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ABSTRACT: Statistical theories of animal movement have often been
based on models of random walks, where movements take place in
discrete steps and occur at discrete times. The multiplicity of dis-
tributions required in these approaches to describe animal movement
(i.e., the distributions of angles, discrete steps, and times) have effects
that cannot be simply disentangled, and hence they cannot be un-
ambiguously determined. Here we present a mathematical formu-
lation of continuous animal movements. In this new framework, it
is shown that a single time-dependent distance statistic, the mean
square displacement, which may be directly measured or mathe-
matically modeled, is a central determinant of such random walks
and encapsulates key information about the statistical properties of
animal movements. The model and methodology presented here not
only allow the determination of what were previously viewed as
independent aspects of animal movements, such as the distribution
of angular changes in direction, but also, because of the new emphasis
on the mean square displacement, they may open up a new set of
questions concerning animal movement and related phenomena. The
results established in this work are directly applied to the foraging
behavior of Pharaoh’s ants, and very close agreement is found be-
tween observation and theory.

Keywords: correlated random walk, animal movement, foraging,
Pharaoh’s ants.

Introduction

Establishing the rules underlying the movement of animals
(Kareiva and Shigesada 1983; McCulloch and Cain 1989)
and cells (Nossal and Weiss 1974; Zygourakis 1996) is of
fundamental interest in biology and related disciplines. A
concept that has proved indispensable in this area is that
of a correlated random walk, where the direction of a single
step of the walk is statistically related to the direction of
previous steps (Nossal and Weiss 1974; Kareiva and Shi-
gesada 1983; Bovet and Benhamou 1988; McCulloch and
Cain 1989; Zygourakis 1996; Codling et al. 2008).
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Generally, a correlated random walk of animals is un-
derstood to describe movements that take place in two di-
mensions and occur at discrete times. Such walks typically
rely on three distinct distributions: (1) the distribution of
times between discrete steps, (2) the distribution of step
lengths, and (3) the distribution of turning angles at each
step (Patalak 1953; Nossal and Weiss 1974; Kareiva and
Shigesada 1983; McCulloch and Cain 1989; Turchin 1991;
Zygourakis 1996; Byers 2001; Codling et al. 2008). Other
models of movement have been constructed where time is
initially taken as continuous, but it is subsequently ap-
proximated as being discrete, in order to facilitate analysis
(Bovet and Benhamou 1988; Codling and Hill 2005). These
previous studies have focused on estimating parameters,
such as the mean distance moved in a single step and the
mean cosine of turning angles between subsequent steps
(Kareiva and Shigesada 1983). This is in order to predict
the mean square displacement and to compare predictions
of the models with the behavior of real organisms.

In this study we introduce and analyze what we believe
is a new model for the movement of animals in an un-
structured territory. Crucially, our model describes the
continuous movement of animals. Our model follows
from a minimal modification of Brownian motion and
incorporates correlations between the direction of move-
ments at different times. The resulting random walks are
short-tailed in character, in the sense that the distances
traveled in a finite time have a finite variance. Random
walks with infinite variances (long-tailed Levy walks) have
been considered elsewhere in a related context (Viswa-
nathan et al. 1996; Edwards et al. 2007).

The mean square distance associated with animal move-
ment (also known as the mean square displacement) has
long been recognized as an important aspect of animal
behavior (Kareiva and Shigesada 1983; McCulloch and
Cain 1989). This quantity also plays a particularly prom-
inent role in our study. We present here what we believe
to be the simplest model of continuous animal movement
in which correlations are included. We show that essen-



tially all results for the model can be derived, once we
have determined the relationship between mean square
displacement and the time taken for the displacement to
occur. The central role of mean square displacement as a
function of time is an exact feature of the model; it arises
from the intimate way the mean square displacement is
determined from correlations between directional changes.
More generally, it is plausible that a substantial amount
of information of direct relevance to animal movement is
contained in the dependence of the mean square displace-
ment on the time for the displacement to occur.

We have applied the model presented here to a signif-
icant biological problem: the foraging behavior of Pha-
raoh’s ants. The quality and quantity of data from the
observations of the ants provide a stringent test of the
model. The following list summarizes key findings of our
model and the results presented here:

1. The displacements, which are achieved over a given
time interval, have a distribution that is determined solely
by the mean square displacement over this time interval.
The resulting distribution of displacements has an isotro-
pic Gaussian form. These properties hold for any random-
walk model with a distribution that obeys a simple dif-
fusion equation; however, our model generally
encompasses nondiffusive behavior.

2. Our model is applicable to animal positions that have
been recorded at a set of equally spaced times (data of this
form follow from filming as well as from other methods of
recording positions). From the data, a piecewise linear ap-
proximation of each animal’s path is constructed by joining
the positions recorded at adjacent times by straight lines.
The set of directional changes of all lines of the paths of
many animals yields a distribution of angular changes. With
7 denoting the time interval between recordings of position,
the model predicts that the distribution of angular changes
is determined solely from the ratio of mean square dis-
placements that are established over time intervals of 7 and
27. In particular, there are no parameters that require fitting
in order to determine this distribution.

3. Mean square displacements, which are established
over the times 7 and 27, generally change when either the
time interval of data sampling 7 is changed or the data
set is resampled, so the effective time interval of sampling
is changed. The model predicts that the changed mean
square displacements will change the angular distribution
in a predictable manner. In general, the angular distri-
bution is not a robust quantity but one that varies ac-
cording to the precise value adopted for the sampling time
interval; the angular distribution can thus be viewed as an
object that is created entirely by the mode of data re-
cording. The impact of resampling on angular distribution
was the subject of previous detailed studies (see Bovet and
Benhamou 1988; Codling and Hill 2005).
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4. Application of the model to the foraging behavior of
Pharaoh’s ants by a detailed analysis of digital video re-
cordings of their movements indicates that the mean
square displacement of the ants’ paths deviates consider-
ably from being directly proportional to time. This is the
characteristic of an anomalous form of diffusion (Codling
et al. 2008), which is a phenomenon that has been ob-
served in a number of theoretical models (Bartumeus et
al. 2008). In the context of our study, this anomalous
diffusive behavior is theoretically predicted and is empir-
ically found to be directly manifested in the distribution
of angles associated with ant paths. This anomalous dif-
fusive behavior allows us to very simply estimate an im-
portant timescale in the problem that concisely charac-
terizes the correlations underlying the random walk.

Model of a Persistent Random Walk

In this article we introduce a model of animal movement
with the aim of applying it to real organisms to further
our understanding of their behavior. The model describes
properties of the displacement of an animal. The displace-
ment of an animal at time ¢ is its position at this time
relative to its position at time ¢ = 0. Because the animal
moves in two dimensions, the displacement involves two
coordinates and is written R(¥) = (X(#), Y(#)). By defini-
tion, the displacement vanishes at time t = 0.

When constructing the model, we restricted ourselves
to the very simplest piece of mathematics capable of gov-
erning continuous changes of the displacement over time
(a linear differential equation). Such an equation must
incorporate the observed tendencies of animals to have
some level of persistence in their direction of movement.
These tendencies presumably arise from a combination of
neuronal activity and the biomechanics of movement. In
the absence of a detailed knowledge of these factors, and
by recognizing that there are effectively (or genuinely)
random aspects of the problem, we incorporated a degree
of randomness into the equation that governs the dis-
placement (full details of the model are given in app. A
in the online edition of the American Naturalist). The ran-
dom components in the equation that govern the dis-
placement (and that represent random tendencies to move
and change direction) are allowed to be arbitrarily cor-
related with themselves over time. This is a very simple
and natural way to incorporate the tendency of animals
to move with some persistence of direction. We encap-
sulate all unknown determinants of movement in the
model in a specification of the correlations.

As with any modeling in biology, assumptions do need
to be made. Here we assume that the animals are foraging
but not purposefully heading in a particular direction
(which, e.g., occurs when they are migrating). The validity
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of this assumption can be observed in real data sets, by
the absence of a directional preference, and this assump-
tion makes our study a possible starting point for further
studies where additional assumptions about the general
patterns of movement may be included in the equation
governing the displacement (see app. A and eq. [Al]).

The mean square displacement established after time ¢ is
E[X?(#) + Y?(t)], where E[...] denotes an average or ex-
pected value. We write the mean square displacement, o°(t),
as

o’(t) = E[X*() + V(). )

The model allows the mean square displacement, ¢°(%), to
be explicitly expressed in terms of correlations of the ran-
dom tendencies to move, as is shown in appendix B in
the online edition of the American Naturalist. Thus, all
emphasis can be shifted from correlations to the mean
square displacement, o°(f). We adopt the view that o*(?)
is the object containing all unknown determinants of
movement of the model. This model exhibits considerable
flexibility, since many different possible choices can be
made for the dependence of ¢°(¢) on time t. We note three
special cases of the dependence of the mean square dis-
placement on time:

1. 6°(#) is a constant, independent of time ¢. This is the
extreme limit of so-called subdiffusive behavior (Codling
et al. 2008), which generally corresponds to ¢°(#) having
a slower-than-linear growth with time ¢. Subdiffusion is a
feature found in some models of animal movement
(Codling et al. 2008). It can arise when there are negative
correlations in directional changes and the animals’ paths
have the tendency to backtrack on themselves.

2. ¢%(t) is proportional to time t This corresponds to
conventional diffusion and is a feature seen in many mod-
els of animal movement at long times (Kareiva and Shi-
gesada 1983). If o°(¢) is proportional to t for all times,
then we have Brownian motion (Brown 1828); this arises
when correlations in directional changes exist over only
the very shortest of timescales.

3. 6°(1) is proportional to #. This occurs when an animal
moves at a constant speed in a fixed direction (but different
individuals generally have different speeds and different
directions). This can be described as ballistic motion and
can arise when correlations in directional changes are pos-
itive and exist over very long timescales. Ballistic motion
is the extreme limit of superdiffusive behavior (e.g., see
Codling et al. 2008), and it generally corresponds to o*()
having a faster-than-linear growth with time #.

Theoretical Results

All results given in this section are derived from a detailed
mathematical analysis of the model, which is provided in

appendix C in the online edition of the American Natu-
ralist. We begin the presentation of these results by noting
that, within the framework of the model, both the X- and
Y-coordinates of the displacement of an animal at time ¢
have very simple statistical descriptions. They are each
independent normal random variables with mean of 0 and
variance ¢°(t)/2, and equation (1) follows from this. De-
spite the extreme simplicity of the distributions of X and
Y (normal distributions), there are highly nontrivial char-
acteristics of the paths of individual organisms because of
the presence of correlations, as will become apparent in
the distribution of angles (see below).

Although our model is fully continuous, it may be applied
to situations where the positions of animals are sampled/
recorded at only the discrete times 0, 7, 27, 37, .... Such
sampling would result, for example, from a film or video
recording of the animals’ positions or from telemetry.

Given this sampling, we construct the piecewise linear
approximation of a path by joining the adjacent positions
of an animal at the discrete times 0, 7, 27, 37, ... via straight
lines. The angular changes of the adjacent straight lines allow
a definition of the turning angles. Figure 1 illustrates a piece-

Figure 1: Plot of the piecewise linear approximation of the continuous
path of a single animal (an ant from experiments described later) when
its position was sampled at time intervals of 7 = 0.125 s. The filled dots
represent the sampled positions, while the straight solid lines connecting
the dots constitute the piecewise linear construction of the path. The
particular path illustrated is of a 4-s duration, and thus it contains 33
positions. The path starts at position S and finishes at position F. From
one time step to the next, the directions of the linear segments generally
change. One angle, «, is illustrated between the adjacent linear segments
joining the positions of the animal at times 1.000, 1.125, and 1.250 s.
We adopt the convention that angles are positive (negative) if made in
a counterclockwise (clockwise) direction. The angle illustrated corre-
sponds to a counterclockwise change and hence is positive. The dashed
arrow shows the displacement of the animal from its starting point after
4 s of movement.



wise linear path that was constructed from movements of
a single animal (an ant) that was recorded at discrete times.

The distribution of turning angles for discretely sampled
paths is, remarkably, found to depend on only a single
parameter { = {(7), which is completely determined from
the mean square displacement, o°(7), via

10°(27) _

£= 50 =50

@

The parameter { can vary from —1/2 to 1. The lower limit
of this range follows from the mean square displacement
having behavior associated with the extreme limit of sub-
diffusion (i.e., 6°(f) = constant, independent of f). The up-
per limit follows from the extreme limit of superdiffusion,
which is ballistic motion (¢(f) oc t*). Brownian motion
(o?(t) oc 1) leads to the intermediate value { = 0.

Under a reasonable approximation, the parameter { is
proportional to the mean value of the cosine of the turning
angles, E[cosa], namely {~ (4/m) x E[cosa] (the exact
relation between ¢ and E[cos ¢ is given in eq. [4], below).
With angles « lying in the range of —7 to 7 radians, the
distribution of turning angles for a given value of ¢ is
written ¢(o; §) and is found to take the exact form

e (1-2*)"+{arctan [2/(1-22)"] + =12} 2
ca = =0
(o §') = o (1_22)3/2 s
Z = {cosa. (3)

This distribution is illustrated in figure 2.

As shown above, the distribution of angles depends on
just a single parameter, { = {(7), which therefore has an
exceptional status in the theory. The value of { is a defining
characteristic of paths that have been sampled at discrete
time intervals of 7. All statistics of paths that provide direct
measures of correlations in directional changes depend
only on {. For example, the mean (i.e., expected) value of
cos o, namely E[cos o], is explicitly given by

E(§) — (1 — §HK(E)
¢

E[cos ]

™ T 5 5
25T 5¢ + 0, )

where K({) and E({) denote complete elliptic integrals of
the first and second kind, respectively (Abramowitz and
Stegun 1970). The smallness of the coefficient of ¢ in
equation (4) allows the mean value of cos « to be quite
reasonably approximated by just the leading term in ¢,
namely E[cos ] = (m/4){, with all higher-order terms omit-
ted (as indicated above).
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Figure 2: Plot of the ratio ¢(o; {)/ max, ¢ against angle o and parameter
¢, where ¢(a; ¢) is the distribution of angles for a given value of { and
max, ¢ is the maximum value of ¢(; {) over all angles. Angles are
measured in radians. The distribution ¢(w; {) takes various forms de-
pending on the value of {. When { is negative, the distribution is a U-
shaped function of « (due to the presence of negative correlations). When
¢ = 0, the distribution is uniform in « (as would occur in Brownian
motion). When ¢ is close to 1 (which corresponds to near-ballistic mo-
tion), the distribution is a sharply peaked function of o. The maximum
value of ¢(oy {) varies strongly with the value of {. For example, when
¢ = 0, the maximum value is (27)~', and when ¢ tends to 1, the max-
imum value tends to infinity. Plotting the ratio ¢(«; {)/ max, ¢ allows a
direct comparison of the shape of the distribution for different values of
{, without being confounded by the very different maximum heights. If
the angular distribution is required for a given value of {, the complete
result for the distribution is given in equation (3).

Within the model, the time interval of sampling, 7, can
be arbitrarily chosen. We can exploit this feature to provide
an estimate of an important timescale in the problem that
concisely characterizes the decay of correlations of the ran-
dom tendencies that give rise to the random walk, and that
we have assumed arise from neuronal activity and the bio-
mechanics of movement. The existence of such a timescale,
say T, is also equivalent to the assumption that the mean
square displacement, 0°(#), depends on time ¢ only in the
combination #/T. We have considered correlations that de-
cay as exp (—|¢|/T) or exp [=¢*/(2T?)]. The resulting forms
of {(7) that follow from these have common features. In
particular, they both decrease as the sampling time 7 is
increased, and they have a largest value {(0) of unity. When
the value of the sampling time is close to the timescale T,
that is, when 7 = T, we find that the value of {(7) is close
to 1/2. This suggests a simple but practical estimate of the
correlation time associated with movement: namely it is the
choice of sampling time, 7, that leads to {(r) = 1/2.

Some authors have introduced a statistic termed “sin-
uosity” (Bovet and Benhamou 1988, 1991; Benhamou
2004) as an alternative method of characterizing correlated
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random walks. This statistic has been primarily defined
for random walks with discrete step lengths, and as such
it is not obviously directly relevant to the fully continuous
random walks considered in our study. We note, however,
that a formulation has been provided that relates sinuosity
to mean square displacement at long times (Benhamou
2004). We plan to investigate elsewhere the relationship
between these different approaches.

Data Analysis Procedure

To complement the theoretical results, it is necessary to
have a practical means of extracting information from the
data. We work on the assumption that we have a number
of distinct animal paths, where animal positions are known
at the times 0, 7, 27, 37, ... . The results we require are
estimates of quantities, such as the mean square displace-
ment at the times 7 and 27 (namely, ¢°(7) and ¢°(27)),
and the distribution of angular changes of direction along
paths. Our procedure is to extract and use the maximum
number of independent positions/displacements, and
hence the maximum information, from the positional data
in our possession. We adopted the following procedure to
achieve this. By focusing on a single animal path, we ex-
tracted all X- and Y-coordinates of the animals at the times
2j x 7and (2j+ 1) x 7 (where j = 0, 1,2, ...). This in-
formation allows us to directly determine a set of squared
displacements of data sampled at time intervals of 7 along
a single path. Pooling the data over all paths allows for a
good estimate of o%(7). Next, extracting all X- and Y-
coordinates of the animals on a path at the times 2j x 7
and (2j+ 2) x 7 allows us, in a similar way, to estimate
0°(27). In an analogous way, all angular changes in direc-
tion can be determined from the X- and Y-coordinates
that were extracted from the positional data, and an em-
pirical distribution can be determined.

Application of the Theory to Pharaoh’s Ants

We applied the theoretical results to the foraging paths
taken by individual ants of the highly invasive, phero-
mone-laying, multiqueen species Monomorium pharaonis
(Pharaoh’s ants). These ants were allowed access, via a
bridge from their nest, to a previously inaccessible area
(henceforth termed the arena) and were filmed at the rate
of 8 frames per second. Each frame was stored in a digital
format and analyzed to determine the mean position (i.e.,
the mean values of the X- and Y-coordinates) of every ant
that had left the nest and was exploring the arena (see
app. D in the online edition of the American Naturalist
for details of the experimental setup). This gave the po-
sitions of each ant in the arena every 0.125 s, but it did
not identify which of the positions in different frames

correspond to a given ant. To make such an identification,
we adopted the procedure where, given the position of a
particular ant in one frame, the position of the ant closest
to it in the next frame is taken as the actual position of
the ant in that frame. We estimate that, over a path lasting
up to 120 s (i.e., ~10° frames) and for the density of ants
observed in our experiments (~10° ants m~?), this simple
procedure correctly identifies 98% of the positions visited
by a single ant (see app. E in the online edition of the
American Naturalist for details of the accuracy of path
identification). Having determined the positions of one
ant at different times, we performed a piecewise linear
reconstruction of its path.

In order to have a balanced data set and to avoid any
edge effects associated with ants entering or leaving the
arena, we restricted our analyses to paths of 30-s duration
that were located near the center of the arena. In this time
interval, Pharaoh’s ants can move a significant distance
(on the order of 200 body lengths).

We performed an analysis of the pixels (picture ele-
ments) of the digital video recordings of the ants in the
arena. This allowed us to determine the time that ants
spent in each pixel. Putative ant trails may be defined as
regions of the arena in which ants spent an appreciable
time. We estimate that appreciable changes in occupancy
of such putative trails occurred on the timescale of tens
of minutes. Thus, during any 30-s time interval at any
time throughout a 70-min experiment, there was negligible
excess usage of a trail compared with that of any other
region. Thus, during the 30-s time intervals where ant
movements were analyzed for this work, the ants effectively
acted as independent agents that were not following trails.
This motivates modeling the movements of individual ants
as continuous random walks that are independent of the
random walks of other ants.

Digital video recordings yielded the positions of the ants
every 0.125 s. Figure 1 contains the actual piecewise linear
path constructed for one particular ant over a 4-s time
interval. From the digital video recordings, we determined
the distributions of displacements of the ants over a number
of 30-s time intervals during the course of the experiment.

We verified (using the Kolmogorov-Smirnov test) that
>95% of these distributions were not significantly different
from a normal distribution. We note that, if the distri-
bution of displacements over a given time interval f is
normally distributed and has a variance ¢°(¢), then a direct
consequence of normality is that the ratio of mean dis-
placement to root mean square displacement is indepen-
dent of the variance ¢°(¢#) (Bovet and Benhamou 1988)
and, hence, of the choice of time interval f. With the
magnitude of displacement, written as ||R(@)|| =
(Xz(t) + Yz(t))]/z, this ratio has the value
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(Bovet and Benhamou 1988; also see the discussions about
this in Codling et al. 2008). The intuitive explanation of
equation (5) is that, in an isotropic normal distribution,
there is only a single length present, namely o(#). As a
consequence, both E[||R(9)] and {E[||R(t)||2]}”2 are directly
proportional to o(f) such that their ratio is a constant,
independent of a(t). Direct calculation verifies this expla-
nation (see app. C for an explicit derivation of eq. [5]).

The result of equation (5) may be used to check the
normality of the distribution of displacements without re-
quiring any knowledge about the time dependence of o*(t).
Results for the actual numerical value of the ratio
E[||R(t)||]/{E[||R(t)||2]}”2, calculated from our ant data, are
provided in table 1.

In the theory presented here, the ratio
E[||R(t)||]/{E[||R(t)||z]}”2 is predicted to take a fixed value of
(w/4)'"* (see eq. [5]), which is completely independent of
the way the mean square displacement ¢°(¢) varies with time
t. By contrast, the distribution of angular changes is pre-
dicted to explicitly depend on the way o°() varies with time
t (since the angular distribution depends on ¢(27) and o(7);
see eqq. [2] and [3]). To investigate the angular distributions
associated with the Pharaoh’s ants, we first investigated the
mean square displacement, o’(f). A typical form for the
observed time dependence of 0*(¢) is provided in figure 3.

Previously we introduced the sampling time interval 7.
This quantity can, in theory, be freely chosen. However,
with our data there is a restriction: because of the mode
of data recording we adopted, 7 must be an integer mul-
tiple of 0.125 s (there will be a similar restriction with any
positional data that is recorded at discrete times). With
our data it is possible, for example, to make a choice for

= J7/4 ~ 0.8862, 5)
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Figure 3: Ratio o°(#)/t is plotted against ¢ using data collected from
Pharaoh’s ants. The error bars represent the standard deviation of
a’(1)/t. For n normally distributed displacements with a sample mean
square displacement of o?, the standard deviation is estimated as
[2/(n — 1)]"?¢}/t. With o3, the population variance, this estimate follows
from (n — 1)0%/0, having a x,_, distribution. The plot suggests that, at
relatively long times, the ratio o”(#)/t approaches a constant value. An
approach of the ratio to a constant value indicates an approach to con-
ventional diffusion behavior, with o®(¢) oc t. It is evident that o°(¢)/t does
not have a constant value for short times. This indicates a substantial
deviation of ¢°(#) from being proportional to . Such behavior is termed
anomalous diffusion (e.g., see Codling et al. 2008).

7 such that 7 = 1 s. After this choice has been made, the
mean square displacements for the times 7 and 27 can be
found and, using these, the value of the parameter {(7)
(eq. [2]) may be established. The resulting value of {(7)
allows us, via equation (3), to determine the angular dis-
tribution that is predicted by the theory. No additional
information or parameters are required to determine the
angular distribution.

Table 1: Ratios of the mean displacement to root mean square displacement of foraging ants, as a

function of time interval

Time interval, ¢ (s)

Ratio 1 2 4 6 10 15 20 30
E(IRO)D/E(ROP)]™ 880 887 892  .890  .888  .882  .883 883
a(0/0*(1) 1 33 97 173 344 569 785 1213

Note: When the displacement that occurs over a time interval of £, namely R(#), follows a normal distribution with

12

variance o°(#), the ratio E(||R(8))/[E(|R(D]?)]

is independent of ¢°() (and, hence, time), and it takes the constant

value (m/4)"* ~ 0.8862 (see Bovet and Benhamou 1988; app. C in the online edition of the American Naturalist). This

relationship was tested for paths of 30-s duration that were observed at various points throughout a 70-min experiment.
We present the ratio that was calculated from data for the 30-s paths that were observed during a period of the
experiment that was between 40 and 42 min. This illustrates the close agreement of the experimental result of this ratio
with the prediction of a normal distribution. A similar close agreement was found for 30-s paths observed at different

times throughout the duration of the experiment (results not shown). The bottom row gives the ratio of mean square
displacement of the ants that was established over a time interval of t to the mean square displacement for a time

interval of t = 1, and it indicates the substantial degree of broadening of the distribution that occurs for a period of

up to 30 s.
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Figure 4: Analysis of the piecewise linear construction of recorded ant
paths. The paths, sampled at time intervals of 7, allow for the deter-
mination of the distribution of turning angles by directly measuring
angles as, for example, would be possible from figure 1. Two separate
choices for 7 were adopted here. The resulting angular distributions are
marked with broken lines, and the error bars give the standard deviation
in the distributions. From the same paths, determining the mean square
displacements at times 7 and 27 and then using equations (2) and (3)
allows the theoretical angular distribution to be calculated without knowl-
edge of the observed angles (see “Data Analysis Procedure” for the
method of determining {(7)). The theoretical formulation applies for an
arbitrary value of the sampling time. The theoretical curves are marked
with dots connected by solid lines. There is very good quantitative and
qualitative agreement between the angular distributions predicted by the
theory (from measured mean square displacements) and the actual dis-
tributions obtained from measuring all angles. This lends strong support
to the key role played by the mean square displacement, o*(%).

We extracted the maximum possible information from
our data to calculate {(7) using all nonoverlapping dis-
placements that make up a path, as described above in
“Data Analysis Procedure.” We note that a path of just a
single ant that is observed for t s may contain a consid-
erable amount of relevant information, since it consists of
t/ (27) nonoverlapping displacements that may be used in
the calculation of {(7).

The above process can be repeated for different choices
of the sampling time interval 7. The theory makes explicit
predictions for the qualitative and quantitative shape of
the angular distribution, for different values of 7, given
knowledge of the mean square displacement o°(#). The
angular distributions, so predicted, can be directly com-
pared with the angular distributions that are arrived at by
directly measuring angular changes of direction. Some il-
lustrative findings are given in figure 4.

Under a model of a correlated random walk, increasing
the sampling time interval is intuitively expected to cause
the distribution of turning angles to become more Brown-

ian-like, since correlations in the direction of movement
are expected to decay over time. Equivalently, the distri-
bution of turning angles, derived from just the mean
square displacement ¢*(¢), is expected to broaden when
the sampling time interval is increased given the observed
behavior of ¢*(#) (fig. 3). This is indeed what is seen in
figure 4 (see also specific studies on this effect: Bovet and
Benhamou 1988; Codling and Hill 2005).

A quantity that is widely used to describe the angular
distribution, namely the mean cosine of angles E[cos ]
(Kareiva and Shigesada 1983), can be determined by di-
rectly measuring angles or, alternatively, by using the ob-
served mean square displacement and equations (2) and
(4). To assess the effect the size of the sample has on the
predictions of our study, we resampled the data by ran-
domly choosing a smaller sample (i.e., a subset of all the
ants we observed). For 100 samples of N ant paths
(N = 10, 20, ..., 150), we determined the standard de-
viation of cos o from direct calculation of angles that we
measured directly, using the value of {(7) for each sample
and the distribution of angles (equation [3]). It has been
suggested (Bovet and Benhamou 1988) that the angular
distribution contains less noise than the mean displace-
ment, and thus the former should be preferentially used
in calculations. Comparing the standard deviation of cos
« from the two approaches, however, yields broadly com-
parable results (see table 2).

We showed above that, when the sampling time 7 takes
a value such that {(r) = 1/2, it is close to an assumed
unique correlation time T associated with the random
movement of the animals. Generally, we find that the cor-
relation time, estimated from ¢ (7) = 1/2, depends on the
density of ants in the arena and hence varies during the
course of an experiment. The average of the correlation
times that were estimated in this way, throughout a 70-
min experiment, yielded a mean value of 2.3 s. This result
is thus an estimate of the correlation time, T, associated

Table 2: An estimate of the standard deviation of cos o from
samples of data of size N

T=.5 T = 4
N 10 20 50 100 150 10 20 50 100 150

SD, x 10> 41 24 15 9 6 74 47 30 17 1.1
SD, x 10> 7.1 4.1 24 1.6 10 125 7.8 4.8 33 20

Note: The standard deviation of cos «;, when calculated from the directly
measured angles, is denoted SD,. The standard deviation when calculated
from equation (3) (i.e., just using knowledge of the mean square displacement)
is denoted SD,. The standard deviation of cos a was estimated by randomly
choosing, without replacement, a subset of 100 ant paths of size N. The original
data set contained 216 paths. The values of SD, are slightly higher than the
corresponding values of SD,, reflecting the fact that when n angles can be
extracted from a path, {(7) is determined from n/2 values (see “Data Analysis
Procedure,” above).



with the correlated random movements of the population
of ants under investigation and originates in the under-
lying mechanisms that drive the ant movements.

Discussion

In previous studies it has been asserted that when it is
required “to describe in detail the spatial structure of an-
imals’ actual paths, it is indispensable to specify the dis-
tribution of changes of direction” (p. 421, Bovet and Ben-
hamou 1988). Most theoretical studies (Othmer et al. 1988;
Bovet and Benhamou 1991; Benhamou 2004; Bartumeus
et al. 2005, 2008) and empirical studies (Crist and
MacMahon 1991; Crist et al. 1992; Challet et al. 2005;
Garcia et al. 2007) have consequently used a description
of animal movement that is based on a characterization
of the distributions of turning angles and step lengths.
Early work on kinesis (Gunn et al. 1937), where motion
was described in terms of speed (O-kinesis) and path sin-
uosity (K-kinesis), has been the most likely influence of
the present formulation of correlated random walks.

Here we present a mathematical model, along with as-
sociated theoretical results, that relates directly to obser-
vations of the continuous movements of animals. Con-
structs such as step length do not appear in our theoretical
description. However, any recording technique that captures
images at discrete times by its fundamental nature produces
a discrete time description of the data, and our analyses and
modeling have accommodated data with this basic feature.

The mean square displacement of moving animals plays
a central role in our theory, since it contains information
that is necessary for an essentially complete description of
a continuous correlated random walk. In particular, from
the piecewise linear approximation of animal paths derived
from a discrete time description, an angular distribution
can be produced, and it is apparent that this distribution
is created by the mode of recording and does not have a
fundamental significance or existence in its own right. This
is emphasized in figure 4 by the change in the angular
distribution, which results when the discrete time of sam-
pling of the data is changed. The change of shape of the
distribution, derived from direct experimental observation
of real organisms (Pharaoh’s ants), is well explained in
terms of the mean square displacement, as predicted by
the theory. We hold the view that the robust quantity
underlying animal movement is a particular function that
characterizes the statistics of the problem, namely a cor-
relation function or, equivalently, the mean square dis-
placement ¢°(#). Any model that can be cast in the form
of equation (A1) and that has a correlation function that
depends only on the time interval ¢, — ¢, (see app. A) will
be fully characterized by ¢°(2).

The issue of resampling and its implication for the an-
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gular distribution has been explored previously (Bovet and
Benhamou 1988; Hill and Hader 1997; Codling and Hill
2005), while Bartumeus et al. (2008) considered angular
distributions and the effect on resulting simulated move-
ment paths. Here we presented an alternative approach,
where the time dependence of ¢°(¢) contains key infor-
mation needed to characterize the angular distribution, and
we showed that knowledge of this quantity predicts angular
statistics with an accuracy that is broadly comparable to
those statistics derived directly from measuring angles of
directional change within paths. Hence, properties that have
been discussed previously, such as smoothing of angular
distributions due to resampling, also hold in this study.

An additional feature of our model is that it uses in-
formation from the mean square displacement, ¢°(), and
so it covers different regimes of time, including behavior
at long times, where the motion is close to that of Brown-
ian motion, as well as in the short-time regime, where the
effects of correlations play a significant role. This leads to
a full formulation of the probability distribution of the
displacements of animals and their mean distances traveled
at any time after starting (for a discussion on the short-
time regime, see Wu et al. 2000). This is of special interest
when making the comparison with discrete-step, discrete-
time models. In many of these models, many quantities
of interest are really defined only for the long-time regime,
where the number of discrete steps is used as an approx-
imation of time (Bovet and Benhamou 1988). By contrast,
the continuous-time description presented here allows us
to characterize the behavior and implications of correla-
tions over relatively short timescales and to derive the
correlation time that is directly related to the actual level
of correlation in the observed paths.

We note that the model presented here relaxes some as-
sumptions commonly made for the sake of mathematical
simplicity (rather than for direct biological relevance). These
include (1) the assumption of constant velocity (see Codling
et al. 2008) and (2) the assumption of independence of step
length and angular changes in direction (Kareiva and Shi-
gesada 1983). Furthermore, because the angular distribution
of a piecewise linear discrete path appears as a by-product
of changes in the mean square displacement, as shown in
this study, the need for characterizing and using complicated
angular distributions (Byers 2001; Bartumeus et al. 2008;
Codling et al. 2008) may be avoided.

The results presented here are designed to accommodate
the most common methods of data collection, namely film-
ing/digital video recording and telemetry (radio tracking,
GPS, radio frequency identification). On a practical side,
and probably of particular interest for ecological studies,
knowing the mean value of the displacement in the as-
ymptotic long-time regime, where o°(¥)/t is independent of
time f, can yield an estimate of the diffusion coefficient and
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hence allow a quantitative description of the dispersal of
organisms. This can be done without knowledge of partic-
ular paths of individuals but with an average over all dis-
placements at a given time, provided this time is suitably
large. An estimate of the correlation time T gives an indi-
cation of the minimum time at which to sample the pop-
ulation’s mean square displacement, because when t>> T,
the quantity ¢°(#)/t is expected to approach a constant value
(see fig. 3).

The work presented here provides a new perspective on
the description and, hence, the study of animal movement
via a statistical model that is centered on the mean square
displacement ¢°(#). This quantity encapsulates key features
of animal movement with a number of other character-
istics subordinate to it. We suggest that future progress,
along the lines of our work, may lie in two directions. The
first direction is measuring how the mean square displace-
ment, o°(t), varies with time t. It would be natural to
consider a variety of different organisms, in different con-
texts, and then proceed to produce plausible models and
explanations of the observed forms of ¢°(¢). The second
direction would lie in investigating the optimization of
resource discovery in an evolutionary ecological context.
Our results suggest that modifying the nature of the search
paths is equivalent to modifying a single function, namely
a’(t). A mathematical formulation of search strategy in
terms of ¢°(#) may thus be possible.
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