suggests the 
expansion of the logarithm in powers of Go( H'- Hi): 

(4.1) 

(the question of convergence of such a series has been addressed in [6]). It follows 
from equation (3.lb) and ( 3 . 1 ~ )  that 

H 2 ( x ) - H i ( x ) = A 2 ( x ) - A ~ + u 2 u ~ A ' ( x ) .  (4.2) 

For present and future use let us consider a general soliton profile (which therefore 
includes the tanh as a special case) and write 

1 ( -1 )"  
F-F --E 1 -Tr([G,(o,)(H2-Hi)]"} 

O - P m  n = 2  n 

(4.3) 

where the profile @ is an odd, monotonically increasing function that approaches *1 
at spatial infinity: 

@(*CO) =*l.  (4.4) 

We shall assume in what follows that the typical scale of variation of @ is of order 
unity, i.e. @'(O) - 1 and that A is the appropriate dimensionless measure of the soliton 
size. In terms of @, we have 
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The limit that is required of this quantity in the present section is A + 0 since this yields 
a sharp soliton of vanishing size in which the dimerization discontinuously jumps from 
-Ao to +PO. Despite the apparently singular form of ( H 2 - H i )  in this limit the series 
in equation (4.1) for the free energy can be summed to yield a finite result, as we shall 
now show. 

The soliton free energy is 

X(f fZ(x~)-Hi(x t ) ) .  . . (H2(xa)-H:(xn)) (4.6) 

where tr denotes the trace over matrix indices. The matrix element of the Green's 
function is 

where we have defined 

U, =w, /Ao.  

Let us now define new integration variables y;  defined by 

Y,  =- i =  1 , 2 , .  . . , n 
A U F  

and a scaled version of the 'interaction' H 2 -  Hi, 

L ( Y ;  A )  = u@'(y) - A(1- a2(Y)) 

where u ( = * l )  are the eigenvalues of uz. We can then write 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

x e x p [ - A m ( l y , - y , l +  . . .  Iy~-y,l)lf ,(y,;A) ... f , (y , ;h) .  (4.11) 

The soliton free energy in the limit A -f 0 may be obtained by setting A = 0 in this 
equation (we assume dy(1 -a2(y)) is finite) with the result 

(4.12) 

Note that in the A = 0 limit the free energy is entirely determined by the topology of 
the soliton since only the 'topological winding number' f l d y  @'(y )  (=+1 for solitons 
and -1 for antisolitons) appears in the result. 
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It is straightforward to specialize the result to zero temperature with the answer 

lim 7-0 ( F - - F ~ ) / A ~ ~ ~ = ~ = ( E  - E ~ ) / A ~ ~ ~ = ~ =  1 (4.13) 

in agreement with the exact result. 

5. Leading corrections to the free energy due to finite soliton size 

Once equation (4.11) for the free energy is obtained it is possible to generate the 
leading corrections to the h = 0, sharp soliton, limit. Here we shall indicate how to 
derive the corrections to the soliton free energy that are of order A In A and A (higher. 
order terms are of the form A "  In A and A "  with n > 1). Our calculations will be restricted 
to the case of zero temperature (and thus sums over frequencies are replaced by 
integrals). Higher-order corrections and finite-temperature effects may be obtained by 
the appropriate generalization of the considerations given below. 

To proceed we look at three different contributions to the zero temperature limit 
of the soliton free energy, which, in units of A", is (E  - E o ) / A , .  

(a) Some terms of order A follow from the dependence of fy(y; A )  on A. The 
contribution is 

(c) Contributions of order A and A In A arise from the term in the sum over n with 
n = 2. The expansion of the exponential used in (b) would, formally, yield an infinite 
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result if it were carried out on the term with n = 2, indicating the incorrectness of this 
step. What is required is a more careful treatment of this term. The contribution that 
is independent of terms already counted in I ,  and the A = 0 result is given by 

The frequenc integral that appears in equation (5.3) is of the form I,“ d u ( l +  v2)- ’  
[exp(-a e 1 + u ’ ) - l ] .  In appendix 3 this is expanded up to order a In a and a. The 
result is 

lomdu(  l + v ’ ) - ’ [ e x p ( - a m ) -  11 = a In a - a ( l  - y + l n  2 ) + .  . . . (5.4) 

and thus to terms of order A In A and A 

+A 1 dy, dy2[lyl -y21 In I Y ,  - ~ 2 1  - ( I  - Y ) ~ Y I  - ~ 2 1 1 @ ‘ ( ~ ~ ) @ ’ ( ~ 2 ) .  ( 5 . 5 )  

There are no further terms of order A or A In A in F - Fo and all that remains is to 
combine I , ,  Ib and I ,  in a convenient form. 

Ultimately, all A dependence in the problem arises from the original choice, equation 
(4.3), for the soliton form, however the contributions of I .  and 1, to the free energy 
do  seem to have quite distinct origins; I ,  arising from the ‘interaction’ and I,, from 
the behaviour of the Green’s function. It should be noted that individually I .  and Ib 
diverge on integration over U. To obtain a finite result there must be a substantial 
cancellation between these two terms. It turns out that by virtue of the identity (a 
proof of which may be found in appendix 4) 

I ,  and Ib precisely cancel with each other (this cancellation also holds, unchanged, at 
finite temperatures). We can therefore combine the A = 0  result with the contribution 
of I ,  to write the soliton creation energy for general soliton profiles as 

E -Eo 2 
Ao n 

-= 1+- (a ,A In A + b , A + .  . .) ( 5 . 7 a )  

a ,  = a  1 dy, dy,ly, -y21@’(yl)@’(~2) (5 .76 )  

b, =$I dy, dy2[1~I-y211nlyl-y?l-(l-~)ly,-y211@’(yl)@’(y2). ( 5 . 7 ~ )  

It may be verified that on choosing the soliton profile @ ( y )  to be tanh(y) that the 
results for a ,  and b ,  given above agree with those given in equations (2 .7b)  and (2.7d). 
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6. Discussion 

In this work we have shown that by going to an appropriate representation of the 
soliton free energy, namely equation (4.111, it is possible to evaluate corrections to 
the sharp soliton limit arising from the finite extent of the soliton. We have seen that 
terms logarithmic in  A arise from the detailed spatial behaviour of the Green's function 
Go. From the way the A In A term originated i t  is possible to understand where 
higher-order terms of order A "  In A come from. In essence this is from the expansion 
of frequency integrals of the form I: du( 1 + u2)-"'* e x p ( - A m r )  that appear in the 
(zero-temperature limit of the) free energy. For large U the integral is approximately 
1" d v  u - ~  exp(-Aur) and it is intuitively obvious that we can correctly generate terms 
in A up to and including A"-2 by simply expanding the exponential. The term in A"-'  
derived in this way has a coefficient which diverges logarithmically and this suggests 
that there wi!! be terms of nrder A"- '  !n A present in the expansion of the integra! 
(along with A"-' and higher-order terms). An appropriate treatment of the integrals 
indicates that these intuitive considerations are correct. It follows that the term in 
A'-' In A in the free energy arises from all terms in the sum over n with n s s. Thus, 
for a small value of s a relatively small amount of work is needed to determine the 
term in As-' In A. This is in contrast to the term in A"' which appears to require a 
careful combinatoric analysis to determine its contribution. 

An inspection of the exact results for the expansion of the free energy (equations 
( 2 . 5 ) ,  (2 .6)  and ( 2 . 7 ) )  appears to indicate that when A' In A is present then so is A x  
and that only odd values of s appear. For the exact results this seems to be a feature 
inherited from the property of the Bessel function that appears in the integrand 
(although we have not proved it for general s). A significant efficiency of calculation 
would be achieved if we could see, from some general considerations of the free energy 
given in equation (4.1), why (if true) (i) only odd powers of A appear and (ii) how to 
infer the coefficient of A' from knowledge of the coefficient of A' In A ?  We do  not 
know how to answer either of these questions and leave them as open problems. 

As stated in the introduction, this work is a preliminary step in the understanding 
of solitons (vortices) that may, genuinely, be small at low temperatures. This is in 
contrast to the solitons of the system studied in this work, whose equilibrium size and 
creation energy are given by [ 3 ]  
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A = l  ( E  - Eo)/& = 2 /  17 s= 0.6366 Exact. (6 .1)  

It is nevertheless interesting to see just how close these values can be reached by the 
small-A results given in this work. Using the exact results o f  equations (2 .5) ,  (2.6) and 
(2 .7)  we can determine the value of A that minimizes ( E  - E o ) / A o  for the lowest-order 
'linear' calculation where only A In A and A are included and the next-order 'cubic' 
calculation where terms up  to A 3  In A and A 3  are included. We find that at the minimum 

A =0.413 ( E  - E , ) / A o = 0 . 7 3 7  linear (6 .2)  

A = 0.456 ( E  - € , ) / A h ,  = 0.704 cubic. (6.3) 

These are remarkably close to the exact results given the low order of the terms kept. 
They suggest that if very small solitons were energetically favoured, considerable 
confidence could be had in the predictions of a small-A expansion which was truncated 
at low order. 
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Appendix 1. Behaviour of W(A) for small A 

In this appendix we shall derive the leading behaviour of the function 

(Al.l)  

for values of A << 1. 
ah, where we 

consider a arbitrary but of order unity. For the integral with 1s aA, which we denote 
by ' P l ( A ) ,  we use the identities 

We split the range of integration into two parts, f c aA and i 

d 1 
A - h ( l  - e-'/*) =e'/"-l 

dr 

A --In( d :) =- A df 1 

(A1.2) 

(A1.3) 

to integrate by parts with the result 
4 sinh2(aA/2) 

In( 1 -e-") - In a ( ' P L ( A )  = AaAK,(aA) 

(A1.4) 
Within the integrals we make the small-f expansions [4] 

a = f; y -  2 

( y  is Euler's constant), 
d 

- [ f K , ( i ) ]  = i In f + b i f . .  . 
dr (A1.6a) 

b = y - l n 2  
and change variable from t to U with 

f = A u  

with the result 

(A1.66) 

(A1.7) 
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For the integral with f 2 aA, which we denote by ">(A), we employ again the identity 
equation (A1.2). integrate by parts and also use K , ( f ) =  -Kb( t )  [4] to obtain 
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4 sinh2(aA/2) 
V,(A)=-AaAK,(aA)  In ( 1  -e-") 

(.AI2 

d 4 sinhz(f/2) 
- AKo(aA). (A1.9) -A j ~d f In ( l - e - ' / ' ' ) -  d f  t K , ( f )  f2 

Since the integral gets its principal contribution from small i we use the expansion of 
equation (AIS)  and, on changing variables to U, equation (A1.7), we obtain 

In(l - e C - A 3  In A 
4sinh2(aA/2) 

">(A) = -AaAK,(aA) 
(.AI2 

- A 3  d u  ( u  In u +au)  In(l -e-")-hK,(aA)+. . . . (A1.10) 

Finally, we combine W, and \Y2 from equations (A1.8) and(A1.lO) and expand the 
combination a A K , ( a A )  In a + Ko(aA)  up to order A21n A, A' 141. We find a result that 
is, to the order we are working at, independent of 01 (as it must be) and is given by 

"(A) = (a,A+ a3A3+. . .) In A+(b,A+ b3A3+. . .) (Al . l la )  

(Al . l lb )  

( A l . l l c )  

b, = y-In 2 (Al . l ld )  

b3 =-jomdu[u In u + ( i +  y-ln 2)u l  In(] -e-") 

= ( a -  In 2)[(3) + 6'(3), (Al.1 le)  

Appendix 2. An alternative form of the dimerization term that follows from 
stationarity of the free energy of a uniform system, Fo, with respect to A. 

In this appendix we rewrite the dimerization term (the final term in equation (3.la)). 
We use the fact the the dimerization of a uniform system is determined by requiring 
that the free energy is stationary (a minimum) with respect to variations of Ao. This 
amounts to the requirement that 

where L is the length of the system. Thus 

(A2.1) 

(A2.2) 1 - 1 Tr G,(o,) = ClL. 
4, 
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Since (xlG,(o,)lx’) is a function of (x-x‘) we can write this equation for arbitrary x 
as (tr denotes the trace over matrix indices) 

(A2.3) 
1 -1 tr(xlGo(om)lx)=Cl. 

P m  

Let us consider now 

dx(xlGu(om)lx)(H2(x) - Hg(x)) 

(A2.4) 

P m  

P m 
=‘I dx 1 tr((xlGu(o,)~x))ftr(H2(x)-H~(x)) 

where the last equation uses the fact that the Green’s function is proportional to the 
unit matrix. By virtue of equation (A2.3) we can eliminate the sum involving the 
Green’s function in favour of the ‘coupling constant’ Cl and obtain 

1 -1 Tr G , ( w m ) ( H 2 - H i )  =Cl$ I dx tr(H2(x) -Hg(x)) 
P m  

=fl dx(A’(x)-A;) (A2.5) I 
which is the form used in the main text. 

A point to note is that all of the terms in the expansion of the logarithm in powers 
of G , ( H 2 - H i )  in equation (4.1), only the term with n =  1 (that cancels with the 
dimerization term) is in any way sensitive to the electronic bandwidth W. (We are 
assuming a weak-coupling theory where A,/ W<< 1.) As a consequence equation (A2.2) 
is the only place where momentum integrals have to be constrained and therefore the 
only important place the bandwidth enters the theory is in the uniform dimerization 
amplitude A,. 

CO 

Appendix 3. Small-a behaviour of the integral I, d v ( l +  v * ) - ’ [ e x p ( - m m ) -  I ]  

In this appendix we derive the small-e behaviour of the above integral 
Writing 

I ( a ) =  d u ( l + v 2 ) - ‘ [ e x p ( - e ~ ) - l ]  (A3.1) L- 
we note that 

r ( o ) = o  (A3.2) 

I ’ (a)=-/omdu(L+ v 2 ) - ” ’ e x p ( - a m ) .  (A3.3) 

With the substitution f = sinh U i t  may be seen that I ’ ( a )  is, up to an  overall sign 
difference, a Bessel function [4]: 

I ‘ (a )  = -&(a). (A3.4) 
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Thus, using equation (A3.2) 
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I ( a ) =  - J  dsK,(s). (A3.5) 
0 

We can now use the small-s expansion of K o ( s )  [4]: 

K , ( s )  = -[ln(s/2) + y ]  +. . . (A3.6) 

to find that up to terms of order a In a and a 

I ( a )  = a In a - a(1-  y f l n  2)+. . . . (A3.7) 

Note that in the main text we identify 

= ~ A I Y , - Y , I .  (A3.8) 

Since equation (A3.7) contains a In a, use of equation (A3.8) implies that this logarith- 
mic term generates both A In A and A contributions. It thus seems that a consistent 
treatment which keeps terms of order A In A should also keep terms linear in A since 
they have, in part at least, common origins and this viewpoint has been taken throughout 
the paper. 

Appendix 4. Proof of an identity 

In this appendix we prove the identity 

which holds for odd functions with 

@(*a) = *l .  

I = I,+ I, 

1, = (_-dy, ~ - m d ~ 2 ~ l @ ’ ( ~ J @ ’ ( ~ 2 )  

The RHS of equation (A4.1) can be written as 

with 
Y I  m 

and 

For I, we integrate with respect to y ,  to obtain 
m 

1, = /-,dy1 Y ~ @ ’ ( Y ~ ) ( @ ( Y ~ ) - @ ( - ~ ) ) .  

Using oddness of a, we can omit the boundary term and write 

(A4.1) 

(A4.2) 

(A4.2a) 

(A4.26) 

( A 4 . 2 ~ )  

(A4.3) 

(A4.4) 

Integrating by parts shows that I, is precisely half the LHS of equation (A4.1). Similar 
manipulations on 1, show that it is equal to I, and the identity is proved. 



Free energy of fermions coupled to small solitons 3623 

References 

[l] Kramer Land Pesch W 1974 2. Phys. 269 59 
121 Ullah S, Dorsey A T and Bucholtr L J 1990 Phys. Reo. B 42 9950 
[3] Nakahara M, Waxman D and Williams G 1990 J. Phys. A: Marh. Gen. 23 5017 
[41 Abramowim M and Stegun I A led%) 1965 Hondbook of Mothemotieol Tables (New York: Dover) 
[ 5 ]  Takayama H, Lin-Liu Y R and Maki K 1980 Phyr Rev B 21 2388 
[6] Sehwinger 1 1954 Phys. Re". 91 615 


