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AbslracL We investigate the A-B phase boundary of supemuid 'He at very low 
temperatures under near-equilibrium conditions where it expands with uniform velocity 
v into the undercooled A phase. Neglecting collisions between excitations, essentially 
exact Solutions to the 'microscopic' Gorkov equations are found that describe fermionic 
excitations which scaltcr from the moving interface. The distribution function of such 
fermions is characterized by an essential singularity a t  U = 0 and  translate^ rigidly with 
the A-B phase boundary only below a criticdl speed v.,. 

When normal 'He is liquified and cooled at  pressures P above 21 bar and 
temperatures T,(P) 2 to 2.5 mK, it  undergoes a s e c o n d a d e r  phase transition 
into the superfluid A phase. On further cooling, the  A phase undergoes a first-order 
phase transition at  a temperature T,( P )  in to  the  B phase 111. The first-order 
character of this phase transition implies that when the A and B phases coexist, 
the phase boundary that forms between them is of finite thickness-resulting in 
an order parameter profile which has a rapid change of symmetry [2]. It is an 
experimental fact that the A phase may be substantially supercooled below TAH( P )  
and as a result the nucleated B phase will expand into the A phase [3]. 

It might appear that there is little to observe of the A-B phase boundary since 
the density difference between bulk A and B phases is very small. This viewpoint, 
however, misses the subtle reflection and transmission processes of quasiparticles and 
Cooper pairs which can occur at sharp spatial StructureS in the order parameter [4]. 
For example, an incident quasiparticle from the A phase with energy below the bulk 
B-phase gap cannot he transmitted into the B phase as a propagating quasiparticle 
excitation. There is, however, the possibility for the  incident quasiparticle to acquire 
a partner at the interface to form a Cooper pair, which then propagates into 
the B phase. The quasihole created by this process propagates hack into the A 
phase. Effectively a branch conversion has occurred where incident quasiparticles 
are retroreflected as quasiholes (Andreev reflection [5 ] ) .  

It is important to note that the acquisition of a partner in the above description 
of Andreev scattering occurs in a non-unique manner at the A-B phase boundary. 
An incident quasiparticle from the A phase with, say, spin T may catch a partner 
with either spin T or  1 to form a Cooper pair in the B phase, leaving behind 
a correspondingly spin-polarized quasihole. The outcome of this is that the A-B 
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phase boundary is capable of changing the polarization of scattered excitations [6]. 
In the absence of particle-hole asymmetry, however, these effects lead to no net 
equilibrium magnetization [6]. 

In the following we present the first attempts towards a microscopic theory of 
the moving A-B phase boundary that fully incorporates the above mentioned branch 
conversion processes (including over-the-barrier reflection), and show the existence 
of a hitherto unsuspected critical velocity vc, for a rigidly translating interface that 
interpolates from the A phase (far to the left) to the B phase (far to  the right). 
We assume [7] 

(i) the A-B interface translates rigidly along the I axis with velocity & ( t )  = 

(ii) coupling to order parameter collective modes may be neglected (low 

(iii) the spin-I excitations of the supemuid move ballistically (collisionless limit), 
(iv) there is no temperature difference between the A and B sides. 

In the bulk, far on either side from the moving kink in the order parameter, 
there are no mass currents due to  the absence of spatially varying phases [4]. In 
general, the full order parameter A ( R -  % ( t ) ,  t ; f i )  will not simply have a rigidly 
translating form but will include corrections that fall into two classes. The first 
class, of a more technical nature, deals with smoothing correctiom to a piecewise 
constant amutz [6]. While a selfconsistent solution will certainly be smooth in 
the interfacial region, we believe that a piecewise constant profile is the correct 
‘zeroth-order’ approximation to the problem [SI. The second class of corrections is 
more fundamental and is concerned with the stability of a rigidly moving A-B phase 
boundary and the dynamics of the pair condensate [14] in the interfacial region 
(collective modes). Taking for granted the stability of a rigidly moving interface 
and assuming there is no net energy transfer from the order-parameter degrees of 
freedom to the excitations in the 3He superfluid, it is interesting to speculate whether 
propagation without a dissipative friction force is possible in the balktic limit. The 
point of view of this paper is that the order parameter can translate rigidly and we 
shall investigate the consequences of this concept. In particular we determine the 
distribution function (time-ordered Green’s function) for quasiparticles by solving 
the Gorkov equations for the Wigner-transformed Green’s functions [9,10] 

X”(+, 

excitation density )> . . 

In general, % ( t )  denotes the position of an arbitrarily moving structure in the order 
parameter, e.g. a point defect, a line defect or a planar phase boundary. The vector 
R denotes the position, 1 the time, p the momentum and E the energy associated 
with the quasiparticles in the laboratory frame. Additionally, ( ( p )  = p Z / 2 m  - p 
is the free-quasiparticle kinetic energy, relative to the chemical potential p.  The 
@ produce between Wigner-transformed functions [9] in equation (1) couples the 
time dependence of the collective coordinate & ( t )  in the order parameter with 
the energy argument in the Green’s function. 

A Galilean transformation combined with a gauge transformation can be used 
to eliminate % ( t )  from the problem. We make the following ansatz that applies 
to the retarded. advanced and time-ordered Green’s functions: 
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G J R ~ C P , ~ )  = +J(R- % ( t ) , t ; p ,  e - P ’  & A t ) )  (2) 

where &(t)  specifies the instantaneous velocity of the moving structure in the order 
parameter relative to the laboratory frame. Under the coordinate transformation 

the derivative operators transform according to 

. +  - .. 
FjR = gR, a, = a,. - R,, . eR, - p .  %a,. a = a,, -%a,, a, = a,, P 

leaving the generator of the Q, product [9] invariant. 

straightforwardly inserting equation (2) into equation (1) 
The equation of motion for the propagator T(R‘ , t ’ ;p ‘ , e ‘ )  then follows by 

8 r(R‘, t’;p’, e‘) = io. (3) 
( e ’ + p ’ . & )  - ((p‘) - A ( R ’ , t ’ ; g ) .  U 

A*(R’ , t ‘ ;@’) .a  - ( ~ ’ + p ’ . & ) - ( ( p ’ )  

In what follows we neglect higher-order corrections of order l/EBCSpF in the 
expansion implied by the Q, product [9], and we work in dimensionless scaled units 
[ll]. For a planar interface with surface normal i moving at constant velocity 
&(t) = 2)  = - u s  the quantities in equation (3) are independent of y’ and 
2‘ and taken to be independent of 1‘. We solve equation (3) subject to the 
boundary condition of vanishing 2’-derivatives as 12’1 + 00. For the stratified- 
medium ansatz (71, A(R’;g) = AA(lj)B(-z’) + AB(lj)B(z’), the solution follows 
simply by matching plane waves and may be represented in the following compact 
form [12]: 

For notational simplicity we shall from now on omit the primes on symbols, 
there being no danger of confusion with the laboratory frame: M A ( u , p , e )  and 
M B ( u , p , c )  denote the bulk limits of the 8x8 matrix M ( z ; u , p , ~ )  on the A and 
the B side, while WT and W, are 4x8 and 8x4 rectangular matrices, respectively. 
In 4x4 block-matrix notation they read 
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a = p , i ,  + v i ,  W; = (io, 0 )  
W, = (?J . 

The other matrices, PA and P i ,  are projection operators which serve to suppress 
the exponential growth of  r(z;p,c) as x approaches the bulk A and B phases. 
They have a simple representation in terms o f  complex contour integrals: 

Here Cg is a path enclosing all eigenvalues of M, with positive imaginary part and 
Ci is a path enclosing all eigenvalues of M A  with negative imaginary part. Note 
that the inversion of 8x8 matrices such as z - M can be performed analytically 

The retarded and advanced Green's functions G$ and C$ determine the local 
density of states o f  the fermions in the laboratory frame. These quantities approach 
their known velociry-independent bulk form far on either side from the interface. The 
x-dependent profile of the fermion distribution is determined from the requirement 
that, at a given instant, all the spin-; quasiparticles incident onto the interface are 
distributed according to the asymptotic thermal equilibrium distribution. The latter 
has, after transformation to the moving frame, Doppler-shift arguments [16]. It turns 
out-perhaps surprisingly-that the problem of determining the finite-temperature, 
time-ordered Green's function for quasiparticles moving in the presence of a rigid!y 
translating domain wall propagating at constant velocity v may be solved exactly 

~ 3 1 .  

r (nip ,€)  = radV(nip, €) @ f ( €  + "p )  + rrel(n;p, .) ta f ( -€  - "i.) (7) 

with f(c) = 1 / [ 1 +  exp(c/T)] the Fermi-Dirac distribution at temperature T.  
Note that the @ operator leads here to an intrinsic coupling of the spatial 

variation of  r"' and rad" with the extra momentum dependence (Doppler shift) in 
the argument of the Fermi-Dirac distribution. The explicit form for the time-ordered 
Green's function follows straightforwardly from equations (2), (4) and (7). 

It is evident from the functional form of equation (7) that we could have imposed 
the condition that, far ahead of the moving interface, we have the equilibrium bulk 
A phase at, say, temperature T .  There, apparently, the time-ordered Green's 
function respects the Kubo-Martin-Schwinger condition [15]. Solving equation (3) 
with this boundary condition one finds that the time-ordered Green's function on 
the other side of the interface, deep in the B phase, relaxes back to the functional 
form of the thermal-equilibrium Green's function, despite the fact that all incident 
quasiparticles were scattered from the moving interface. 
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Equation (7) contains information about the stability of a ripfly translating A-B 
interface, though in highly coded form. Using the Fourier representation of the 
Heaviside step functions O ( i r )  in equation (4) it may be shown that the non-local 
character of the @ operator results in the 'dragging' of information from the A 
side onto the B side and vice versa. Thus, for example, the following 8 product, 
which appears in equation (7), takes for x > 0 the form [ll] 

where iw, = i(2nl)5?T denotes poles of the Fermi-Dirac distribution at temperature 
T and kA = k A ( p ,  e; U ,  T) is an eigenvalue of the matrix MA [13] with a negative 
imaginary part, required by the boundary conditions on the retarded and advanced 
propagators. Note that equation (8) cannot be expanded in powers of v due to 
the essential singularity at IJ = 0. A consideration of equation ( 8 )  and the related 
equation for x < 0 indicates that exponential growth of the solution equation (7) 
induced by the @ product is avoided only if the following stability conditions are 
respected [17]: 

- rT < 2v Im I C ,  < 0 < 2v Im kB < TT. (9) 

These stability conditions result in the introduction of two critical velocities uSl and 
vc2 into the problem. They determine the boundaries of the region of stability. Thus 
for velocities smaller than vC1 (or larger than uc2), the inequalities of equation (9) 
are respected for all p, E and n o  exponentially growing pieces of the time-ordered 
Green's function are present. It may be verified (numerically) that high-energy 
quasiparticles at grazing incidence determine the boundary of the region of instability. 
It is natural to assume the existence of a high-energy cut-off cc that is the largest 
energy that contributes to equation (9) because such high-energy quasiparticles 
cannot possibly sense any difference between A and B symmetry in the order 
parameter [20]. The physical nature of the high-energy cut-off E, can, in principle, 
only be understood from a more sophisticated model of the order parameter. For 
example, the standard weak-coupling model employed in the present work ignores 
collisional broadening of the lifetime of Bogoliuhov quasiparticles. Nevertheless, 
provided cc is not infinite it follows that vel( T) is non-zero [20] and a knowledge 
of uCI at a known temperature is sufficient to determine it at all temperatures: 

IJCI(T1) = ~ T l / T z ~ ~ c l ( ~ z ) '  (10) 

Note that an implication of this relation is that at zero temperature, the A-B phase 
boundary can never move rigidly. 

As the measured terminal velocity vAB(T) of the interface increases upon 
reduction of the temperature T one might attribute the dramatic signal changes 
ObSeNed by Boyd and Switft [3] a t  lower temperatures to the crossing of v,(T) 
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with v,,(T). Since the order parameter is self-consistently determined from the 
fermionic distribution function this implies an instability of the moving kink in the 
order parameter to rigid motion. 

It was first pointed out by Leggett and Yip [4] that the rathzr high terminal 
velocity of the A-B interface, observed when the B phase expands into the 
undercooled A phase, may be explained in terms of Andreev scattering of spin- 
; excitations incident onto the moving interface, thereby giving rise to a friction 
force. In the absence of a temperature gradient across the interface, TA = TB, our 
exact result equation (7) suggests, a t  low propagation speeds U < vC1, a frictionless 
and rigidly translating interface in the ballistic limit. This view seems to agree with 
general hydrodynamical considerations of Liu [21], who finds that it is exclusively the 
Kapitza resistance that governs the dissipation in the moving A-B phase boundary 
problem. 

Such a scenario is, in the ballistic limit and for equal temperature on either 
side of the interface, quite distinct from the picture of a moving interface subject 
to a friction force caused by Andreev scattering at arbitrary propagation speed. 
The latter was envisaged by several authors [4,18,19], who also worked in the 
ballistic limit. We note that all of these authors assumed the possibility expanding 
in powers of U / + ,  however our  explicit result equation (7) indicates the presence 
of an essential singularity of the form exp[-m/~] ,  which will be missed by any 
perturbative expansion in powers of v/vF. 

When TA # TB, our calculation leads to a non-equilibrium quasiparticle 
distribution which, in the ballistic limit, relaxes towards, equilibrium by quasiparticle 
collisions occuring predominantly near the container walls. It is these processes 
which, in our opinion, produce entropy in the ballistic limit and lead, eventually, 
to ‘friction’ in the moving A-B interface problem [22]. 
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