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a b s t r a c t

This work presents a new approach to Muller’s ratchet, where Haigh’s model is approximately mapped

into a simpler model that describes the behaviour of a population after a click of the ratchet, i.e., after

loss of what was the fittest class. This new model predicts the distribution of times to the next click of

the ratchet and is equivalent to a Wright–Fisher model for a population of haploid asexual individuals

with one locus and two alleles. Within this model, the fittest members of a population correspond to

carriers of one allele, while all other individuals have suboptimal fitness and are represented as carriers

of the other allele. In this way, all suboptimal fitness individuals are amalgamated into a single

‘‘mutant’’ class.

The approach presented here has some limitations and the potential for improvement. However, it

does lead to results for the rate of the ratchet that, over a wide range of parameters, are accurate within

one order of magnitude of simulation results. This contrasts with existing approaches, which are

designed for only one or other of the two different parameter regimes known for the ratchet and are

more accurate only in the parameter regime they were designed for.

Numerical results are presented for the mean time between clicks of the ratchet for (i) the Wright–

Fisher model, (ii) a diffusion approximation of this model and (iii) individually based simulations of a

full model. The diffusion approximation is validated over a wide range of parameters by its close

agreement with the Wright–Fisher model.

The present work predicts that: (a) the time between clicks of the ratchet is insensitive to the value

of the selection coefficient when the genomic mutation rate is large compared with the selection

coefficient against a deleterious mutation, (b) the time interval between clicks of the ratchet has,

approximately, an exponential distribution (or its discrete analogue). It is thus possible to determine

the variance in times between clicks, given the expected time between clicks. Evidence for both (a) and

(b) is seen in simulations.

& 2010 Elsevier Ltd All rights reserved.
1. Introduction

Muller’s ratchet is a random process that occurs in a finite
population of asexual individuals. It corresponds to the repeated
irreversible loss of the fittest class of individuals and results in
degradation of the fitness of a population over time. It can arise
from the combined effects of recurrent deleterious mutations, the
effective absence of beneficial (back) mutations, the absence of
recombination, and random genetic drift (Muller, 1964; Felsen-
stein, 1974).

In a finite population there is inherent randomness in the
contribution of different individuals to the next generation. When
the set of individuals with the smallest number of mutations (the
fittest class) makes no contribution to the next generation, it is
ll rights reserved.
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lost from the population and one click of Muller’s ratchet is said to
have taken place. The next fittest class then becomes the fittest
class. In the effective absence of both beneficial mutations and
recombination, each click of Muller’s rachet is irreversible. Clicks
of the ratchet randomly occur, and lead to the mean fitness of the
population decreasing over time. This process naturally leads to
the expectation that asexual species persist for shorter times than
broadly comparable recombining sexual species, in which parents
of suboptimal fitness may produce offspring of higher fitness than
either parent (Felsenstein, 1974; Maynard Smith, 1978).

Muller’s ratchet is believed to be relevant to a variety of
replicators that include: asexually reproducing organisms (Loewe
and Lamatsch, 2008); purely selfing organisms (Heller and
Maynard Smith, 1978; Loewe and Cutter, 2008); non-recombining
regions of the genome such as the Y chromosome (Rice, 1994;
Gordo and Charlesworth, 2000a, b; Bachtrog, 2008); endosym-
bionts (Moran, 1996; Rispe and Moran, 2000), and mitochondria
(Bergstrom and Pritchard, 1998; Loewe, 2006).
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In order to assess the relevance of Muller’s ratchet, to any
given biological system, it is necessary to determine the rate it
predicts for the accumulation of deleterious mutations. There
have been many approaches that attempt to do this (see, e.g.,
Söderberg and Berg, 2007; Rouzine et al., 2008; Etheridge et al.,
2008, and references in Loewe, 2006). Models that can predict the
operation of Muller’s ratchet with reasonable accuracy, over a
range of parameter values, are typically associated with one of
two parameter regimes associated with different behaviours of
the ratchet (Loewe and Hill, 2010). One parameter regime covers
the case where, at deterministic mutation selection balance (see
Haigh, 1978), the expected number of individuals in the fittest
class is larger than unity, Muller’s ratchet operates in a relatively
slow regime that is characterised by a large mean time between
clicks and also an appreciable level of variation in the time
between clicks. The accumulation of mutations in a population
occurs when the relatively improbable event that all individuals
in the fittest class fail to contribute to the next generation. Under
the slow regime, variants of Stephan et al.’s diffusion approxima-
tion of Haigh’s stochastic treatment (of Haigh’s model) produce
the most accurate predictions for the ratchet’s rate (Stephan et al.,
1993; Stephan and Kim, 2002; Gordo and Charlesworth, 2000a, b;
Etheridge et al., 2008). The other parameter regime occurs when
the expected number of individuals in the fittest class falls below
unity. Muller’s ratchet then operates in a relatively fast regime

that is characterised by a quasi-continuous accumulation of
mutations—which has been described as quasi-deterministic.
Here clicks are expected to happen with near deterministic
necessity before the system can equilibrate. In this regime the
speed of the ratchet can be reasonably described by the models
which deal with the lack of an approximate equilibrium between
mutation and selection. This includes the work of Gessler (1995),
who employed simulation and analytical approaches to the
problem and estimated how the distribution of mutations within
a population differs from a Poisson distribution, and the more
recent work of Rouzine et al. (2008), who modelled the ratchet as
a semi-deterministic combination of deterministic and stochastic
processes associated with a travelling wave. No approximation,
however, has yet been produced that accurately spans these two
distinct regimes of operation.

In the present work we present an approach to Muller’s ratchet
that differs from previous approaches. A single click of the ratchet
is treated as being describable by a simple Wright–Fisher model
of random genetic drift (Fisher, 1922; Wright, 1931). This entails
truncating Haigh’s model of Muller’s ratchet (Haigh, 1978) and
mapping it onto a Wright–Fisher model where just two muta-
tional classes are used to represent all different types of
individuals in a population. One of the mutational classes consists
of the fittest individuals in a population; the other class is an
amalgamation of all suboptimal fitness individuals. The resulting
Wright–Fisher model of the ratchet takes the same form in all
parameter regimes. It predicts the rate of the ratchet and allows
many statistical properties to be numerically calculated, for a
wide range of parameter values, without the need for simulation
and hence without the associated statistical errors. This approach,
however, does have some limitations and does have the potential
for improvement—as we point out below. We view the approach
presented here as a possible starting point for a uniformly valid
model for the rate of Muller’s ratchet.

The structure of this paper is as follows. We first introduce a
somewhat general model for Muller’s ratchet for an asexual
haploid population. Next, a truncated version of this model is
considered and parameters in the truncated model are explicitly
related to parameters in Haigh’s (1978) model of Muller’s ratchet.
In the remaining part of the paper the stochastic dynamics of the
truncated model are analysed and properties of the time between
clicks of Muller’s ratchet are obtained in three different ways: (i)
from the numerical solution of properties of a potentially large
matrix associated with the Wright–Fisher model, (ii) from a
diffusion approximation of the Wright–Fisher model, and (iii)
from individual-based simulations of a full model of Muller’s
ratchet. These three approaches are compared with each another
and with the previous approaches of Stephan and Kim (2002),
Gessler (1995) and Rouzine et al. (2008).

The model presented in this work provides an estimate of the
probability distribution for time intervals between clicks of the
ratchet, and hence allows the determination of statistics of time
intervals. Furthermore, under a wide range of parameter combi-
nations, the model predicts the rate of accumulation of deleter-
ious mutations from Muller’s ratchet that lie within one order of
magnitude of simulation results. These results include parameter
combinations from the fast and slow regimes of operation of the
ratchet described above. This work thus raises the possibility that
a single theoretical approach may exist for predicting the rate of
Muller’s ratchet that accurately covers both parameter regimes.
2. General model

Consider a population of haploid asexual individuals with
discrete generations, labelled t¼0,1,2,y. The census point in a
generation is taken to be the adult stage, after all selection has
occurred and immediately prior to reproduction. Many other
treatments, including Haigh’s treatment (Haigh, 1978), implicitly
census immediately after birth of offspring, before viability
selection has occurred (we discuss this further in Section 4 and
in Appendix A).

The lifecycle of the population is

Adults

k asexual reproduction with mutation;

k followed by the death of all adults

Juveniles

k viability selection and

k number regulation

Adults:

New mutations can occur at reproduction and we assume an
individual can carry a maximum number of Q mutations. All
mutations are assumed to deleteriously affect viability but have
no effect on fertility, hence the expected number of offspring of an
adult is independent of their mutational load.

In a finite population, where N adults are maintained each
generation, the regulation of their number is assumed to occur by
a non-selective ecological thinning process that occurs after
viability selection has acted. It effectively corresponds to
randomly picking N individuals from the population, without
replacement, to constitute the adults of the next generation. The
chance an individual is picked is independent of the number of
mutations they carry.

The viability of a newly born individual is taken to be
determined solely by the number of the mutations they carry
(Haigh, 1978). This feature allows us to collect the population into
mutational classes. We use Xk(t) to represent the proportion or
relative frequency (henceforth abbreviated to frequency) of all
adults carrying k mutations in generation t, where k¼0,1,y,Q.
Since the Xk(t) are frequencies they sum to unity at all times:PQ

k ¼ 0 XkðtÞ ¼ 1.
For a very large (i.e., effectively infinite) population, the

changes of Xk(t) over time are essentially deterministic in
character. In such a case we can write

Xkðtþ1Þ ¼ BkðXðtÞÞ, k¼ 0,1,2, . . . ,Q , ð1Þ
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where X(t) denotes the vector X(t)¼(X0(t),X1(t),X2(t),y, XQ(t)) and
the function Bk(X) incorporates the frequency changes of
k-mutant adults that are caused by selection and mutation.

To derive the precise form of Eq. (1), let vj denote the relative
viability of an individual with j mutations and let Mk,j

(Q) be the
probability that an offspring has k mutations, given its parent had
j mutations. Then the frequency of k-mutant offspring produced
by adults of generation t is

PQ
j ¼ 0 MðQ Þk,j XjðtÞ. After selection, the

frequency of these individuals is proportional to vk

PQ
j ¼ 0 MðQ Þk,j XjðtÞ.

It follows that Bk(X) is given by

BkðXÞ ¼
vk

PQ
j ¼ 0 MðQ Þk,j XjPQ

i,j ¼ 0 viM
ðQÞ
i,j Xj

, k¼ 0,1,2, . . . ,Q : ð2Þ

We note that while Eq. (1) describes the change of frequencies
over time of different mutational classes, it has the same
mathematical form as a different model, namely a one locus haploid

asexual population with Q different alleles. In this one locus model,
alleles are denoted as Ak, i.e., labelled by k where k¼0,1,y,Q. The
quantity Xk(t) then has the interpretation as the frequency of the
k’th allele in generation t, while the vk characterise the viability of
different alleles and the Mk,j

(Q) contain their probabilities of
mutation.
3. Truncated model: Q¼1

The analysis presented in this work is based upon a truncated
model which is a simplification of the somewhat general model
presented in the previous section. We shall proceed by introdu-
cing the truncated model and first describe the deterministic
behaviour it exhibits when population size is effectively infinite.
We then investigate the stochastic behaviour the model exhibits
when population size is finite.

The truncated model follows from the model of Section 2 by
restricting the number of mutational classes to two. We achieve
this by taking Q¼1 in Eqs. (1) and (2). Since there are two

mutational classes, the truncated model is mathematically
equivalent to an effective model for asexual haploid individuals
with one locus and two alleles, namely A0 and A1.

The two mutational classes within the truncated model are as
follows.

(i) The set of all adults that are mutation free constitute one
mutational class. More generally, we take this mutational class to
consist of all individuals in a population with the smallest number
of mutations and hence the highest fitness and shall refer to it as
the fittest class. We represent members of this class, within the
effective one locus model, as carriers of the A0 allele.

(ii) The set of all adults carrying any non-zero number of
mutations make up the other mutational class. More generally,
we take this mutation class to consist of all suboptimal fitness
individuals in the population, i.e., all individuals carrying more
mutations than members of the fittest class and shall refer to it as
the suboptimal class. We represent its members, within the
effective one locus model, as carriers of the A1 allele. In this way
all individuals, who carry more mutations than members of the
fittest class, are amalgamated, into a single class.

The frequency of the fittest class in generation t is X0(t) while
that of the suboptimal class is 1�X0(t). The absence of back
mutations means that in the truncated model, mutation is only in
one direction: from the fittest class to the suboptimal class. Let m
be the probability that an offspring of a mutation-free (i.e., fittest)
adult has a non-zero number of mutations. Mutation is then
characterised in the truncated model by the mutation rates Mk,j

(Q) of
Eq. (2) being replaced by a truncated set of mutation rates, Mk,j

(1),
which have the form Mð1Þ0,0 ¼ 1�m, M0,1

(1)
¼0, Mð1Þ1,0 ¼ m and M1,1

(1)
¼1.
The relative viability of individuals in the fittest class is v0¼1
while individuals in the suboptimal class have a relative viability
of v1 ¼ 1�s. The parameter s can be thought of as an effective
selection coefficient associated with deleterious mutations in the
truncated model; s lies in the range 0 to 1. We shall make the
fittest class the focus of our attention and hence shall adopt a
more intuitive notation by writing Xfittest(t) for X0(t):

XfittestðtÞ ¼ X0ðtÞ ¼
frequency of the fittest

adults in generation t:

(
ð3Þ

In the next section we relate the parameters in the truncated
model to the parameters in Haigh’s model of the ratchet (Haigh,
1978).

Using the forms given above for Mk,j
(1) and vj in the truncated

model, the terms of Bk(X) (Eq. (2)), with Q¼1, are B0ðXÞ � B0ðX0,X1Þ

and B1(X)¼1�B0(X) and these can be explicitly found. Because
frequencies of the two mutational classes add to unity, we can
eliminate X1 in B0(X0,X1) and write this just as a function of X0,
namely B0(X0,1�X0). We thus define b(x)¼B0(x,1�x) and

bðxÞ ¼
ð1�mÞx

1�sþsð1�mÞx
: ð4Þ

It then follows from Eqs. (1), (3) and (4) that in an effectively
infinite population, the frequency of the fittest class, Xfittest(t),
obeys the deterministic equation Xfittest(t+1)¼b(Xfittest(t)). When
mos this equation has the equilibrium solution

X̂ fittest ¼
s�m

sð1�mÞ: ð5Þ

In a large (effectively infinite) population, any non-zero frequency
of the fittest class will approach the polymorphic equilibrium of
Eq. (5).

As we next show, when relating m and s to parameters in
Haigh’s Model, the condition mos automatically emerges.
4. Relating parameters

In the standard model of Muller’s ratchet (Haigh, 1978), there
is no upper limit to the number of mutations that an individual
can carry, hence the parameter Q (introduced in Section 2) is
infinite: Q ¼1. The mutations in Haigh’s model have a Poisson
distribution given by Mð1Þk,j ¼Uðk�jÞe�U=ðk�jÞ! where U is the
genomic mutation rate (the expected number of new deleterious
mutations in a newly born offspring). Furthermore, the relative
viability of individuals with k mutations is given by (1�s)k where
the selection coefficient s lies in the range 0 to 1.

A plausible way to relate parameters in the truncated model
(which has Q¼1) and Haigh’s model (which has Q ¼1) is to
ensure that:

(i) the probability of the fittest class undergoing mutation is
the same in each model;

(ii) the equilibrium frequency of the fittest class, in an infinite
population, is the same in each model.

We note that the probability of mutation of the fittest class is m
in the truncated model, and is 1�expð�UÞ in Haigh’s model. We
also note that in the truncated model, the frequency of the fittest
class in adults, in an infinite equilibrium population, is given by
Eq. (5), i.e., ðs�mÞ=½sð1�mÞ�. In Appendix A we show that in
Haigh’s model, the frequency of the fittest class in adults, in an
infinite equilibrium population, is expð�ð1�sÞU=sÞ. Combining
these results leads to

m¼ 1�expð�UÞ, ð6Þ
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s¼ 1�expð�UÞ

1�expð�U=sÞ
: ð7Þ

There are several points to note about these forms for m and s.
(a) When the genomic mutation rate, U, is small (U51), the

parameter m is also small and approximately equal to U. However,
since U or U/s need not necessarily be small, the parameters m and
s are not always small, and in some cases they may be close to
unity.

(b) When the ratio U/s is large (U=sb1), we have
sC1�expð�UÞ and in this regime, s changes appreciably with
U, but is quite insensitive to changes in s.

(c) From Eqs. (6) and (7), it follows that m=s¼ 1�expð�U=sÞ,
hence the above method of relating parameters in the two models
automatically yields m=so1. This is the condition required for the
truncated model to have a polymorphic equilibrium when
population size is effectively infinite. If the condition m=so1
did not hold then the analogue of an error catastrophe (Maynard
Smith, 1989, pp. 20–23) would occur in the truncated model,
where the fittest class would not be present at equilibrium in an
effectively infinite population.

There is an intuitive explanation why m=so1: In Haigh’s
model, the quantity s is a measure of how deleterious a single
mutation is. However, there can be an indefinitely large number
of deleterious mutations in Haigh’s model, hence selection against
deleterious mutations can become arbitrarily large and can
always exceed the ‘‘strength’’ of mutation (U). It is thus natural
that in the mapping from Haigh’s model to the truncated model,
the feature that ‘‘selection is stronger than mutation’’ directly
manifests itself.
0 1
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Fig. 1. The figure illustrates the distribution of the frequency of the fittest class,

Xfittest(t), over replicate populations. The figure was calculated from a Wright–

Fisher model describing two mutational classes, namely the fittest class of adults

and the class encompassing all suboptimal adults. The spike at x¼0 represents

populations where the fittest class has been lost by generation t. As time

progresses, the spike slowly grows in height, at the expense of the remainder of

the distribution, which describes non-zero values of the frequency of the fittest

class, and has a near quasistationary form. The part of the distribution describing

non-zero values of the frequency has a height which slowly decreases over time,

but apart from this maintains its shape.
5. Time of loss of the fittest class

We now consider population number to be regulated at a finite
value, via unspecified ecological processes, so that N adults are
present in the population each generation. We assume that the
number of offspring that are born and survive viability selection
are sufficiently large (bN) that both selection and mutation are
essentially deterministic processes (with negligible variation
around expected values). Given this, the principal place in the
lifecycle where randomness occurs is the ecological thinning of
the population to N individuals.

Thinning corresponds to sampling a population without
replacement. However, given that a sample (of size N) is drawn
from the much larger number of individuals that survive
selection, thinning is well approximated by sampling with
replacement. This means, in particular, that when the population
size is finite, the truncated model can be treated as a Wright–
Fisher model (Fisher, 1922; Wright, 1931) of haploid asexual
individuals with one locus and two alleles. We shall perform a
statistical analysis within the framework of such a model. This is
equivalent to following the fates of a very large number of
replicate populations and determining the probability distribu-
tion for the random time at which the frequency of the fittest
class of adults vanishes.

We note that in any replicate population, the frequency of
adults in the fittest class in generation t, namely Xfittest(t), is a
random variable that takes one of the particular values

xn ¼ n=N, n¼ 0,1,2, . . . ,N: ð8Þ

In different populations, Xfittest(t) may have different values. If
Xfittest(t) equals xn in a particular replicate population then there
are n fittest individuals in that population and N�n individuals
who carry more mutations than individuals in the fittest class.

When the fittest class is lost, its frequency, Xfittest(t), achieves
the value zero, and a click of the ratchet is said to have taken
place. Our approach to determining the distribution of times
between clicks of the ratchet is non-standard since we describe
the behaviour of a population immediately after a click of the
ratchet. That is, immediately after the time where loss of (what
was) the fittest class has occurred, and offspring of some
suboptimal adults have just been promoted to the fittest class.

We measure time so that a click of the ratchet occurred
immediately prior to time t¼0. Thus in our approach, all replicate
populations possess one or more individuals in the (newly
promoted) fittest class at time t¼0. There are then two processes
that occur to the distribution (over all replicate populations) of
the frequency of the fittest class.

The first process is relaxation over time of the distribution of
the frequency of the fittest class. Immediately after a click of the
ratchet, the distribution of the frequency of the fittest class will
not have an equilibrium form. We assume, however, that this
distribution relaxes to a characteristic form, and during the
time of establishment of this characteristic form, a negligible
fraction of all replicate populations lose the fittest class. This is a
simplifying assumption that neglects the time of relaxation of the
distribution of the frequency of the fittest class, compared with
the mean time it takes to lose the fittest class. The characteristic
form of the distribution of the frequency of the fittest class that is
achieved after relaxation is termed a quasistationary distribution

(Darroch and Seneta, 1965). Formally, the quasistationary dis-
tribution can be defined as the equilibrium probability distribu-
tion of the frequency of the fittest class, when loss of the fittest
class cannot occur.

The next process that occurs is loss of the fittest class. As time
proceeds, loss of the fittest class occurs in some of the replicate
populations, and this is signalled by the occurrence (and growth)
of a spike in the distribution of the frequency of the fittest class at
the value zero (i.e., at Xfittest¼0). The overall distribution of Xfittest

then has a spike at Xfittest¼0 and the distribution of non-zero

values of Xfittest has a quasistationary shape, albeit with a reduced
amplitude. Fig. 1 illustrates this situation.

In many regards, the quasistationary distribution plays the role
of an equilibrium distribution of all non-zero values Xfittest.

In Appendix B, we give details of the stochastic loss of the
fittest class in terms of a Wright–Fisher model. To determine the
expected time of loss of the fittest class (and the relaxation time),
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we introduce a column vector v and a matrix w that originate in
the Wright–Fisher model underlying the problem. The vector v
contains the probabilities of transitions of non-zero values of
Xfittest to loss of the fittest class (i.e., to Xfittest becoming zero); the
matrix w contains the probabilities of transitions between all
different non-zero values of Xfittest (see Appendix B for details).
The elements of v and w are given by

vn ¼ ½1�bðxnÞ�
N

wn,m ¼
N

n

� �
½bðxmÞ�

n½1�bðxmÞ�
N�n

9>=
>;n, m¼ 1,2, . . . ,N, ð9Þ

where b(x) is given in Eq. (4) and ðNnÞ ¼N!= ðN�nÞ!n!½ � denotes a
binomial coefficient.

The quasistationary distribution is a column vector, which we
write as q̂. It contains the probabilities of all non-zero values of
Xfittest. The quasistationary distribution is straightforward to find,
using numerical packages, since it is the right eigenvector of the
matrix w associated with the largest eigenvalue; it is normalised
to unity:

PN
n ¼ 1 q̂n ¼ 1.

The random time of loss of the fittest class, which is identified
with the time of a click of the ratchet, is written as Tclick. This has a
distribution which is shown in Appendix B to be approximately
that of a geometric random variable. Such a distribution is the
discrete analogue of an exponential distribution.

With a prime,
0

, denoting transpose of a matrix, and with t¼1,
2, 3, y, the distribution of Tclick is approximately given by
ProbfTclick ¼ tg ¼ v0q̂ð1�v0q̂Þt�1. Such a distribution is fully char-
acterised by its expected value, which is the mean time of loss of
the fittest class, and this is given by

E½Tclick� ¼ ðv
0q̂Þ�1: ð10Þ

This result is intuitively reasonable. Loss of the fittest class occurs
at a characteristic rate of v0q̂ which is determined by transitions
of Xfittest to the value zero, which are governed by the vector v of
Eq. (9), and these transitions occur from the characteristic
distribution of the problem, namely the quasistationary
distribution, q̂.

The mean value of the relaxation time is given by
Trelax ¼ 1=lnðl1=l2Þ where l1 and l2 are eigenvalues of the matrix
w of largest and next largest size. The eigenvalue l1 is always
positive (see Appendix B) and l2 is assumed real and positive, and
found to be so in all cases investigated.
6. Diffusion approximation

The expression given in Eq. (10) for E[Tclick] is straightforward
to evaluate using standard numerical methods. There are,
however, practical limits on the largest population size that can
be considered (determined by computer memory size). We
present results from a diffusion approximation, since solving a
diffusion equation is often more tractable than dealing with very
large matrices. The diffusion approximation has been found to be
of great utility in problems associated with random genetic drift
(Kimura, 1964).

In Appendix C we provide details of a diffusion analysis that
captures all of the features present in Fig. 1, namely a description
of all values of the frequency of the fittest class, including the
value zero, by ensuring that probability is conserved for all times
(cf. McKane and Waxman, 2007).

Under a diffusion approximation it is assumed that 1/N is a
small parameter and both frequencies and time are approximated
as continuous quantities. This results in the quasistationary
distribution, q̂, being replaced by a probability density of a
continuous random variable—which represents the frequency of
the fittest class. We write this probability density as q(x).
A diffusion approximation leads to the time of loss of the fittest
class, Tclick, having, approximately, an exponential distribution.
The quantity ðv0q̂Þ�1, appearing in Eq. (10), is replaced in a
diffusion approximation by 2N[q(0)]�1 and the expected time of
loss of the fittest class is

E½Tclick�C2N½qð0Þ��1: ð11Þ

The diffusion analysis given in Appendix C yields an equation
for q(x) that is numerically solved for q(0). Table 1 indicates that
the diffusion results for E[Tclick] typically differ by only a few
percent from those of the Wright–Fisher model, with one
exception: N¼100, U¼1 and s¼0.5. For these parameter values,
gene frequency changes/generation are not small, and a diffusion
approximation would not be expected to hold. However, even in
this case, Wright–Fisher and diffusion results differ only by a
factor � 3 in the mean time of loss of the fittest class.
7. Individual-based simulations

In addition to the analysis already presented, we have also
carried out individual-based simulations, employing methods
described elsewhere (Loewe, 2006). These were computed by
Simulator005, Project 1 of evolution@home, a global computing
system for evolutionary biology (Loewe, 2002, 2007). The
simulated model is equivalent to the model of Haigh (1978),
with several extensions. In short, individuals have multiplicative
fitness, discrete generations and the number of offspring
produced in their lifetime is drawn from a Poisson distribution.
The expected number of offspring is determined by the product of
(i) the maximal reproductive capacity, (ii) an individual’s multi-
plicative fitness and (iii) a density dependent thinning factor,
which depends on the fitnesses of all individuals of the previous
generation and a fixed carrying capacity of the habitat, which
equals the expected value of population size. Additionally, each
mutation causes a fixed reduction in viability, by a factor 1�s, and
the number of new mutations/generation is Poisson distributed,
with expected value U. A click of the ratchet is recorded at the
time when all individuals in the population have more deleterious
mutations than the last recorded best class. The first click of a
population is not used in click-time estimates, since the popula-
tion may not be in a typical state at the time of this click. The click
times reported here are effective click times, which we define as
(click time)/(click size), where ‘‘click size’’ denotes the number of
mutational classes that are skipped at a click. For most clicks, click
size is 1, but for high mutation rates and low selection
coefficients, larger click sizes do occur. During a simulation,
properties of all ratchet clicks are recorded as a stream, which is
also simultaneously evaluated to compute some descriptive
statistics, such as the arithmetic mean of all effective click times,
or the mean of various phases of a click. This mean is then treated
as one ‘‘single-run-result’’. To obtain the values reported here, we
considered the set of all such single-run-results that were
available in the evolution@home database for that parameter
combination. For each of these sets we report the arithmetic mean
and the approximate 2.5% and 97.5% percentiles in Table 1.
Naturally, the percentiles for this distribution of averages are
expected to be narrower than the corresponding percentiles for
the distribution of individual click times themselves.
8. Comparison of results

In Table 1 we give results for the mean time between clicks of
the ratchet, under: (i) the Wright–Fisher model, (ii) a diffusion
analysis of this model, (iii) individual based simulations of a full
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Table 1
This table gives the speed of the accumulation of mutations by Muller’s ratchet, as computed from various different approaches, namely (i) a numerical treatment of a Wright–Fisher model for an asexual population with a single

haploid locus with two alleles, (ii) a diffusion analysis of this model and (iii) individually based simulations of a full model of Muller’s ratchet.

Data set Ratchet parameters Wright Fisher Diffusion Error Simulation E[Tclick]/

SGmethod

E[Tclick]/

Rmethod

N U s E[Tclick] 2.5% P 97.5% P Trelax E[Tclick] 2.5% P 97.5% P EoM (Diff/Sim) E[Tclick] 2.5% P 97.5% P Expect E�2SE Expect E+2SE Clicks/runs

1 100+ 1 0.5 567,734 14,374 2,094,302 4 1,753,961 44,406 6,470,151 3.51*** 546 17 1033 251 840 757/55 360/S 12.67

2 100 1 0.1 17 0 63 6 17 0 63 0.75 3 2 4 2 4 4061/60 3.3/G 3.30

3 100 1 0.005 17 0 63 6 17 0 63 1.06* 1 1 2 1 2 15,360/40 1.2/G 1.31

4 100+ 0.1 0.1 526 13 1940 19 539 14 1988 �0.08 643 575 737 538 747 1200/8 472/S 65.54

5 100+ 0.1 0.05 72 2 266 18 72 2 266 0.04 66 53 74 56 76 8591/51 70/S 41.30

6 100 0.1 0.005 46 1 170 16 46 1 170 0.48 15 14 16 14 17 9811/24 25/G 15.51

7 100+ 0.05 0.1 16,539 419 61,010 19 18,261 462 67,362 �0.02 19,290 11,240 29,020 8942 29,638 139/10 3557/S 133.14

8 100 0.05 0.01 69 2 255 23 69 2 255 0.23 41 36 45 36 45 13,083/40 33/G 40.02

9 100 0.05 0.001 66 2 243 23 66 2 243 0.42 25 23 27 23 27 16,689/33 32/G 23.86

10 1000+ 0.1 0.05 1226 31 4523 69 1138 29 4198 �0.60 4568 3737 5342 3963 5173 40,423/177 3595/S 126.73

11 1000 0.1 0.01 135 3 497 52 135 3 498 0.59 35 32 38 31 39 13,785/43 100/G 33.04

12 1000 0.1 0.001 135 3 496 52 135 3 498 0.96 15 14 16 14 16 17,757/33 16/G 14.72

13 1000+ 0.01 0.01 3695 94 13,630 192 3587 91 13,234 �0.25 6359 5574 7249 5494 7224 39,361/182 4724/S 655.42

14 1000+ 0.01 0.005 673 17 2482 174 665 17 2454 �0.03 717 652 785 645 789 15,779/40 701/S 413.04

15 1000 0.01 0.001 442 11 1632 162 441 11 1626 0.37 189 178 203 172 206 25,054/50 1000/G 189.94

16 1000+ 0.005 0.01 89,160 2257 328,901 205 86,342 2186 318,506 �0.28 164,300 53,960 353,600 121,960 206,640 9035/150 35,567/S 1331.35

17 1000+ 0.005 0.001 657 17 2425 231 654 17 2414 0.19 421 395 449 381 462 17,280/40 1166/S 400.17

18 1000 0.005 0.0001 650 16 2398 230 647 16 2388 0.42 246 228 267 223 269 12,304/27 435/G 238.58

19 5000+ 0.5 0.1 230 6 850 64 226 6 835 0.13 166 97 198 136 196 12,238/101 280/S 32.77

20 5000 0.5 0.05 145 4 535 57 146 4 539 0.98 15 11 18 13 18 7622/48 Err/G 13.79

21 5000 0.5 0.01 145 4 534 56 145 4 537 1.49* 5 4 5 4 5 14,972/38 5/G 4.82

22 5000+ 0.05 0.01 456 12 1680 166 455 12 1678 0.28 240 216 260 211 268 178,368/647 256/S 144.60

23 5000 0.05 0.005 415 11 1532 162 415 11 1532 0.67 89 84 95 81 97 265,516/577 Err/G 81.66

24 5000 0.05 0.001 415 11 1531 162 415 11 1531 1.04* 38 36 40 35 41 64,485/123 50/G 38.28

25 5000+ 0.01 0.005 3049 77 11,246 439 3025 77 11,158 �0.26 5565 4581 6276 4858 6272 35,959/145 6145/S 893.31

26 5000 0.01 0.001 939 24 3465 360 939 24 3463 0.51 292 273 308 265 318 72,576/148 Err/G 280.67

27 5000 0.01 0.0005 939 24 3464 360 938 24 3462 0.65 208 195 222 190 227 48,959/98 500/G 207.98

28 5000+ 0.005 0.005 192,123 4864 708,719 550 190,172 4815 701,522 �0.64 833,700 42,530 1,442,000 369,817 1,297,583 323/25 239,722/S 2255.71

29 5000+ 0.005 0.001 1386 35 5111 514 1384 35 5107 0.25 786 729 838 713 859 52,112/112 1275/S 676.04

30 5000 0.005 0.0005 1349 34 4976 510 1348 34 4973 0.45 483 447 515 438 527 49,394/104 Err/G 475.26

31 10,000+ 0.5 0.1 411 10 1516 95 396 10 1460 �0.31 805 448 1252 518 1091 20,666/655 1460/S 42.85

32 10,000 0.5 0.05 205 5 756 80 207 5 763 1.04* 19 15 22 16 22 7603/48 6.7/G 16.17

33 10,000 0.5 0.001 204 5 753 80 206 5 761 1.83* 3 3 3 3 3 18,291/32 2.6/G 2.82

34 10,000+ 0.01 0.005 9393 238 34,650 667 9249 234 34,117 �0.59 35,580 13,700 54,440 28,423 42,737 4251/43 35,955/S 1267.33

35 10,000 0.01 0.001 1313 33 4843 508 1312 33 4840 0.57 353 332 370 321 385 78,183/163 333/G 330.44

36 10,000 0.01 0.0001 1312 33 4840 508 1312 33 4838 0.94 150 141 160 136 163 22,340/44 192/G 147.24

The table also summarises key results from other approaches. The parameters N (¼Ne¼ effective population size), U (genomic deleterious mutation rate/individual/generation) and s (deleterious selection coefficient) determine

all other columns, which contain results of the various approaches. Combinations of input parameters that lead to Nexpð�U=sÞ41 (cf. Haigh, 1978) are marked with a ‘‘+’’.

The column headings are as follows.

E[Tclick] gives the arithmetic mean of the effective number of generations between individual clicks that are expected under a Wright–Fisher/diffusion model or as observed in simulations.

2.5% P and 97.5% P denote the lower and upper percentiles P of the distribution of click times. Note that percentiles refer to the distribution of individual click times in the Wright–Fisher and Diffusion columns, as computed using

Eq. (13), but in the Simulation column, the percentiles refer to the distribution of mean click times, where each mean is an average over all clicks observed during a single run.

Trelax gives the mean time required for the distribution of replicate populations to relax to a quasistationary distribution.

‘‘Simulations’’: the combined number of observed clicks; the number of simulation runs in which these clicks were observed are given in a separate column. The number of clicks per simulation was not constant but usually

similar.

‘‘Expect E72SE’’ : specify, approximately, the percentiles that would be expected in the two previous columns based on the observed E[Tclick] and our theoretical result that the distribution of click times is approximately

exponential.

SGmethod and Rmethod give the predicted click times in generations as computed by previous approaches, where (S) refers to Stephan’s diffusion approximation, (G) to Gessler’s simulation/analytic method and (R) to the travelling

wave approximation of Rouzine et al. (2008, their equation 36). We present the results of Stephan and Kim (2002) and Gessler (1995) in a strictly complementary manner; when Nexpð�U=sÞ41 we give the result of Stephan and

Kim (2002), and when Nexpð�U=sÞo1 we give the result of Gessler (1995). The notation ‘‘Err’’ indicates numerical errors that prevented the automated computation of results in our implementation.

‘‘Error’’: the error of magnitude (EoM) between the diffusion approximation of the Wright–Fisher model and the mean click time as observed in simulations. The quantity EoM is defined by log10(E½Tclick�diffusion=E½Tclick�simulation).

Each order of magnitude in discrepancies between predictions and observations is highlighted by one star (*).
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model of Muller’s ratchet and (iv) previous results. The results are
illustrated in Fig. 2, which compares the performance of the
various approaches for a number of selected parameter
combinations, and provides an overview of the results in Table 1.

In order to compare the predictions of the model introduced
here with simulation results, the error of magnitude (EoM) is
calculated. The EoM is a measure of agreement of quantities that
cannot become negative, but can span many orders of magnitude
(Loewe, 2007). An EoM of +1 (�1) indicates that the model
predictions for a click time are 10 times faster (10 times slower)
than those observed in simulations.

The methods presented here are the first to generate reason-
ably accurate predictions across the slow and the fast regimes of
Muller’s ratchet (which correspond to parameter regions that are
separated by the point where the expected number of individuals
in the fittest class is unity). In Table 1 most of the mean click
times obtained from our model are within one order of magnitude
of simulated values (jEoMjo1). The expected click times that
overestimate the simulation click times belong to both Stephan’s
regime (data sets 1, 5, 17, 19, 21, 22, 29) and Gessler’s regime
(data sets 2, 3, 6, 8, 9, 11, 12, 15, 18, 21, 24, 27, 32, 33, 35, 36).

We note that the approximations presented here provide more
than just point estimates; they allow estimation of arbitrary
percentiles. These often overlap with the percentiles of the set of
mean effective click times observed in simulations, even though the
latter percentiles are technically different from the analytical
approximations, which give broader percentiles for the individual
click times. (The simulations give the percentiles of the average click
time, as observed in a simulation with many clicks.) This leads to
the expectation that the simulated percentiles in Table 1 should be
smaller than the analytically percentiles, which is indeed the case.

One prediction of Appendices B and C is that the click time-
intervals of Muller’s ratchet are approximately exponentially
distributed. To our knowledge this prediction is new and we
approximately test it using our simulation results. To this end, we
compare two independent approximate estimates of 95% percen-
tiles of the mean click time. One estimate predicts percentiles
from an exponential distribution based on the mean click time
observed in our simulation results and the number of observa-
tions. The other estimate observes percentiles from repeated
simulations, where each simulation contributes one observation
of mean click time. We assume that errors associated with
estimating the mean follow a normal distribution, thus 95%
percentiles can be approximated by twice the standard error SE.
We derive SE predictions from the average number of observed
clicks/simulation (see Table 1) and an estimate of the mean,
which equals the standard deviation under the assumption of an
exponential distribution. We thus have

SE½Tclick� � E½Tclick�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
clicks=runs

q
, ð12Þ

where the corresponding quantities are reported in Table 1. The
predicted approximate 95% quantiles are often very close to
results from simulations. Both values are usually correct within a
factor of two, the only exceptions are the lower bounds in data
sets 1 and 28, and the lower bounds in data sets 16 and 34 are
borderline. Inaccuracies are probably due to noise and the fact
that not all runs observed an equal number of clicks, rendering
Eq. (12) only approximate. Previous observations of Muller’s
ratchet confirm our results. In a small meta-analysis we estimated
the coefficient of variation (CV ¼ stdev/mean) from reported
means, standard errors and numbers of observed clicks for
previous simulation studies (Gordo and Charlesworth, 2001;
Gessler, 1995; Stephan et al., 1993; Haigh, 1978; Charlesworth
and Charlesworth, 1997). Assuming that such an analysis is
possible, we find that out of 165 reported parameter combinations
that we analysed, 27 (or 16%) have CV42 and 11 (or 7%) have
CVo0:5. The resulting percentages are not substantially different
from those in our results and again might say more about
inherent noise and the difficulties of the estimation procedure
than about true deviations. As a result, from this work we can
conclude that the variance of the click time of Muller’s ratchet is
now reasonably well understood for a majority of parameter
combinations and much easier to predict from a known mean
click time than the mean itself. More detailed analyses of the
minority of outliers might eventually reveal additional insights
into the ratchet mechanism.
9. Discussion

In this work, we have presented a new approach to computing
the speed of Muller’s ratchet, by relating it to a one locus Wright–
Fisher model for a haploid asexual population. Direct analysis of this
model reduces to employing numerical linear algebra to solve a
matrix equation. An approximate approach uses a diffusion
approximation, based on the probability conserving diffusion
approach of McKane and Waxman (2007). Both approaches perform
reasonably well over a broad range of parameters, as can be seen
from comparisons with individual-based simulations of a some-
what full model of Muller’s ratchet obtained from the evolution@-
home global computing system (Loewe, 2006, 2007). Our
theoretical results show that approximately the time intervals
between clicks of Muller’s ratchet are exponentially distributed.
This finding is confirmed with reasonable accuracy by our
simulations as well as a small meta-analysis of previous simulation
results, and makes it possible to estimate the percentiles of click
times of Muller’s ratchet from the expected time between clicks,
E[Tclick]. We can compute Px[Tclick], the x-th percentile of click time,
from the known quantile function of the exponential distribution:

Px½Tclick� ¼ E½Tclick� � log
1

1�x

� �
: ð13Þ

Since predicting the mean speed of Muller’s ratchet is notoriously
difficult, it would be very surprising if the approach presented
here is capable of perfect predictions. Indeed, given the difficulties
of predicting click times, which can vary over many orders of
magnitude, it is surprising how often the approach presented
agrees with simulations within one order of magnitude.

There is generally very good agreement between the Wright–
Fisher and its diffusion approximation. This makes it clear that the
Wright–Fisher model is robust to the approximation of frequencies
and time as continuous quantities, which is made under a diffusion
approximation. Also, in the diffusion analysis the click time arises
from the quantity 2N/q(0), where q(x) is the quasistationary
distribution. Even in situations with very large times between
clicks, (small q(0)), the close comparison of Wright–Fisher and
diffusion results indicates that numerical errors are not a significant
problem. We can go further and say that the high level of
agreement of Wright–Fisher and diffusion results validate the
diffusion approximation over a broad range of parameters.

The one locus model introduced here is defined in a parameter
space of the mutation rate, m, and the selection coefficient, s.
The predictions, however, relate to a multilocus model whose
parameter space is the genomic mutation rate, U, and the
selection coefficient of deleterious mutations, s. The detailed
predictions rely on the mapping between ðm,sÞ and (U,s). The
mapping implicitly assumes a mutation-selection balance that is
not obviously attainable in the fast (quasi-deterministic) regime
of operation of the ratchet. There is thus the suspicion that
different—perhaps more realistic—mappings between ðm,sÞ and
(U,s) might improve the accuracy of the model. This suspicion is
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Fig. 2. The figure illustrates the dependency of the time between clicks of Muller’s ratchet on mutation rate, selection coefficient and population size. For numerical details

see Table 1. The first three bars (for each parameter value) represent, respectively, the 2.5%, 50% and 97.5% percentiles of the click time-intervals estimated from the

Wright–Fisher model using Eq. (13). The fourth bar gives the estimate from simulations, including a vertical bar to indicate the 2.5% and 97.5% percentiles of the mean click

time intervals, as estimated from the simulations specified in Table 1. We employ the results of Stephan and Kim (2002) and Gessler (1995) in a complementary manner to

determine the fifth bar: when Nexpð�U=sÞ41 we use the result of Stephan and Kim (2002), and when Nexpð�U=sÞo1 we use the result of Gessler (1995). The sixth bar

gives the result of Rouzine et al. (2008).
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somewhat strengthened by the observation that estimates in the
fast regime are typically larger than the simulation results, even
though the results are correct within an order of magnitude. There
may thus be room for further development in the mapping
between the different models. However, some features suggested
by the mapping do appear to be qualitatively correct. In
particular, the property of Eqs. (6) and (7), that when the ratio
of genomic mutation rate to selection coefficient is large (U=sb1),
the selection coefficient of the one locus model, s, is approxi-
mately equal to 1�expð�UÞ, i.e., insensitive to changes in s. This
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behaviour suggests that in such a regime, the time between clicks
of the ratchet is insensitive to the value of s and depends
primarily on U. Such a feature can be seen to roughly hold in
Table 1 when U=s\10.

There is also room for further improvement in our simplifying
approximation, of neglecting the time of relaxation of the
distribution of the frequency of the fittest class. This simplifying
approximation is equivalent to the approximation of the distribu-
tion of the frequency of the fittest class, immediately after a click
of the ratchet, by the quasistationary distribution. It may be
possible to determine a more realistic form for this initial
distribution, and hence obtain a more accurate distribution of
times between clicks of the ratchet.

An approximate method is useful if its computational
complexity remains within reasonable bounds. The solution of
the Wright–Fisher model depends on numerically solving a
matrix that grows with the square of population size. The
resulting computing demands do place some limits the applic-
ability of this method, however with modern packages (such as
Matlab), calculation for the largest population size that we have
considered here (10,000 individuals) takes approximately 30 min
on a standard desktop computer. The complexity of simulations
also grows with population size and simulations require many
runs to accurately estimate the distribution of click times. The
diffusion approximation may be a convenient half-way house,
since it agrees closely with the Wright–Fisher results and can be
rapidly computed for arbitrary values of N, U and s. For example,
the time required for calculation of the diffusion result for data set
36 (the final row of the table) was around 20 s.

To summarise, we believe three advances have been made in
this work. First, we have presented a simple model for Muller’s
ratchet that allows computation of the mean time between clicks,
with reasonable accuracy, over both the slow stochastic and the fast
quasi-deterministic regimes of operation of the ratchet. This makes
it plausible that a single theoretical approach can be developed to
determine the rate of the ratchet, to high precision, over all regimes
of operation, which is an important goal in the theoretical
development of integrated linkage theories in the population
genetics of mutations (Loewe and Hill, 2010). Second, this work
allows the approximate estimation of percentiles of the distribution
of click times of Muller’s ratchet, based on the mean time between
clicks. Lastly, the distribution of time intervals between clicks is
approximately exponential. These last two points could facilitate
better comparisons between analytical predictions and simulations.

The work presented here may be a reasonable starting point
towards further theoretical understanding of the rate of Muller’s
ratchet.
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Appendix A. Relative frequency of the fittest class in adults

In this appendix we establish a result for Haigh’s model of
Muller’s ratchet (Haigh, 1978) that is made use of in this work.
The result states that when population size is infinite, so there are
no stochastic effects, the relative frequency of the fittest class in

adults at equilibrium is expð�ð1�sÞU=sÞ, where s is the selection
coefficient against a deleterious mutation and U is the genomic
mutation rate.

To begin, let Xk(t) denote the frequency of adults with k

(¼0,1,2,y) mutations in generation t. For an infinite population,
Haigh’s model is summarised by Eqs. (1) and (2) of the main
text in which Q ¼1, the distribution of mutations is
Mð1Þk,j ¼Uðk�jÞe�U=ðk�jÞ!, and the viability of individuals with k

mutations is (1�s)k.
A simple way to proceed is to start with a mutation-free

population, and iterate Eq. (1) for Xk(t). We thus take X0(0)¼1
and set Xk(0)¼0 for ka0. After one iteration we find
Xkð1Þ ¼ ½ð1�sÞU�ke�ð1�sÞU=k! and this suggests that Xk(t) may have
the form of a Poisson distribution for general t. Accordingly, we
conjecture that XkðtÞ ¼ ½aðtÞ�kexp½�aðtÞ�=k! and find that Xk(t+1)
has, indeed, the same form as Xk(t) with aðtþ1Þ ¼ ð1�sÞ½UþaðtÞ�.
It follows that Xk(t) has the Poisson form conjectured, when
starting from a mutation-free population (which has að0Þ ¼ 0) and
the solution for aðtÞ is aðtÞ ¼ ð1�sÞU½1�ð1�sÞt�=s. The equilibrium
relative frequencies of adults are thus Xkð1Þ ¼ ½að1Þ�kexp
½�að1Þ�=k! where að1Þ ¼ ð1�sÞU=s. It may be verified that these
frequencies constitute a stationary solution of Eq. (1). The relative
frequency of the fittest class in adults at equilibrium, X0ð1Þ, is
thus expð�ð1�sÞU=sÞ.

For completeness, we shall derive a result that appears in
Haigh’s (1978) analysis. We note that the equilibrium relative
frequency of the fittest class in juveniles (i.e., in newly
born individuals who have not been subject to selection, and
carry no mutations) is derived from the distribution of adults,
by subjecting it to a round of mutation. The equilibrium
relative frequency of fittest juveniles is thus given byP1

j ¼ 0 Mð1Þ0,j Xjð1Þ � expð�UÞX0ð1Þ ¼ expð�U=sÞ. This is the stan-
dard result presented in the literature (Haigh, 1978).
Appendix B. Wright–Fisher model

In this appendix we determine properties of the model used in
this work to calculate the rate of Muller’s ratchet. The model is
equivalent to a Wright–Fisher model (Fisher, 1922; Wright, 1931)
for a population of haploid asexual individuals with one locus and
two alleles. Carriers of the A0 allele correspond to individuals in
the fittest class, while carriers of the A1 allele have more
mutations than individuals in the fittest class and correspond to
an amalgamation of all suboptimal fitness individuals. An
assumption underlying this work is that such a Wright–Fisher
model describes the behaviour of the fittest class of individuals
after one click of the ratchet, i.e., immediately after loss from the
population of (what was) the fittest class.

The total number of adults in a population is taken to be
ecologically regulated, so that in every generation, the number of
adults takes the finite fixed value N. The relative frequency of
adults in the fittest class, in generation t, is written as Xfittest(t).
B.1. Stochastic dynamics

The random dynamical behaviour of Xfittest(t) is given in a
Wright–Fisher model by Xfittest(t+1)¼R(t)/N where t¼0,1,2,y
and R(t), for different t, are independent binomial random
variables. If, in generation t, the frequency of the fittest class
has the particular value xn, then R(t) has the binomial distribution
Binom(N,b(xn)), where b(x) is given in Eq. (4). In this case the
expected value of Xfittest(t+1) is b(xn) and its variance is
b(xn)[1�b(xn)]/N.
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A Wright–Fisher model determines the statistics associated
with an infinite number of replicate populations. We write the
probability that Xfittest(t) has the value xn as Fn(t). The quantity
F0(t) is thus the probability that a population has no individuals in
the fittest class by generation t. Equivalently, we can say that F0(t)
is the probability that the fittest class has been lost from a
population by generation t.

The dynamical ‘‘Wright–Fisher’’ rule connecting the distribu-
tion of the frequency of the fittest class in different generations is
Fnðtþ1Þ ¼

PN
m ¼ 0 Wn,mFmðtÞ where Wn,m are elements of a matrix

of transition probabilities. The Wn,m are given by Wn,m ¼

ðNnÞ½bðxmÞ�
n½1�bðxmÞ�

N�n where ðNnÞ ¼N!= ðN�nÞ!n!½ � is a binomial
coefficient and b(x) is given in Eq. (4). The dynamical rule can
be written as the matrix equation

Fðtþ1Þ ¼WFðtÞ ð14Þ

where F(t) is a column vector with N+1 elements and W is the
matrix

W¼

W0,0 W0,1 � � � W0,N

W1,0 W1,1 � � � ^

^ ^

WN,0 � � � � � � WN,N

0
BBBB@

1
CCCCA: ð15Þ

A property of Eq. (14) that we shall shortly use is

XN

n ¼ 0

FnðtÞ ¼ 1: ð16Þ

This result holds for all t, and follows from

XN

n ¼ 0

Wn,m ¼ 1 ð17Þ

(which can be proved using the binomial theorem). Eq. (16)
is a statement that the total probability of all possibilities
(the occurrence of all possible values of Xfittest(t)) is maintained
by Eq. (14) and takes the value of unity in all generations.

B.2. Properties of the dynamics

It is convenient to go to a dynamical description where the
probability of loss of the fittest class by generation t, namely F0(t),
is treated separately to the probabilities of other values of
Xfittest(t) (cf. Waxman, 2009). To obtain this description, we write
the distribution F(t) in the form

FðtÞ ¼
F0ðtÞ

fðtÞ

 !
: ð18Þ

Here the column vector f(t) contains the probabilities of all non-
zero values of Xfittest(t). The elements of f(t) are written as fn(t),
with n running from 1 to N (i.e., n does not take the value zero).

In what follows, we use a prime,
0

, to denote the transpose of a
matrix, and write a column vector of N ones as

L¼ ð1,1, . . . ,1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N

Þ
0: ð19Þ

We then use Eq. (16) to write F0ðtÞ ¼ 1�
PN

n ¼ 1 fnðtÞ and express
this as

F0ðtÞ ¼ 1�L0fðtÞ: ð20Þ

Attention can now be focussed on f(t) which underlies the
behaviour of F0(t).

Proceeding, it may be verified that the matrix W can be written
in the form

W¼
1 v0

0 w

� �
: ð21Þ
Here 0 is a column vector with N vanishing components, v is a
column vector with N non-zero components given by vm¼W0,m

where m runs from 1 to N (and does not take the value zero). The
quantity w is an N�N matrix with elements wn,m¼Wn,m, where n

and m run from 1 to N (and also do not take the value zero).
Eqs. (14), (18) and (21) yield

fðtþ1Þ ¼wfðtÞ ð22Þ

F0ðtþ1Þ ¼ F0ðtÞþv0fðtÞ ð23Þ

Eq. (22) has the solution

fðtÞ ¼wtfð0Þ: ð24Þ

The principal long time behaviour of f(t) is exponential decay,
corresponding to an exponential decrease of the probability of
obtaining any non-zero frequency of the fittest class. To see this,
consider the probability of obtaining any non-zero value of the
frequency of the fittest class, namely

PN
n ¼ 1 fnðtÞ ¼ L0fðtÞ ¼

L0wtfð0Þ. Using a spectral decomposition of the matrix w (see,
e.g., Eq. (G11) in Bulmer, 1994), the leading large time behaviour
of L

0

wtf(0) is determined by the eigenvalue of w of largest
magnitude. We write this eigenvalue as l1 and, since all elements
of w are strictly positive, l1 is positive by the Perron Frobenius
theorem (see, e.g., Strang, 1988). It follows that the leading large
time behaviour of

PN
n ¼ 1 fnðtÞ is proportional to lt

1 which can be
written as exp½�tlogðl�1

1 Þ�. Hence
PN

n ¼ 1 fnðtÞ decays exponentially
on a timescale of 1=logð1=l1Þ. This result, combined with Eq. (20),
has the direct implication that at large times 1�F0(t) is
proportional to lt

1. This last result can be written as expð�t=tÞ
where t¼ 1=logð1=l1Þ and defines the characteristic timescale t
over which 1�F0(t) vanishes.

Using Eq. (20), we express Eq. (24) as

fðtÞ ¼ ½1�F0ðtÞ�qðtÞ, ð25Þ

where

qðtÞ ¼
wtfð0Þ

L0wtfð0Þ
: ð26Þ

For large t, the quantity q(t) is guaranteed to approach the right
eigenvector of the matrix w associated with the eigenvalue of
largest magnitude (see, e.g., Eq. (G11) in Bulmer, 1994). We write
this eigenvector as q̂ and

q̂ ¼ lim
t-1

wtfð0Þ

L0wtfð0Þ
: ð27Þ

This vector is normalised to unity in the sense L0q̂ �
PN

n ¼ 1 q̂n ¼ 1.
The vector q̂, which is a probability distribution, is unambigu-

ously defined (it is the right eigenvector of w associated with the
largest eigenvalue) and is straightforward to numerically deter-
mine. In the genetic drift literature the distribution q̂ has been
referred to as a quasistationary distribution (Darroch and Seneta,
1965) or in a diffusion approximation, as an asymptotic condi-
tional distribution (Ewens, 1965) and in a different context as a
conditional probability distribution (Nisbet and Gurney, 1982).
Here the word ‘‘conditional’’ refers to conditioning on the non-
absence (or loss) of the fittest class.

The largest eigenvalue of the matrix w, namely l1, can be
expressed in terms of q̂. At large t, we replace q(t) in Eq. (25) by q̂,
yielding fðtÞC ½1�F0ðtÞ�q̂. Using this result in Eq. (23) yields
F0ðtþ1ÞCF0ðtÞþ½1�F0ðtÞ�v0q̂ which can be written as 1�F0

ðtþ1ÞC ð1�v0q̂Þ½1�F0ðtÞ�. This has the solution 1�F0ðtÞpð1�v0q̂Þt

and since, at long times, 1�F0ðtÞplt
1 it follows, from comparison

of the time dependence of these two expressions for 1�F0(t), that
the largest eigenvalue of w is

l1 ¼ 1�v0q̂: ð28Þ
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B.3. Relaxation time

The characteristic time it takes q(t) (of Eq. (26)) to relax to the
quasistationary distribution, q̂, is given by

Trelax ¼ 1=lnðl1=l2Þ, ð29Þ

where l1 and l2 are largest and next largest eigenvalues of the
matrix w (l2 is assumed real and positive, and found so in all
cases considered). This form for Trelax follows from a spectral
decomposition (Bulmer, 1994) of Eq. (26). That is, we take the
distribution of Xfittest(0) to have the form fð0Þ ¼ aq̂þbr̂þ � � �
where a and b are constants and r̂ is the right eigenvector
of the matrix w associated with eigenvalue l2. It follows that
numerator on the right side of Eq. (26) is lt

1aq̂þlt
2br̂þ � � �, while

the denominator is lt
1aþlt

2cþ � � � where c is another constant.
Thus at long times, qðtÞC q̂ � ½1�ðl2=l1Þ

tc=a�þðl2=l1Þ
t r̂b=a. Since

ðl2=l1Þ
t can be written as expð�t=TrelaxÞ, this means that at long

times, q(t) deviates from q̂ by an amount proportional to
expð�t=TrelaxÞ and Trelax has the natural interpretation as the time
over which relaxation occurs to the quasistationary distribution.

There is also a characteristic timescale in Haigh’s model
of Muller’s ratchet, corresponding to the time, after a click of
the ratchet, that it takes the expected numbers of individuals in
different mutational classes to come close to their deterministic
equilibrium values (Haigh, 1978). However, this timescale is
distinct from Trelax, which is a relaxation time of the distribution
of the frequency of just the fittest class; the timescale of Haigh is
associated with the approximate approach to equilibrium of many
different mutational classes.

B.4. Time to loss

The distribution of non-zero values of Xfittest(0) is f(0); this
distribution describes all non-zero values of the frequency of the
fittest class immediately after a click of the ratchet. We shall take
f(0) to coincide with the quasistationary distribution, q̂. This, we
emphasise, is a simplifying assumption that neglects the time of
relaxation of q(t) of Eq. (26) to q̂. Writing the random time of loss
of the fittest class as Tclick, the simplifying assumption leads to
Tclick having taking the value t with probability

ProbfTclick ¼ tg ¼ ð1�l1Þl
t�1
1 , t¼ 1,2, . . . ð30Þ

which is a geometric distribution. It follows from Eq. (30) that the
expected time to loss of the fittest class is

E½Tclick� ¼
X1
t ¼ 1

tProbfTclick ¼ tg ¼ ð1�l1Þ
�1
¼ ðv0q̂Þ�1: ð31Þ

To establish Eq. (30), we note that since F0(t) is the probability
that the fittest class contains no individuals by generation t,
it means F0ðtÞ ¼ ProbfTclickrtg. Hence for t¼1, 2, y, the
probability that Tclick takes the particular value t is
Prob{Tclick¼t}¼F0(t)�F0(t�1). Using Eqs. (23) and (24) yields
ProbfTclick ¼ tg ¼ v0wt�1fð0Þ. Under our simplifying assumption,
that fð0Þ ¼ q̂, we have that wt�1fð0Þ ¼ lt�1

1 q̂ and since, by Eq. (28)
v0q̂ ¼ 1�l1, we have v0wt�1fð0Þ ¼ ð1�l1Þl

t�1
1 , and hence obtain

Eq. (30).
Appendix C. Diffusion approximation

In this appendix we use a diffusion approximation of the one
locus Wright–Fisher model used in this work to describe Muller’s
ratchet. This appendix may be omitted by readers who do not
require an in-depth knowledge of the technical details of this
approximation.
Under a diffusion approximation, frequencies are treated as
continuous quantities, and this results in the distribution of the
frequency of the fittest class being a probability density. Our
analysis establishes the quasistationary distribution (see
Appendix B) which is the characteristic description of non-zero
values of the frequency of the fittest class.
C.1. Equation for quasistationary distribution

Let f�fðx,tÞ denote the probability density, in a diffusion
approximation, of the frequency of the fittest class; this is an
approximation of the distribution F(t) appearing in Eq. (14). The
equation obeyed by fðx,tÞ is the forward Kolmogorov diffusion
equation (Kimura, 1964) for a haploid asexual population of size
N, namely @f=@t¼ @2½ð2NÞ�1xð1�xÞf�=@x2�@½bðxÞf�=@x with
bðxÞ ¼ bðxÞ�x where b(x) is given in Eq. (4). Thus

bðxÞ ¼
x½ðs�mÞ�sð1�mÞx�

1�sþsð1�mÞx : ð32Þ

The associated probability current density is jðx,tÞ ¼ �@½ð2NÞ�1

xð1�xÞf�=@xþaðxÞf.
We seek a complete solution of the diffusion equation, similar

to that obtained by McKane and Waxman (2007), where
probability is conserved at all times. We shall thus explicitly
include a term associated with loss of the fittest class. Following
the simplifying approximation made in Appendix B, we ignore the
assumed short time of relaxation of the solution. Thus with dðxÞ a
Dirac delta function and YðxÞ a Heaviside step function, we
directly look for a solution of the form

fðx,tÞ ¼ F0ðtÞdðxÞþ½1�F0ðtÞ�qðxÞYðxÞ: ð33Þ

In this equation q(x) is the quasistationary distribution and F0(t) is
the probability of loss of the fittest class from a population by
time t. It follows that F0ðtÞdðxÞ is the probability density associated
with loss of the fittest class. The other part of the solution, namely
½1�F0ðtÞ�qðxÞYðxÞ, describes all non-zero values of the frequency of
the fittest class. This part of the solution maintains its shape—i.e.,
its dependence on x, apart from a time-dependent amplitude of
1�F0(t). The explicit presence of the step function, YðxÞ, in
Eq. (33), incorporates the feature that q(x) is zero for xo0 but
need not continuously vanish at x¼0 (cf. McKane and Waxman,
2007).

Distributions related to Eq. (33), that exclude the singular delta
function term in Eq. (33), have been considered elsewhere
(Ewens, 1965; Nisbet and Gurney, 1982), in different contexts.
As the following arguments show, the singular delta function
term in Eq. (33) is essential to obtain the correct equation for q(x)
and we know of no way, within a correct diffusion analysis, to
avoid inclusion of this term.

We shall determine the probability of loss of the fittest class by
time t, that is to say F0(t). As will become evident, this requires
knowledge of the quasistationary distribution, q(x), which is
the solution of the diffusion equation, Eq. (33), subject to the
following conditions:

(a) All replicate populations possess the fittest class at time
t¼0. Hence F0(0)¼0.

(b) No probability flows out of the x¼1 boundary, hence q(x)
has vanishing probability current density at x¼1.

(c) The zero frequency class is not included in the term
½1�F0ðtÞ�qðxÞYðxÞ. Hence q(x) does not contain a delta function at
x¼0.

(d) The quasistationary distribution, q(x), is normalised to
unity:

R 1
0 qðxÞdx¼ 1, thereby ensuring that probability is con-

served for all times (cf. McKane and Waxman, 2007).
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In the following calculations, properties of delta functions and
step functions that we shall repeatedly use are xdðxÞ ¼ 0 and
dYðxÞ=dx¼ dðxÞ.

We proceed by substituting Eq. (33) into the diffusion equation
with the result

dF0ðtÞ

dt
½dðxÞ�qðxÞYðxÞ�

¼ ½1�F0ðtÞ�YðxÞ
1

2N

d2

dx2
½xð1�xÞqðxÞ��

d

dx
½bðxÞqðxÞ�

� �

þ½1�F0ðtÞ�
1

2N

d

dx
½xð1�xÞqðxÞ�

� �
x ¼ 0

dðxÞ: ð34Þ

The coefficients of the delta functions on the left and right must
balance, and since [(2N)�1d[x(1�x)q(x)]/dx]x¼0¼q(0)/(2N) we
obtain

dF0ðtÞ

dt
¼ ½1�F0ðtÞ�

qð0Þ

2N
: ð35Þ

The solution of this equation, satisfying condition (a) above
(vanishing at t¼0) is

F0ðtÞ ¼ 1�exp �
qð0Þt

2N

� �
: ð36Þ

This indicates that the time of loss of the fittest class, following
from Eq. (33), is an exponentially distributed random variable.
Thus, under a diffusion approximation, the mean time between
clicks of the ratchet is E[Tclick]¼2N/q(0). The quantity (2N)�1q(0)
is the diffusion approximation of the Wright–Fisher result of Eq.
(31), namely v0q̂. The diffusion result for E[Tclick] requires
knowledge of q(0), which follows from knowledge of q(x).

The equation for q(x) follows by equating the terms on both
sides of Eq. (34) that are coefficients of the step functions, and
then using Eq. (35) to eliminate dF0(t)/dt. This leads to

�
1

2N

d2

dx2
½xð1�xÞqðxÞ�þ

d

dx
½bðxÞqðxÞ� ¼

qð0Þ

2N
qðxÞ ð37Þ

which is a nonlinear eigenvalue equation, since the eigenvalue is
proportional to q(0).

Eq. (37) fully determines the quasistationary solution describ-
ing the problem, when subject to the conditions (b), (c) and (d)
given above. We note that the normalisation conditionR 1

0 qðxÞdx¼ 1 is required in this problem since Eq. (37) is explicitly
nonlinear and this feature makes it unlike a standard (linear)
eigenvalue problem, where the eigenvalue is independent of
normalisation of the solution.

C.2. Numerical solution for q(x)

We have found that a successful way of proceeding is to derive
and solve an integral equation for q(x). To this end, we introduce

HðxÞ ¼ 2N

Z x

0
y�1ð1�yÞ�1bðyÞdy¼ alnð1þcxÞþblnð1�xÞ, ð38Þ

where we have used Eq. (32) and defined

a¼ 2N
1�m

1�sm , b¼ 2N
mð1�sÞ
1�sm , c¼

sð1�mÞ
1�s : ð39Þ

Using H(x) allows Eq. (37) to be written as d2[x(1�x)q(x)]/
dx2
�d[(dH(x)/dx) x(1�x)q(x)]/dx¼�q(0)q(x).
We then carry out four steps.
(i) We integrate the above equation from an arbitrary x to x¼1

and use vanishing of the probability current density at x¼1. This
results in d½xð1�xÞqðxÞe�HðxÞ�=dx¼ qð0Þe�HðxÞ

R 1
x qðyÞdy.

(ii) We integrate the last equation from x¼0 to an arbitrary x,
and obtain qðxÞ ¼ qð0Þð1�xÞ�1x�1eHðxÞ

R x
0 dye�HðyÞ R 1

y qðzÞ dz.
(iii) We use normalisation of qðxÞ, i.e.,
R 1

0 qðxÞdx¼ 1, to writeR 1
y qðzÞdz¼ 1�

R y
0 qðzÞdz. This allows us to write

qðxÞ ¼ qð0Þ rðxÞ�

Z 1

0
Gðx,yÞqðyÞdy

 !
, ð40Þ

where

rðxÞ ¼ ð1�xÞ�1x�1eHðxÞ

Z x

0
e�HðzÞ dz, ð41Þ

Gðx,yÞ ¼Yðx�yÞð1�xÞ�1x�1eHðxÞ

Z x

y
e�HðzÞ dz: ð42Þ

(iv) We eliminate q(0) in Eq. (40), by again using normalisation
of q(x). The result is an integral equation for q(x) that incorporates
Eq. (37) and conditions (b), (c) and (d) above:

qðxÞ ¼
rðxÞ�

R 1
0 Gðx,yÞqðyÞdyR 1

0 rðyÞdy�
R 1

0 dy
R 1

0 dzGðy,zÞqðzÞ
: ð43Þ

We have discretised this equation and then iterated it from an
arbitrary initial choice of q(x) and have found that in all cases
considered the iteration converges. The solutions for q(x) lead to a
result for E[Tclick]¼2N/q(0) that is typically very close to the
Wright–Fisher result, E½Tclick� ¼ ðv

0q̂Þ�1.
While a possible approximation of Eq. (43) is qðxÞC

rðxÞ=
R 1

0 rðyÞdy, this is found to be valid in only about 20% of the
parameter combinations appearing in Table 1 and is not pursued
further here.
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