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Abstract The nearly neutral theory attributes most

nucleotide substitution and polymorphism to genetic drift

acting on weakly selected mutants, and assumes that the

selection coefficients for these mutants are drawn from a

continuous distribution. This means that parameter esti-

mation can require numerical integration, and this can be

computationally costly and inaccurate. Furthermore, the

leading parameter dependencies of important quantities can

be unclear, making results difficult to understand. For some

commonly used distributions of mutant effects, we show

how these problems can be avoided by writing equations in

terms of special functions. Series expansion then allows for

their rapid calculation and, also, illuminates leading

parameter dependencies. For example, we show that if

mutants are gamma distributed, the neutrality index is

largely independent of the effective population size.

However, we also show that such results are not robust to

misspecification of the functional form of distribution.

Some implications of these findings are then discussed.

Keywords Genetic drift � Distribution of mutant effects �
Neutrality index � Special functions

Introduction

The neutral and nearly neutral theories of molecular evo-

lution placed interpopulation divergence and

intrapopulation polymorphism within a single explanatory

framework, attributing both to the action of genetic drift

(Kimura 1983; Ohta and Gillespie 1996). While alternative

theories, emphasizing positive selection, and/or linkage

effects, continue to receive attention (e.g., Gillespie 1991,

2001), the drift-based theories remain central to the study

of molecular evolution.

Neutral theory, in the strict sense, assumes that most

mutants are either strongly deleterious or wholly neutral,

with only the latter contributing to divergence or poly-

morphism. This assumption yields tractable equations, and

easily interpretable results, but is almost certainly unreal-

istic. The nearly neutral theory, by contrast, assumes that

selection coefficients are drawn from a continuous range,

with a large class of mildly deleterious mutants—an

assumption that has a great deal of empirical support (e.g.,

Eyre-Walker et al. 2002, 2006; Piganeau and Eyre-Walker

2003; Yampolsky et al. 2005; Loewe and Charlesworth

2006; Loewe et al. 2006; Eyre-Walker and Keightley

2007).

When selection coefficients are drawn from a continu-

ous distribution, the equations for many quantities of

interest involve an integral over this distribution, and this

has some unfortunate consequences. First, on a purely

practical level, when equations are implemented in a

likelihood framework for parameter estimation, the esti-

mation procedure must involve numerical integration, and
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this can impose a significant computational burden, espe-

cially when multidimensional integrals are required (e.g.,

Nielsen and Yang 2003; Williamson et al. 2004). Second,

the inclusion of a continuous distribution makes the

equations more difficult to understand, and the predicted

parameter dependencies of important quantities less trans-

parent, than under strict neutrality. Finally, and more

fundamentally, there is continuing debate about the func-

tional form of the distribution of selection coefficients in

nature (e.g., Nielsen and Yang 2003; Loewe and Charles-

worth 2006; Eyre-Walker and Keightley 2007), and this

calls into question the generality of conclusions reached by

imposing an arbitrarily chosen functional form (Tachida

1996; Eyre-Walker 2002; Sawyer et al. 2003; Loewe and

Charlesworth 2006; Woodhams 2006; Eyre-Walker and

Keightley 2007).

Here we investigate the expected levels of divergence

and polymorphism under the nearly neutral theory, when

selection coefficients are drawn from a continuous distri-

bution. The study has three main aims. First, it is shown

that, for some commonly used distributions, the relevant

likelihood equations can be written in terms of special

functions; this means that the quantities of interest can be

calculated rapidly without the need for numerical integra-

tion. Second, approximate forms of these expressions are

shown to follow directly from the definitions of the special

functions, and these approximations show clearly the

leading dependencies on the parameters of biological

interest. Finally, results from some different distributions

of selection coefficients are compared, to test the robust-

ness of the conclusions.

Expected Levels of Polymorphism and Divergence

Consider, first, expected levels of polymorphism and

divergence at a collection of independent sites, when all

mutants are subject to a common strength of selection.

These results were derived in detail by Kimura (1962,

1969) and others (Ewens 1979; Sawyer and Hartl 1992;

Hartl et al. 1994). Here we just give brief heuristic

derivations.

The expected divergence, d, along a lineage of t gen-

erations, at a site where all mutants have the same selection

coefficient, s, is the product of the number of mutants

expected to appear, and their probability of reaching fixa-

tion, and so takes the form

d0 ¼ 2Nlt � p ðs; Ne; NÞ ð1Þ

where N is the census population size, Ne the effective

population size, l the mutation rate per generation, and

p ðs; Ne; NÞ the fixation probability. (Both here and

elsewhere, we use a zero subscript to indicate a model

where all mutants have the same selection coefficient). The

expected level of polymorphism at the site is

p0 ¼ 4Nel
Z 1

0

wðx; s; Ne; NÞkðxÞdx ð2Þ

where wðx; s; Ne; NÞdx is the probability of mutant alleles

segregating in the population between frequency x and

frequency xþ dx; and the function kðxÞ describes the

sampling of alleles from the population. The exact form of

kðxÞ will vary according to the measure of polymorphism

that is required (e.g., mean heterozygosity, number of

singletons, or total number of polymorphic sites).

However, most quantities of interest can be represented

by a sampling function comprising one or more terms of

the form

kðxÞ / xn ð1� xÞm ð3Þ

where n and m are nonnegative integers. For example, to

model heterozygosity, we would set n ¼ m ¼ 1 and

specify kðxÞ ¼ 2xð1� xÞ (e.g., Kimura 1979). Sawyer and

Hartl (1992) and Hartl et al. (1994) describe more complex

sampling functions of the same form but with different

values of n and m; and Nielsen et al. (2004) describe cor-

rections that may be appropriate for real-world data. All

results below use the generalized form of the sampling

function, Eq. 3, and so apply to each of these particular

cases.

Approximate forms of the remaining functions,

pðs;Ne; NÞ and wðx; s;Ne; NÞ; were obtained using diffu-

sion analysis by Kimura (1962, 1969, Eqs. 13 and 37).

Using these results allows us to write the expressions for d0

and p0 in terms of the scaled parameters:

c � 4Nes ð4Þ
h � 4Nel ð5Þ

Namely

d0ðcÞ ¼ lt
c

1� e�c
ð6Þ

p0ðcÞ ¼ h
Z 1

0

1� e�cð1�xÞ

1� e�c
xn�1ð1� xÞm�1dx ð7Þ

¼ h
1� e�c

�
X1
j¼1

Bðn;mþ jÞ
j!

ð�cÞj ð8Þ

In the last equation, the representation of p0ðcÞ as an

infinite sum follows from expanding the term e�cð1�xÞ in

powers of �cð1� xÞ and using
R 1

0
xn�1ð1� xÞm�1dx ¼

Bðn;mÞ; which is the beta function (Abramowitz and

Stegun 1965), which for integer arguments is Bðn;mÞ ¼
ðn� 1Þ!ðm� 1Þ!=ðnþ m� 1Þ!:
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To relax the assumption that all mutants are subject to

the same strength of selection, we generalize Eqs. 6 and 7

by incorporating a distribution of scaled selection coeffi-

cients, denoted FiðcÞ:

di ¼
Z 1
�1

d0ðcÞFiðcÞdc ð9Þ

pi ¼
Z 1
�1

p0ðcÞFiðcÞdc ð10Þ

The following sections evaluate these expressions for

some important forms of FiðcÞ:

Strict Neutrality

To derive results for strict neutrality (Kimura 1983),

assume that a proportion f of mutants is selectively neutral,

with c ¼ 0; while the remaining proportion, ð1� f Þ; is

severely deleterious, and so contribute nothing to either

divergence or polymorphism. With these assumptions, we

reproduce standard results (Kimura 1983):

d1 ¼ lt f ð11Þ
p1 ¼ h f Bðn;mþ 1Þ ð12Þ

with the subscript 1 denoting strict neutrality. The extent to

which results from other distributions deviate from these

neutral expectations can be quantified using the ‘‘neutrality

index’’ (Rand and Kann 1996). The index, N Ii; is defined

as the ratio of polymorphism to divergence when both

quantities are standardized by their strictly neutral

equivalents:

N Ii ¼
pi

p1

d1

di
; ð13Þ

and so is equal to unity under strict neutrality.

Single-Sided Gamma Distribution

The distribution most commonly used to describe delete-

rious mutations is the single-sided gamma distribution:

F2 c; cj j; bð Þ ¼ cj jb�1e� cj jb= cj j b= cj jð Þb

C bð Þ ; c� 0: ð14Þ

We have parameterized the distribution in terms of the

absolute value of its mean, cj j; and a dimensionless shape

parameter, b. The parameter b is related to the coefficient

of variation of the distribution via CV (c) = b-1/2, and to

the excess kurtosis via j cð Þ ¼ 6=b: This distribution was

used in the earliest work on the nearly neutral theory by

Ohta (1977), who used the single-sided exponential dis-

tribution (equivalent to setting b = 1 in Eq. 14), and by

Kimura (1979), who introduced the arbitrary shape

parameter, b.

Exact Results

From Eqs. 9 and 14, we have

d2 ¼ lt

Z 1
0

c
ec � 1

cb�1e�cb= cj j b= cj jð Þb

C bð Þ dc ð15Þ

which can be expressed in terms of a special function. To

obtain this we use

ec � 1ð Þ�1¼ e�c
X1
j¼0

e�jc ð16Þ

and interchange the order of summation and integration to

obtain

d2 ¼ lt
b= cj jð Þb

C bð Þ
X1
j¼0

Z 1
0

e�c 1þjþb= cj j½ �cbdc

¼ lt
C bþ 1ð Þ

C bð Þ b= cj jð Þb
X1
j¼0

1þ jþ b= cj j½ �� 1þbð Þ

¼ ltb b= cj jð Þbf 1þ b; 1þ b= cj jð Þ:

ð17Þ

Here

f � ; að Þ ¼
X1
j¼0

aþ jð Þ�� ð18Þ

is the Hurwitz zeta function (Abramowitz and Stegun

1965). Equation 17, first obtained by Kimura (1979, Eq. 8),

can be calculated rapidly using various well-established

series approximations. The relevant numerical methods are

implemented in commercially available symbolic mathe-

matics software and in publicly available software libraries,

such as the GNU Scientific Library (Galassi et al. 2006),

which is also implemented in the R environment (R

Development Core Team 2006).

A result similar to Eq. 17 can be obtained for poly-

morphism in terms of the infinite series:

p2 ¼ h b= cj jð Þb
X1
j¼1

B n;mþ jð Þ
jBðb; jÞ f bþ j; 1þ b= cj jð Þ: ð19Þ

The terms of this sum decrease in magnitude with j, and so

for numerical calculation, approximations of arbitrary

accuracy can be obtained by truncating the series at a

suitable point.

An alternative is to replace the double integral of Eq. 10

with a one-dimensional integral. This can be done by

defining a function Hi xð Þ:

Hi xð Þ �
Z 1
�1

1� e�c 1�xð Þ

1� e�c
Fi cð Þdc ð20Þ

such that pi ¼ h
R 1

0
H xð Þxn�1 xð Þm�1dx: For the single-sided

gamma distribution, this function can be calculated in

closed form:
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H2 xð Þ ¼ b= cj jð Þb f b; b= cj j þ xð Þ � f b; b= cj j þ 1ð Þ½ �: ð21Þ

This exact result is defined for all positive b, but b\ 1

requires analytic continuation (Fine 1951), and for b = 1

(Ohta 1977), we use limb!1 f b; að Þ � 1= b� 1ð Þ½ � ¼
�W0 að Þ; where W0 �ð Þ is the digamma function

(Abramowitz and Stegun 1965) yielding the exact result,

lim
b!1

H2 xð Þ ¼ cj j�1 W0 1= cj j þ 1ð Þ �W0 1= cj j þ xð Þ½ �: ð22Þ

Approximations

To derive approximate expressions for the divergence and

polymorphism, we require information about the typical

magnitudes of b and cj j: Studies fitting gamma distribu-

tions to data from various taxa and loci have almost all

agreed that b\ 1 provides the best fit (Keightley 1994;

Piganeau and Eyre-Walker 2003; Eyre-Walker et al.

2006; Loewe et al. 2006; Loewe and Charlesworth 2006;

but see Nielsen and Yang 2003). This finding accords

with the high kurtosis and a high concentration of

mutants of negligible effect inferred from more direct

approaches to estimating the distribution (Davies et al.

1999; Lynch et al. 1999; Eyre-Walker and Keightley

2007). Estimates of cj j from bioinformatic studies have

tended to be large, often of order 100, which again

accords with results from more direct approaches

(Keightley and Eyre-Walker 1999; Lynch et al. 1999;

Loewe et al. 2006) and with broader surveys of selective

constraint (Eyre-Walker et al. 2002; Subramanian and

Kumar 2006). Seemingly contradictory estimates of order

1 have appeared in the literature (e.g., Bustamante et al.

2002; Sawyer et al. 2003), but this disagreement is only

apparent, because these authors estimated a different

quantity: the mean value of Ne |s| for mutants eligible to

become polymorphic or fixed, i.e., excluding severely

deleterious mutants.

Together, these studies suggest that b= cj j � 1 will tend

to hold in nature. When this is so, the Hurwitz zeta function

in Eq. 17 is well approximated by the Riemann zeta

function, f 1þ bð Þ ¼
P1

j¼1 j� 1þbð Þ 	 1þ 2=3ð Þb=b; and

this yields

d2 	 ltbbþ1f 1þ bð Þ cj j�b ð23Þ

(Kimura 1979; see also Gillespie 1991).

Equation (23) shows that the expected divergence will

be approximately loglinear in cj j; with the slope deter-

mined by the shape parameter, i.e., that lnd2 	
�b ln cj j þ const: Furthermore, applying the same

approximation to Eq. 19 shows that the same applies to

polymorphism. Together, this means that we can approxi-

mate the neutrality index, Eq. 13, as follows:

NI2 	 1þ
X1
j¼2

f bþ jð Þ
jbB b; jð Þf bþ 1ð Þ

B mþ j; nð Þ
B mþ 1; nð Þ

	 1þ b
X1
j¼2

fðjÞ
j

B mþ j; nð Þ
B mþ 1; nð Þ þ oðb2Þ

ð24Þ

Equation 24 confirms the general finding that under the

assumptions of the nearly neutral theory, NI [ 1 will

always hold (Rand and Kann 1996). This reflects the

presence of weakly deleterious mutants, which are able to

contribute to transient polymorphism but unlikely to reach

fixation.

Figure 1 plots the approximate and exact forms of the

divergence, polymorphism, and neutrality index, arbitrarily

setting the polymorphism sampling parameters (Eq. 3) to

m = 1 and n = 8, such as might be used to model the

frequency of singletons in a sample of eight alleles (Hartl

et al. 1994). The figure shows that the approximations are

good when cj j is not too small and b is not too large, and

this is generally consistent with the empirical results dis-

cussed above.

From our approximations, Eqs. 23 and 24, some leading

parameter dependencies follow directly. First, the neutral-

ity index, NI2 is shown to increase linearly with the shape

parameter, b, but to be largely independent of the mean

strength of selection cj j: Second, the effective population

size, Ne, appears solely in the parameters cj j and h (Eqs. 4

and 5), and so we have

d2 / N�b
e ð25Þ

p2 / N1�b
e ð26Þ

NI2 	 independent of Ne ð27Þ

Equations (24) and (25)–(26) also show that the differ-

ences between neutrality and near neutrality are least

marked when the shape parameter, b, is very small; this is

because when b � 1, divergence and polymorphism will

be relatively insensitive to changes in Ne, and the neu-

trality index will remain close to its neutral value of unity.

This behavior can be understood by recalling that the

kurtosis of the gamma distribution is given by j cð Þ ¼ 6=b;
and that a highly leptokurtic distribution approximates the

situation under strict neutrality, in that mutations are

concentrated in a peak around c = 0 and in a tail of large

negative values.

Partially Reflected Gamma Distribution

Single-sided distributions, such as Eq. 14, are unrealistic in

that they contain no beneficial mutations and, so, embody

the implicit assumption that populations will degenerate

indefinitely (Gillespie 1995; Tachida 1996). A related
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model that avoids this assumption is the ‘‘partially reflec-

ted’’ gamma distribution introduced by Piganeau and Eyre-

Walker ((2003); Bulmer 1991). This distribution was

derived from a mechanical model of evolution, in which

deleterious mutations are generated from a gamma distri-

bution, but in which back mutations from the deleterious

state to the wild type are also permitted. These assumptions

lead to the following equilibrium distribution of scaled

selection coefficients:

F3 c; cj j; bð Þ ¼ cj jb�1e� cj jb= cj j b= cj jð Þb

C bð Þ 1þ ecð Þ ð28Þ

which applies to both negative and positive c (see plots in

Piganeau and Eyre-Walker 2003). While Eq. 28 has been

parameterized to match the single-sided Eq. 14, cj j now

represents the mean selection coefficient only when all loci

are fixed for the beneficial allele, but because only weakly

deleterious mutants can reach fixation, it will differ little

from the true mean of Eq. 28.

Results

The divergence for the partially reflected gamma distri-

bution is

d2 ¼ 2lt
b= cj jð Þb

C bð Þ

Z 1
0

cbe�cb= cj j

ec � e�c
dc

¼ ltb
b

2 cj j

� �b

f bþ 1; ð1þ b= cj jÞ=2ð Þ:
ð29Þ

where we used the expansion ðec � e�cÞ�1 ¼ e�c
P1

j¼0 e�2jc:

By similar means, expected polymorphism and the function

H3 (Eq. 20) are found to be

p3 ¼ h
b

2 cj j

� �bX1
j¼0

21�jBðn;mþ jÞ
jBðb; jÞ f bþ j; 1þ b= cj jð Þ=2ð Þ

ð30Þ

H3ðxÞ¼
b

2 cj j

� �b

f b;ðb= cj jþxÞ=2ð Þ�f b;1þðb= cj j�xÞ=2ð Þ½ �

ð31Þ

Approximations for these expressions can be derived using

fðx;1=2þeÞ	fðx;1=2Þ¼ð2x�1ÞfðxÞ (Truesdell 1950).

Then, following the same procedures used for the single-

sided case, we find

d3 	 ð2� 2�bÞd2 ð32Þ

NI3 	 1þ b
X1
j¼2

2ð1� 2�jÞfðjÞ
j

Bðmþ j; nÞ
Bðmþ 1; nÞ ð33Þ

As such, the leading parameter dependencies are identical

to the single-sided cases. This shows that the conclusions

above are robust to the inclusion in the model of weakly

beneficial substitutions.

Single-Sided Lognormal Distribution

The gamma distributions investigated above are flexible

and widely used. They also have limited theoretical justi-

fication, arising from simple models of selection on

quantitative traits (Martin and Lenormand 2006; Gu 2007a,

b). But a theoretical case can also be made for other

0 2 4 6
log10(|γ|)

−6

−4

−2

0
 ln

( d
2
/µ

t)

Divergence

β = 1

β = 0.5

β = 0.25

β = 0.1

log10(|γ|)

−9

−7

−5

ln
( 

p
2 

/θ
 )

Polymorphism (m=1, n=8)

β = 0.1

β = 0.25

β = 0.5

β = 1

1.00

1.25

log10(|γ|)

N
I 2

Neutrality Index (m=1, n=8)

β = 0.1

β = 0.25

β = 0.5

β = 1

0 2 4 6

0 2 4 6

Fig. 1 Expected values of divergence, polymorphism, and the

neutrality index under the assumptions of the nearly neutral theory,

with deleterious selection coefficients drawn from a single-sided

gamma distribution, Eq. 14. Solid lines show exact results obtained

from Eqs. 11–13 and 17 and by numerical integration from Eqs. 10

and 20–22. Dashed lines show analytical approximations obtained

from Eq. 23, and from Eqs. 8 and 24, truncating the series expansions

after three terms in both cases. Results are shown for four different

values of the shape parameter, b, and are plotted as a function of the

mean absolute scaled selection coefficient, Eqs. 4 and 14
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distributions. For example, it follows from the central limit

theorem that normal or lognormal distributions might apply

if each mutant has many pleiotropic effects on independent

components of fitness (Sawyer et al. 2003; Loewe and

Charlesworth 2006).

There is also evidence from bioinformatic studies that

the gamma distribution might not be the most appropriate

choice. For example, Nielsen and Yang ((2003); Yang

et al. 2000) fitted various distributions to divergence data

from animal mitochondrial genes and found that the best-

fitting distribution was normal, with a class of invariable

sites (see also Sawyer et al. 2003). However, the normal

distribution was not a significant improvement over a

gamma with a shape parameter of b & 3, and the gamma

distribution generally approximates a normal when b 
 1

(although in this case our approximate results would not

apply).

A different conclusion was drawn by Loewe and

Charlesworth (2006), who fitted various distributions to

polymorphism data and estimates of the lethal mutation

rate from Drosophila. They found that a normal distribu-

tion could not adequately fit the polymorphism data and

that a gamma distribution regularly underpredicted the

lethal mutation rate. A lognormal distribution, by contrast,

gave a good fit to both kinds of data (although, again, its

improvement over the gamma was not formally

significant).

Because of the success of the lognormal distribution in

the study by Loewe and Charlesworth (2006), and to

investigate the robustness of the conclusions reached

above, we now examine expected levels of divergence and

polymorphism when scaled selection coefficients are log-

normally distributed.

The single-sided lognormal distribution is nonzero for

c\ 0 and in this range has the form

F4ðc; cj j; r2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2 cj j

p exp
½ln cj j � ln cj j� þ r2=2�2

2r2

 !
:

ð34Þ

We have parameterized this distribution with its mean, cj j;
but it is commonly parameterized with the mean of the

associated normal distribution, E½ln cj j� ¼ ln cj j � r2=2; or

in other ways (Loewe and Charlesworth 2006). The second

parameter, r2, which is the variance of the associated

normal distribution, functions like the shape parameter, b,

of the gamma distribution, with the coefficient of variation

and excess kurtosis both increasing with r2. In detail, we

have CV(cÞ ¼ (er2 � 1Þ1=2; and jðcÞ ¼ cj jðer2 � 1Þ
h i�4

ðe6r2 � 4e3r2 þ 6er2 � 3Þ; which, unlike the equivalent

expression for the gamma distribution, depends on the

mean as well as the shape parameter.

To understand the expected divergence under the log-

normal distribution, consider the following crude

approximation:

ln(d4=ltÞ 	 ln

Z 1

0

F4ðc; cj j; r2Þdc

� �

	 � ln cj j
r

ffiffiffi
2

p

r
1þ ln cj j � r2ffiffiffiffiffiffiffiffi

2pr
p

� �
þ const;

ð35Þ

where the constant is r=
ffiffiffiffiffiffi
2p
p

1� r=
ffiffiffiffiffiffi
2p
p� �

� ln2 (Fig. 2).

This approximation was obtained from Eq. 9 by treating

mutants with cj j\ 1 as strictly neutral, and all others as

severely deleterious, and then using a series expansion of

the complementary error function (Abramowitz and Stegun

1965).

Equation 35 shows that when ln cj j and r2 are very close

in value, then linear approximations relating ln(di/lt) to ln

cj j are quite similar in the gamma and lognormal cases,

with the shape parameters governing the slopes. But in the

lognormal case, this linear approximation will be accurate

over a very limited range of parameter space, and so the

slope of the relationship will vary with Ne in general. This

is confirmed in Fig. 2, where exact results are shown, with

r2 values chosen to match the curves in Fig. 1. In addition

to the curvature in the plots for the divergence and poly-

morphism, it is clear that the neutrality index does not

approach a constant value when selection coefficients are

lognormally distributed but, instead, continues to increase

with cj j; and therefore Ne.

Discussion

We have derived expressions for the expected levels of

divergence and polymorphism under the nearly neutral

theory, with the assumption that the distribution of scaled

selection coefficients is either gamma (containing only

deleterious mutants) or partially reflected gamma

(including back mutations of beneficial effect). These

results have been given in exact forms (Eqs. 17–21 and

29–31) which can be calculated rapidly and accurately,

without the need for numerical integration. Results have

also been presented in approximate forms (Eqs. 23–27 and

32–33), which show clearly the leading dependencies on

important parameters.

A particularly interesting result is the expected value of

the neutrality index, Eq. 13, which we have shown to be of

the form

NI 	 1þ bK ð36Þ

where b is the shape parameter of the gamma distribution

and K is a constant determined by the way in which

polymorphism is measured (see Eqs. 3, 24, and 33). Under
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these assumptions, therefore, the neutrality index is quite

independent of the strength and efficacy of selection on

deleterious mutants, and this has a number of interesting

implications.

For example, Presgraves (2005) studied a set of 98

protein-coding loci from Drosophila melanogaster and

showed that the neutrality index correlated negatively with

the local recombination rate. The level of recombination is

an important determinant of local Ne values, and so this

correlation was interpreted as an effect of within-genome

variation in the efficacy of selection (Presgraves 2005).

Equation 36 allows us to make a further inference, because

it shows that if deleterious mutations are gamma

distributed, with or without back mutation, then a corre-

lation between NI and Ne cannot be attributed to mildly

deleterious mutants alone. However, the correlation could

be explained if a nonnegligible fraction of substitutions

was strongly adaptive. (This can be shown by adding a

constant number of adaptive substitutions to the diver-

gence, before calculating the neutrality index as in Eq. 24

or 33). The conclusion that adaptive substitutions would

create a dependency of the neutrality index on Ne follows

under quite general conditions. For example, it does not

depend on the rate of adaptive substitution itself increasing

with Ne (Gillespie 2001), nor does it rely on the direct

effects of genetic hitchhiking – although both effects would

increase the reported correlation (Gillespie 2001). If Pres-

graves’ (2005) result does indeed imply high rates of

adaptive substitution, then this would be consistent with

other lines of evidence suggesting widespread adaptive

substitution in D. melanogaster (Eyre-Walker 2006).

It is important to note that Eq. 36, like all the results

above, assumed demographic stability, i.e., that Ne

remained constant throughout the divergence, and that

polymorphism is at equilibrium. However, because we

have derived the leading dependencies of all quantities on

Ne (Eqs. 25–27), our results can also show how certain tests

of the neutral theory are misled by demographic change.

Consider, for example, the behavior of the neutrality index

under a simple model of population expansion. Let us

assume that Ne took a single constant value for a proportion

0 B q B 1 of the total divergence time, and then increased

by a factor z, to zNe, for the remaining period. This higher

Ne value will then govern the levels of polymorphism

observed. Under this scenario, our results show that the

neutrality index is expected to be

NI 	 1þ bK

1þ qðzb � 1Þ : ð37Þ

It follows that when population expansion is substantial

and/or recent (i.e., when z is large or q close to unity), then

the neutrality index is expected to be \1. This has

important implications, because NI \ 1 is generally taken

as a signature of widespread adaptive substitution

(McDonald and Kreitman 1991; Rand and Kann 1996).

Such demographic artifacts in tests of positive selection

have previously been investigated numerically (e.g., Eyre-

Walker 2002; Charlesworth and Eyre-Walker 2007), but

Eq. 37 allows them to be studied analytically. In addition,

because Eq. 37 contains just three parameters, only one of

which (b) could be locus-specific, it could also be used to

test the hypothesis of population expansion in a formal

likelihood framework.

While expressions such as Eqs. 36 and 37 are pleasingly

simple, another conclusion of the present work is that such

relationships might not hold unless the distribution of
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Fig. 2 Expected values of divergence, polymorphism, and the

neutrality index when selection coefficients are drawn from a

single-sided lognormal distribution, Eq. 34. Solid lines show exact

results obtained by numerical integration, and the dashed line shows

the crude approximation of Eq. 35. Other details match Fig. 1
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mutant effects is adequately described by a gamma distri-

bution. In particular, we have shown that the behavior of

polymorphism and divergence is qualitatively different

when selection coefficients are lognormally distributed

(Fig. 2, Eq. 35).

It is important to ask, therefore, how far empirical evi-

dence allows us to choose between the various functional

forms. As has been mentioned, the lognormal was preferred

over the gamma distribution in the recent study by Loewe

and Charlesworth (2006), and its greater success was

attributed to its weightier tail, with a correspondingly

higher concentration of lethal mutants (Loewe and

Charlesworth 2006). This feature of the distribution has

wide empirical support, both from bioinformatic approa-

ches (Nielsen and Yang 2003; Sawyer et al. 2003; Loewe

and Charlesworth 2006), and from mutation accumulation

studies (Keightley 1994; Elena et al. 1998; Sanjuan et al.

2004; Eyre-Walker and Keightley 2007).

But high concentrations of severely deleterious mutants

can be modeled using distributions other than the lognor-

mal, by adding a parameter such as f that appears in Eqs. 11

and 12 (Sawyer et al. 2003; Nielsen and Yang 2003; Eyre-

Walker et al. 2006). And while less elegant than fitting a

continuous distribution to all mutants, this approach may be

more realistic, as direct studies have sometimes found the

distribution to be bimodal, containing peaks of both weakly

and strongly deleterious effects (Elena et al. 1998; Sanjuan

et al. 2004; Eyre-Walker and Keightley 2007). Further-

more, Nielsen and Yang (2003) and Eyre-Walker et al.

(2006) found that the inclusion of such a parameter made

little difference to estimates of the gamma shape parameter,

b, obtained from divergence and polymorphism data.

However, the qualitative differences between Fig. 1 and

Fig. 2 cannot be attributed to differences in the proportion of

strongly deleterious mutants. Instead, these differences are

probably best explained by another feature of the lognormal

distribution: its suppression of probability density around the

origin, in the region of strict neutrality. Unlike the concen-

tration of effectively lethal mutants, empirical evidence of

this aspect of the distribution is much more equivocal. Loewe

and Charlesworth’s (2006) own method could not reject

models where a discrete class of strictly neutral mutants was

added to the lognormal, and experimental approaches have

limited power to resolve very small selection coefficients

(Eyre-Walker and Keightley 2007).

Because of this uncertainty, at present we have reason to

remain skeptical of any quantitative conclusion that relies

on the assumption that the distribution of selection coeffi-

cients can be well described by any single functional form

(Tachida 1996; Eyre-Walker 2002; Sawyer et al. 2003;

Loewe and Charlesworth 2006; Woodhams 2006; Eyre-

Walker and Keightley 2007). Clearly, we also require a

more detailed knowledge of the distribution of mutant

effects in nature. Numerical methods, such as those

reported here, combined with model selection techniques,

should aid progress toward this goal.
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