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Appendix C from P. Nouvellet et al., “Fundamental Insights into the
Random Movement of Animals from a Single Distance-Related
Statistic”
(Am. Nat., vol. 174, no. 4, p. 506)

Detailed Mathematical Analysis of the Model
In this appendix, we describe the model of a persistent random walk introduced in this article, and we present
details of calculations. This appendix contains material that may be omitted by readers who do not require an in-
depth knowledge of the technical details of this study.

The displacement is the position of an animal at time t relative to its position at timeR(t) p (X(t), Y(t))
, and it obeys equation (A1): . The random force represents thet p 0 dR(t)/dt p h(t) h(t) p (h (t), h (t))X Y

tendency of displacements to change randomly but with some persistence of direction. The two components of
the random force are taken to be independent and identically distributed Gaussian random processes (functions of
time) with vanishing expected values, . Statistical independence yieldsE[h (t)] p E[h (t)] p 0X Y

, and this is necessary for a rotationally symmetric description where no direction in theE[h (t )h (t )] p 0X 1 Y 2

environment is distinguished. The correlations of the random force, and , are equalE[h (t )h (t )] E[h (t )h (t )]X 1 X 2 Y 1 Y 2

and given by the function , which is termed the correlation function. This is symmetricD (t � t )1 2

( ), and it is taken to have a finite area: .�
D (�t) p D (t) D(t)dt ! �∫��

To gain some intuition about the nature of the correlations of the random force, we state without proof the
property that the probability density of hX(t2), conditional that the force at some other time t1 has the value

, is a normal distribution with mean and variance .2 2h (t ) p e D(t � t ) # e /D(0) [D (0) � D (t � t )]/D(0)X 1 1 2 1 1 2 1

These results confirm the way that D(t) characterizes correlations. In particular, such a conditional probability
density deviates considerably from the unconditional distribution when is close to D(0), and itD(t � t )2 1

approaches the unconditional distribution when .D(t � t ) K D(0)2 1

The solution of equation (A1) for R(t) subject to is . Explicitly, this means thattR(0) p (0, 0) R(t) p h(s)ds∫0

and . These are integrals (equivalent to sums) of independent normal randomt tX(t) p h (s)ds Y(t) p h (s)ds∫ ∫0 0X Y

processes. It follows that, at fixed t, both X(t) and Y(t) are independent and identically distributed normal random
variables. Furthermore, given the statistical properties of h, it follows that X(t) and Y(t) have means of 0 and
equal variances , which we write as . In appendix B it is shown that t2 2 2 2E[X (t)] p E[Y (t)] j (t)/2 j (t) p 4 (t �∫0

; this last result means that the information contained in D(t) is also contained in the mean squares)D(s)ds
displacement .2 2 2E[X (t) � Y (t)] p j (t)

Even incomplete information about D(t), such as the value of its area, has implications for the behavior of
j2(t). For example, if D(t) has a nonzero area, , then there is diffusive behavior at sufficiently long�

D(s)ds ( 0∫��

times and the mean square displacement ultimately becomes proportional to time t. By contrast, if D(t) has a
vanishing area, , then the mean square displacement j2(t) exhibits some form of subdiffusive�

D(s)ds p 0∫��

behavior at long times.
We note that normality of X(t) and Y(t) has a direct implication: in terms of the quantity 2kR(t)k p (X (t) �

(the magnitude of the displacement at time t), there is a unique time independent value for the ratio2 1/2Y (t))
(Bovet and Benhamou 1988). We calculate the ratio using the normal probability density

1/22E kR(t)k / E kR(t)k[ ] { [ ]}
of X(t) and Y(t), which we write as . We can express2 2 2 2f(X, Y ) p {exp [�(X � Y )/(2j (t))]}/(2pj (t)) E kR(t)k[ ]
and as integrals that can be evaluated by direct calculation using polar coordinates. We have2E kR(t)k[ ]

and� � � �2 2 1/2 1/2 2 2 2E kR(t)k p (X � Y ) f(X, Y )dXdY p (p/2) j(t) E kR(t)k p (X � Y )f(X, Y )dXdY p[ ] [ ]∫ ∫ ∫ ∫�� �� �� ��

. Thus, has the value (Bovet and Benhamou 1988).
1/22 2 1/22j (t) E kR(t)k / E kR(t)k (p/4) ≈ 0.8862[ ] { [ ]}

An illustrative example of the mean square displacement j2(t) follows from the correlation function D (t) p
, where T is a constant representing a single timescale in the problem and D is a constantD exp (�FtF/T )/(2T )

associated with the magnitude of fluctuations of the random force. This correlation function leads to 2j (t) p
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. When the time t is large compared with the timescale T, we have , which is22D[t � T � T exp (�t/T )] j (t) ≈ 2Dt
typical of standard diffusion. We consider two special cases of the correlation function :D (t) p D exp (�FtF/T )/(2T )

1. The first special case is when D(t) has all variation contained in the shortest possible range, which arises when
the timescale T approaches 0. In this limit, D(t) becomes a zero-width, infinite-height spike of area D that is
concentrated at . It follows that D(t) is proportional to a Dirac delta function d(t), that is, . Int p 0 D (t) p D # d(t)
this case, the resulting variance is proportional to time t for all times, , and the displacement takes2j (t) p 2Dt ∝ t
the form where WX(t) and WY(t) are independent Wiener processes (e.g., see Haigh 2002).1/2R(t) p D (W (t), W (t))X Y

This is two-dimensional Brownian motion, which has no persistence of direction.
2. The second special case is when D(t) changes extremely slowly, such that over the time interval of interest

it may be treated as a constant, independent of time t. This occurs when the timescale T has a very large value
compared with t. An expansion of in powers of the small quantity yields,2j (t) p 2D[t � T � T exp (�t/T )] 1/T
to leading order, a variance that is proportional to the square of time . This behavior is2 2 2j (t) p Dt /T ∝ t
characteristic of ballistic motion, and the displacement takes the form , where ZX and1/2R(t) p j(t) # (Z , Z )/2X Y

ZY are independent normal random variables with mean 0 and variance 1. When ballistic motion occurs, the
movement of any animal is in a straight line at constant speed, but different animals have different realizations
of ZX and ZY and therefore in general move at different constant speeds in different directions.

In the case of general correlations, that is, general forms of D(t), an animal path exhibits a level of persistence
of direction and corresponds to a continuous version of a correlated (or persistent) random walk. When we
sample animal paths at time intervals of t and consider the angle made between two straight line segments
joining the displacement R(t) at three adjacent times (e.g., t, 2t, and 3t), the distribution of angles can be
expressed in terms of a single parameter z(t), which is determined solely by the mean square displacement j2(t)
evaluated at the times t and 2t. This is explicitly shown below, and the results are given in equations (2) and (3)
in the main text.

Derivation of a Property of Discretely Sampled Paths

The normality and correlations of h(t) determine the distribution of angles associated with discretely sampled
paths. Sampling at time intervals of t, a piecewise linear approximation of a path R(t) is obtained by joining the
positions on the path at the times with straight lines (see fig. 1). The angles characterizingt p 0, t, 2t, 3t, …
such a path are between adjacent straight-line segments. With , adjacent straight-line segments arej p 0, 1, 2, …
defined by the two vectors and( j�1)tA p R[( j � 1)t] � R( jt) p h(s)ds B p R[( j � 2)t] � R[( j � 1)t] p∫ jt

, and these differ in direction by the angle a. The joint probability density (i.e., distribution) of A and( j�2)t
h(s)ds∫( j�1)t

B factorizes into the product , where is the joint distribution of the X componentsw(a , b ) # w(a , b ) w(a , b )X X Y Y X X

of A and B and is identical to the corresponding distribution of Y components. The factorization occurs because
of statistical independence of the X and Y components of h. We adopt the convention that angles a lie in the
range �p to p. The distribution of angles is then given by f(a) p d(a � atan2(a b � a b , a b �∫ X Y Y X X X

, where all integrals range from �� to �, the quantity d(x) denotes a Diraca b ))w(a , b )w(a , b )da da db dbY Y X X Y Y X Y X Y

delta function, and is the four-sector arctangent function. This returns a unique angle in the rangeatan2(Y, X)
�p to p that has the property for all positive k. Using polaratan2(k sin v, k cos v) p atan2(sin v, cos v)
coordinates, we can write , , , and , where r and l range froma p r cos b a p r sin b b p l cos g b p l sin gX Y X Y

0 to � and the angles b and g can cover any interval with width 2p. For multiple integrals with different limits
of integration, we write the integration measures (such as dr) immediately to the right of the integral sign so no
ambiguity exists about the range of each integral. We then find the distribution of angles to be f(a) p

. The distribution w(a, b) appearing in this� � 2pdr dl dbrlw(r cos b, l cos (a � b))w(r sin b, l sin (a � b))∫ ∫ ∫0 0 0

expression is, because of normality of h, bivariate normal, with vanishing means , equalE[A ] p E[B ] p 0x x

variances denoted , and a covariance . With , it may be verified2 2 2 2P p E[A ] p E[B ] Q p E[A B ] S p P � Qx x x x

that w(a, b) has the form . This then yields1/2 �1 2 2w(a, b) p [2p(S) ] exp � a � b P � 2abQ /(2S) f(a) p{ [( ) ] }
. Changing the variable from l to first yields a� ��1 2 2(2pS) dr dlrl exp � (r � l )P � 2rlQ cos a /2S y p l/r{ [ ] }∫ ∫0 0

r integral and then a y integral, and both may be evaluated in closed form. The result is equation (3) of the main
text, with .z p Q/P

Finally, we establish the relation between and the mean square displacement j2(t). We havez { Q/P P p
. This can also be written in the form , and by shifting( j�1)t ( j�1)t2E[{X[( j � 1)t] � X( jt)} ] D(t � t )dt dt∫ ∫jt jt 1 2 1 2

integration variables and , it follows that P is independent of j. Similarly, we can showt r t � jt t r t � jt1 1 2 2

that is also independent of j. Setting and inQ p E[{X[( j � 2)t] � X[( j � 1)t]}{X[( j � 1)t] � X( jt)}] j p 0 j p 1
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the expression for P yields (1) and (2) , and setting2 2 2P p j (t)/2 P p j (2t)/2 � j (t)/2–2E[X(2t)X(t)] j p 0
in the expression for Q yields (3) . Combining (1), (2), and (3) allows us to obtain2Q p E[X(2t)X(t)] � j (t)/2

, which is equation (2) of the main text.2 2z p Q/P p j (2t)/ 2j (t) � 1[ ]
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