Appendix B from P. Nouvellet et al., "Fundamental Insights into the Random Movement of Animals from a Single Distance-Related Statistic"

(Am. Nat., vol. 174, no. 4, p. 506)

Relationship between the Correlation Function and Mean Square Displacement

In this appendix, we derive the relationship between the correlation function $\Delta(t)$ and the mean square displacement $\sigma^2(t)$. We achieve this by solving the equation that the displacement $\mathbf{R}(t) = (X(t), Y(t))$ obeys, namely, equation (A1). The solution of equation (A1) subject to $\mathbf{R}(0) = (0, 0)$ is $\mathbf{R}(t) = \int_0^t \eta(s) ds$, that is, $X(t) = \int_0^t \eta_X(s) ds$ and $Y(t) = \int_0^t \eta_Y(s) ds$. Using these results, the mean square displacement $\sigma^2(t) = \mathbf{E}[X^2(t) + Y^2(t)]$ can be expressed as $\mathbf{E}[(\int_0^t \eta_X(s) ds)^2 + (\int_0^t \eta_Y(s) ds)^2]$. Both the X- and Y-components of the η terms make identical contributions to $\sigma^2(t)$. We thus only consider $\mathbf{E}[(\int_0^t \eta_X(s) ds)^2]$. Using the definition of the correlation function $\mathbf{E}[\eta_X(s_1)\eta_X(s_2)] = \Delta(s_1 - s_2)$, we obtain $\mathbf{E}[(\int_0^t \eta_X(s) ds)^2] = \int_0^t \int_0^t \Delta(s_1 - s_2) ds_1 ds_2$. This result can also be written in the simpler form $\sigma^2(t) = 4 \int_0^t (t - s)\Delta(s) ds$.