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Finite temperatures are incorporated into the calculation of the tunneling rate in the presence of
linear dissipation. A theory of finite-temperature tunneling is introduced which is based on the den-
sity matrix which provides an approximate description of the metastable state. Semiclassical func-
tional integral methods are used to calculate the density matrix and the Wentzel-Kramers-Brillouin
approximation is used to derive the tunnel current from the density matrix. Dissipation appropriate
to superconducting quantum-interference devices is introduced into the calculation by the use of the
existing model of a heat bath consisting of a prescribed distribution of harmonic oscillators linearly
coupled to the tunneling variable. The finite-temperature tunnel escape rate obtained is of the form
I'=A exp(—S/#). S is determined from the solution of a nonlinear integro-differential equation.
An existing numerical technique was modified to achieve this. The quantity A is approximately

evaluated.

I. INTRODUCTION

The problem of escape of a physical system trapped in
a metastable potential well is one with many exemplifica-
tions in physics and chemistry. Well-known examples in-
clude the decay of a heavy nucleus by emission of an a
particle, the field emission of an electron from anatom or
from a solid surface, many chemical reactions, and the
motion of paraelectric defects in an insulating solid. In
these cases the systems in question are microscopic. How-
ever, thanks to the rapid development of cryogenic tech-
nology, it has also become possible in recent years to
study cases where the “trapped” variable is macroscopic:
for example, the magnetic flux through an rf SQUID ring,
or the charge-density waves in certain one-dimensional
solids. The considerations presented in this paper were
developed with reference primarily to such a macroscopic
context.

At high temperatures the process by which the system
escapes from the metastable well is of course the classical
Kramers! process, in which it picks up enough energy, by
a thermodynamic fluctuation, from its environment to
surmount the barrier in a purely classical manner. In his
original calculation, Kramers considered a system with
coordinate g (¢) which was subject to random noise exert-
ed by its environment in such a way that its equation of
motion contained a frictional force — 4. He showed that
the rate of escape was given by a formula of the general
form

P=w(n,Texp(—Vo/kpT) , (1.1)

where V) is the height of the potential barrier (measured
relative to the bottom of the metastable well) and w(n,T)
is a quantity with dimensions of frequency, which in his
model tends to zero in the limit both of very small and of
very large friction 7). This is easy to understand physical-
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ly: for large friction the system diffuses over the barrier
only very slowly, while for weak friction it has difficulty
in picking up enough energy from the environment to sur-
mount the barrier. In the present context it is important
to emphasize two points: (1) the escape rate [Eq. (1.1)] de-
pends only on the height of the barrier, not on its width or
shape, and (2) in the absence of any friction at all the es-
cape rate is strictly zero [since the prefactor w(%,T) van-’
ishes]. While these general features of Kramers’s solution
have been confirmed by subsequent work on the subject,
there is still a certain amount of debate on the prefactor in
the intermediate domain: see, e.g., Ref. 2 and the litera-
ture cited therein.

At low enough temperatures the Kramers’s formula
gives a negligible escape rate, and the principal mecha-
nism by which the system can leave the metastable well is
by quantum tunneling through the barrier. If our system
is totally isolated from any environment, then the standard
Wentzel-Kramers-Brillouin (WKB) formulas should ap-
ply; the tunneling rate at zero temperature is given by the
following expression [In Eq. (1.2) the WKB integral is
taken between the classical turning points for a particle of
zero energy. It is of course also possible to write it in
terms of the integral between turning points for one of en-
ergy #wg/2: this merely introduces an extra #-
independent factor into w,.]:

P=w, exp (1.2)

q
—2 [ [2MV(9)%dq /% |,

where M is the mass of the system and qq is the “exit
point” from the barrier, i.e., the first nonzero value of g at
which V(gq)=0. [We take the metastable minimum to lie
at ¢ =0, V(0)=0.] The prefactor w, in Eq. (1.2) is of
the order of the small oscillation frequency
wo=[V"(0)/M] [times a factor of order (V,/#wy)'’?].
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Note that in contrast to the Kramers formula Eq. (1.1) the
WKB expression [Eq. (1.2)] (1) depends on the width and
shape of the barrier as well as its height and (2) is perfect-
ly finite in the limit of zero friction. Since it is obvious
after a little dimensional analysis that the WKB exponent
in Eq. (1.2) can be written for any nonpathological poten-
tial in the form aV,/%w,, where a is typically of order
27, we see that the Kramers rate calculated from Eq. (1.1)
becomes comparable to the zero-temperature tunneling
rate when the condition kpT =#iwy/27 is satisfied. Con-
sequently if we are interested primarily in quantum ef-
fects, we should restrict ourselves to temperatures lower
than this (cf. however, Refs. 3—35).

We may now ask how the expression of Eq. (1.2) is to
be generalized to low but finite temperatures. As regards
the dominant exponential factor, the answer is straightfor-
ward, at least provided we assume that the barrier height
Vy is sufficiently large compared with #w,. If this is so,
the well will contain many excited states which in the ab-
sence of tunneling would be energy eigenstates, and in the
limit Vy/#iwg— oo it is natural to approximate these by a
continuum. We then pose the question as follows: if at
time zero the population of these states was described by a
Boltzmann distribution at temperature T'=(kp/8)~!, what
is the initial rate at which the probability of finding the
particle 'in the well decays? To answer this question we
note that the probability of decay from an excited state of
energy E is given by the formula

q

[(E)=0,(E) exp [—2 fqlz [2MV()]'dg /A |,  (1.3)
where the prefactor w,(E) is a slowly varying function of
E. As is well known® the WKB exponent can also be
written in the form A (E)/#% where A is the classical ac-
tion ( f pdq) of a particle of energy — E performing a
complete periodic motion in the inverted potential
V(q)=—V(q). Since the probability of the system being
in a state of energy E is Zj ! exp(—BE) where Z,, is the
partition function, the total decay probability is

r=25" [ ” dE p(E)o,(E) exp| — A (E) /#lexp(—BE) ,
(1.4)

where p(E) is the density of levels with respect to energy.
If we neglect the slow variation of the factor p(E)w,(E)
the expression (1.4) is dominated by the minimum of the
exponent BE + A (E)/#, which occurs at an energy given
by B=—#"10A4/3E. Recalling that A is actually the
classical action of a trajectory with energy — E in the in-
verted potential, we have —3A4/0E =7 where 7 is the
period of the classical motion in question. Thus, the dom-
inant tunneling takes place at or near the energy such that
7(E)=p#. Since, for any reasonably smooth form of the
potential, the quantity 7(E) decreases smoothly from the
value infinity for E =0 to the value 27w /wy for E—V,
where w; is the quantity (— V""/M)!/? evaluated at the
top of the barrier, it follows that the equation 7(E)=ph
has a solution only for Bfiwy/2m>1, ie., for kgT
<< tiwg/2m=kgT,. At temperatures higher than this the
main contribution to the decay probability comes not
from tunneling but from classical fluctuation processes

taking the system over the barrier, in accordance with the
order-of-magnitude estimate derived above (since wy=~wj
for not too pathological forms of potential). We shall not
explore this region here (although cf. the remarks below).

The upshot of the above discussion is that the argument
of the exponential factor in the tunneling rate is the quan-
tity BE + A(E)/# evaluated along that classical cyclic
path in the inverted potential which is traversed in a time
7=p%, where E is the energy appropriate to this path.
Since in classical mechanics the quantity E7+ A4 (E) is
just the time integral of the Lagrangian along the path, we
can write the result in the form

C=f(T)exp(—S /%),
S= [ Lggydt,

where the quantity S is evaluated along the ‘“classical”
path determined as above and f(7) is a quantity which is
not exponentially sensitive to #. In the literature on tun-
neling it is common to see S referred to as the classical ac-
tion; we shall adopt this usage since no confusion is likely
to occur.

The question of the prefactor is more subtle. In Ref. 7,
Affleck took the quantity p(E)w,(E) to have the constant
value (27#)~! and thereby derived for the prefactor the
expression Zg ! |27#%97/0E | ~!. He showed that Eq.
(1.5) with this value of f(T) is also obtained if we assume
the relation

2
'=—ImF(T),
P (T)

(1.5)
(1.6)

(1.7

where F is the free energy at temperature 7.

A point which will be of considerable importance in the
generalization to dissipative systems (see below) is that,
for the model studied, that is, for a system which is as-
sumed totally decoupled from the rest of the universe but
nevertheless described initially by a Boltzmann distribu-
tion as regards the excited states in the metastable well,
the above results are correct only for the initial decay rate.
The reason is trivial: for finite (real) time ¢ the prediction
of this model for the probability P(z) that the system is
still to be found in the metastable well is

P()=2Z5" [ p(E)exp(—BE)exp[ —T(EN]dE , (1.8)

so that I'(¢)= —(d /dt)InP(¢) is in general not even con-
stant in time. Now, of course, the obvious reply is that it
is not realistic to decouple the system so completely from
its environment that the Boltzmann distribution is not ob-
tained; rather, the physically realistic assumption is that
weak but finite interactions maintain the relative popula-
tions of the states in the well at its Boltzmann form for all
times, in which case the above argument [and in particu-
lar Eq. (1.5)] should predict the decay probability correct-
ly for all . While this argument has considerable plausi-
bility, and it would be very surprising if the exponential
factor in Eq. (1.5) were wrong, it is by no means clear that
the prefactor is correctly given. Indeed as explicitly noted
by Affleck,” use of the analogous formula well above the
crossover temperature T, correctly reproduces the Kra-
mers exponent — 3V but gives the prefactor wy/2m corre-
sponding to the “transition-state” theory; the latter is gen-
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erally believed to give quite incorrect results for the
steady-state rate in the weak damping limit. (In particu-
lar, quite general arguments would indicate that in the
limit where the damping tends to zero the prefactor
should also tend to zero, as it indeed does in the Kramers
theory.) Thus even for the undamped case the use of for-
mula (1.7) for the steady-state rate is not completely free
of problems.

Two further points need to be briefly noted about the
arguments leading to Eq. (1.5). First, we had to assume
that the energy levels in the well could be approximated
by a continuum. As a matter of fact, this is almost al-
ways a rather poor approximation in cases of physical in-
terest, since even for, say, the fission of 23%U the quantity
Vo/%iwg is only of order 10 while for systems such as
SQUID rings it may easily be only 2 or 3. In such cases a
more detailed calculation is needed and the results®® show
differences from the predictions of Eq. (1.5) which are not
negligible when comparison with experiment is made; in
particular, the smooth temperature dependence predicted
by Eq. (1.5) is replaced by a rather sharp kink (see Ref. 10,
Fig. 4). This point relates primarily to the exponent. A
related, although not identical point concerns the use of
the approximation (27#)~! for the quantity p(E)w,(E)
which helps to determine the prefactor. This should cer-
tainly be valid for states in the correspondence limit, but
is not obviously so for the ground state and first few ex-
cited states. Thus, the applicability of formula (1.5) to sit-
uations of real-life experimental interest is not completely
clear.

After this litany of scepticism we turn to the real sub-
ject of this work, namely the generalization of the above
results to systems subject to appreciable dissipation. We

. refer, e.g. to Ref. 10 for a discussion of why this is an im-
portant question in particular in the context of tests of
quantum mechanics at the macroscopic level, and hence
assume its interest. We shall further assume in this paper
that in the case under consideration the mechanism of dis-
sipation can be adequately described by the ‘“‘standard”
model of linearly coupled harmonic oscillators introduced
in Eq. (4.1) below. It should be emphasized that while
strong arguments can be given'! that this is an adequate

general description in the case of zero-temperature tunnel--

ing, some of these arguments do not generalize trivially to
the finite-temperature case, so that the validity of Eqg.
(4.1) as a general model of finite T requires separate dis-
cussion. Nevertheless, to the best of our knowledge all
other work in this area which attempts to treat the general
problem of tunneling in a linearly dissipative system at
finite temperature (as distinct from work'>!? on specific
systems such as ideal tunnel-oxide junctions) has in effect
started from the Lagrangian of Eq. (4.1). Thus, our prob-
lem, in common with that of other workers, is to deter-
mine the rate of tunneling of a “system” described by a
coordinate g out of the metastable minimum of its poten-
tial ¥ (q), when it is coupled to an “environment” in the
way described by Eq. (4.1). In this paper we shall further-
more (a) confine ourselves to the temperature region
where classical above-barrier processes do not play a role
(thus we shall not be concerned with the interesting ques-
tion3>—> of how quantum-mechanical effects modify the
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classical Kramers theory in the presence of appreciable
dissipation for T > T, nor with the precise form of the
classical behavior), and (b) specialize to the case of linear
“Ohmic” dissipation [Eq. (4.4)] which is probably the case
of most relevance in the context of macroscopic systems.

The generalization of these results to the case where
constraint (b) is relaxed is straightforward (cf. Ref. 14);
when (a) is relaxed it is rather less so, and we shall not at-
tempt to discuss it here. In evaluating our formulas nu-
merically we shall specialize even further, to the case of a
quadratic plus cubic potential, which as explained in Ref.
11 is likely to be of most importance for macroscopic sys-
tems.

For the special case of zero temperature this problem
was treated by Caldeira and one of us'>!! and by oth-
ers.16—18 By contrast, when we started the work reported
in this paper there were no results in the literature on the
finite-temperature generalization. In the last year and a
half or so, however, at least three different sets of work-
ers!®~23 have reported extensive calculations on this prob-
lem; in particular, rather detailed quantitative expressions
for both the exponent and the prefactor in the expression
for the tunneling probability have been given by Larkin
and Ovchinnikov?! and by Grabert and Weiss®> (however
neither of these analyses was available to us when the
work reported here was first presented?*). The reader
might well wonder what we have to add to these results.

In fact, the main reason why we think it worth publish-
ing the results of our own calculations on this problem is
that they are obtained by a method which is quite dif-
ferent from that used by other authors, and which we be-
lieve may avoid some of the conceptual difficulties in oth-
er approaches. In particular, the results of both Larkin
and Ovchinnikov?®?! and Grabert and Weiss*>?* (the re-
sults of Zwerger'® are difficult to compare with these, as
he confines himself to weak damping and calculates the
rate of tunneling out of the individual levels rather than
the overall decay rate of the metastable state) are based on
the use, for a dissipative system, of the formula (1.7), that
is

2

=2 ImF . (1.9)
While this identification is certainly a plausible one, no
rigorous proof exists (to our knowledge) that it is correct
for a dissipative system in the quantum regime.?> In Ref.
20 it is justified implicitly by an analytic continuation
procedure whose validity seems to us difficult to assess,
while in Ref. 21 it is simply stated, with reference made to
three papers, none of which deals with a dissipative sys-
tem in the quantum tunneling regime. The authors of
Ref. 23, by contrast, give explicit arguments in favor of
the identification Eq. (19), namely that it reproduces re-
sults obtained by other means, and generally believed to be
correct as follows: (a) for the nondissipative case (Ref. 7),
(b) further in the limit of zero temperature (Ref. 11), (c)
for temperatures above the crossover temperature T, to
Kramers-like behavior (Ref. 4), and (d) for T slightly less
than T,. While these arguments are certainly attractive,
it should perhaps be pointed out that in at least some of
these cases the results with which comparison is made are
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themselves not completely beyond doubt; see, in particu-
lar, the comments made above about case (a). [Further
discussions of the significance and regions of validity of
the relation (1.9) in the classical case has been given re-
cently by Zwerger.2® A further recent development of in-
terest is by Dorsey and Fisher?” and independently by
Grabert and Weiss?® which demonstrates that for the case
of overdamped transitions in a slightly biased two-state
problem, a calculation based on analytic continuation of
the expression for the free energy gives results identical to
those obtained from a real-time calculation. However, it
is not clear how far this result is relevant to the present
problem.] For this reason, in our own work we have con-
sciously and deliberately avoided the use of formula (1.9)
and attempted to obtain an expression for the tunneling
rate I' by a completely different method which requires
no analytic continuation of any physical quantity at any
stage of the calculation. While it does require the use of
one unproved assumption [Eq. (4.28)], we believe that this
assumption is no less plausible than that involved in the
identification of Eq. (1.9). Thus if the results obtained in
this way should agree with those obtained from Eq. (1.9),
we could regard this as further support for the correctness
of the latter (see, however, the Conclusion); if they should
disagree, further analysis of both methods is clearly need-

ed. Unfortunately, the question of the extent of agree-

ment or disagreement is at the time of writing still rather
unclear (see Conclusion). It should be emphasized that
the disagreement, if any, is confined to the prefactor in
the tunneling expression: our results for the exponent are
identical to those of other authors. A second reason why
we believe that this work may be of interest is that, in
contrast to other authors who have evaluated the exponent
analytically in certain limits, we have carried out a fairly
extensive numerical evaluation for a wide range of values
of dissipation and temperature, which we believe may
complement the analytic work. These results were first
presented in a thesis to the University of Sussex.?*

The work presented in this paper is arranged as follows.
In Sec. II we begin our approach to tunneling by deriving
the approximate density matrix which describes the meta-
stable state in the absence of dissipation. In Sec. III we
show how to calculate the finite-temperature tunnel es-
cape rate (in the absence of dissipation) from this density
matrix. In Sec. IV the nondissipative treatment of Secs. II
and III is generalized to include dissipation. In Sec. V we
numerically evaluate the formula derived for the finite-
temperature tunnel escape rate in the presence of (linear)
dissipation. A conclusion follows Sec. V.

II. DENSITY MATRIX DESCRIBING
THE METASTABLE STATE

In this section we set the foundations to our approach
to tunneling. We derive the semiclassical approximation
to the density matrix which describes the metastable state
in the absence of dissipation. Consider a single particle
with coordinate ¢ (¢) moving in one dimension in a poten-
tial ¥ (q) which has a metastable minimum (Fig. 1).

We know that if the potential barrier is sufficiently
high and wide, a particle initially trapped in the metasta-
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FIG. 1. A metastable potential.

ble minimum will behave to an excellent approximation as
though the minimum is stable. In particular, if the parti-
cle is weakly coupled to a heat bath at temperature T it
will come to - a local thermal equilibrium at this tempera-
ture. The density matrix which approximately describes
this metastable situation and does not include the ex-
tremely small currents associated with tunneling and clas-
sical escape processes is the object we shall derive next.

The normalized density matrix of a particle with Ham-
iltonian

2
H=2_1v( 2.1)
2m
at temperature T =#/kg is given by
p(,457)=3 Yalg@¥ige ", 2.2)
n

where ,(g) are the energy eigenfunctions of the Hamil-
tonian and E, are the corresponding eigenvalues. This
has a path-integral representation®

q,7/2
plg,q';7)= fq, =T/zd[q]e's["]”‘ , (2.3)
where
/2 ;2
Slal= [, dt |"—+v(@ (2.4)

and the notation of Eq. (2.3) means the functional integral
over all trajectories starting at g’ at “time” —7/2 and
ending at g at time 7/2.

The semiclassical approximation to Eq. (2.3) is summa-
rized in Appendix A and the result is

p(g,q';7)=3 N det™'2[ —md} +V"(g;(1)]
j

Xexp(—S[g;1/%) . (2.5)

The trajectories g; are classical trajectories in the inverted
potential — V'(q) (Fig. 2) and satisfy equations (A5).

Let us reconsider the potential ¥ (q) of Fig. 1 which ap-
pears in Eq. (2.1). Note that we have included a second
minimum of the potential. This reflects our expectation
that in general there will be at least one minimum of the
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FIG. 2. The inverted metastable potential (of Fig. 1).

potential other than the metastable minimum. There may
be many more, but for the arguments we shall give a
second minimum will be adequate. In order to avoid
quantum coherence phenomena we shall always assume in
what follows that the second minimum is far from being
degenerate with the metastable minimum.

Let us return to the semiclassical approximation to the
density matrix as given in Eq. (2.5). This contains the
contributions of (in gereral) many classical trajectories
{g;} which move in the inverted potential (Fig. 2). The
density matrix which describes the metastable state can be
obtained by including in the sum of Eq. (2.5) the contribu-
tion from only a single trajectory.

This trajectory is determined by looking at a different
density matrix, namely the density matrix for a pure har-
monic potential Vy(gq) (the stable potential) which is cen-
tered on the origin (as is the metastable minimum) and
has the same curvature as the metastable minimum at the
origin. When the semiclassical approximation is made to
the harmonic-oscillator density matrix a single trajectory
will (exactly) dominate. Of the set of trajectories {g;} ap-
pearing in Eq. (2.5) only a single one [say, g(z)] will close-
ly correspond to the trajectory dominating the harmonic-
oscillator density matrix. It is g(¢) when used in Eq. (2.5)
which yields the density matrix of the metastable state.

A precise identification of g(#) may be made (if any
ambiguity exists) by noting the following point. In the
limit g,¢q’—0 a single trajectory g(¢) out of the set {g;}
will exactly deform into the “harmonic-oscillator” trajec-
tory (i.e., that trajectory dominating the harmonic-
oscillator density matrix). This uniquely specifies g(t)
and hence the density matrix computed from it. (We will
subsequently consider values of ¢,q’ which are not small.)

Let us make this clear with an example. If ¢,¢’ >0 and
the time of motion, 7, is sufficiently large at least two
classical trajectories in the inverted potential (Fig. 3) will
be possible. (We draw the trajectories as horizontal lines
at the energy of the motion.) To simplify Fig. 3 we have
only included two classical trajectories; the omitted trajec-
tories will play the same role as trajectory (a) in the ensu-
ing reasoning. A comparison of these two trajectories and
the trajectory in the inverted harmonic potential (Fig. 4)
clearly shows that it is trajectory (b) of Fig. 3 which close-
ly corresponds to the trajectory in the inverted harmonic
potential.

The use of only the contribution of trajectory (b) in Eq.
(2.5) yields the density matrix describing the metastable
state (as we shall show below by comparison with the
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FIG. 3. Classical trajectories in the inverted potential from g
to g’ both with period 7.

WKB result). Applying considerations such as the ones
above, we obtain, for more general values of g,q’ (but see
later for limitations on these values), the following semi-
classical approximation to the density matrix describing
the metastable state:

p(g,q";7)= N det= [ —md?+ V"(g(1))]

Xexp(—S[q]/%), (2.6)

where @ is the appropriate “oscillatorlike” trajectory.

The statement that Eq. (2.6) is the semiclassical approx-
imation to the density matrix which describes the meta-
stable state will be elucidated shortly but let us note two
points.

(1) Formula (2.6) for p(q,q’;7) certainly satisfies the
boundary condition we would require of such an object,
namely that for g,q’—0 it continuously deforms into the
density matrix for the harmonic potential V,(q). This
statement is in fact more restrictive than it need be. If, in
the vicinity of the metastable minimum it is possible to
write

2
20 42(1—q /b)

m
Vig)=

then for ¢,q9’ <<b, p(q,q,’;7) will be approximately that of
a harmonic oscillator.

(2) The second point we note is that p(q,q’;7) is purely
real and hence carries no current.

We can see the full content of the density matrix we
have derived by obtaining the same quantity from WKB
methods. To make the comparison easier we shall rewrite
the functional determinant in Eq. (2.6) (Refs. 30 and 31)
to obtain

FIG. 4. The unique classical trajectory in the inverted oscilla-
tor potential from g to ¢’ in time 7.
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(@a's) 1 1 'aEcl
P q,q;T)= N A
2t G 2)g(—7/2)| | 9T
xexp(—S[F1/#) , 2.7)

where — E(q,q’,7) is the energy of the motion in the in-
verted potential:
mg?

2

—E, = —V(@ . (2.8)

We shall now show how Eq. (2.7) arises from WKB
methods.

In the potential of Fig. 1 we construct wave functions
Xn(g) with the following properties. In the classically ac-
cessible region II, X,(q) coincides with the normalized
harmonic-oscillator energy eigenfunctions in the potential
Vo(q) which have energy €,=(n + 5 Jfiwo. In the classi-

cally forbidden regions I and III, X, (q) coincides with the
spatially decaying WKB solutions (i.e.,

J
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|
Xn(q)~exp *%f ‘! |p(q'sgn(q)) |dg’ |,

which smoothly join to the oscillator wave functions and
are evaluated at energy €,).
It is the object

p( q’ql;T)=2Xn(q)Xn(q;)e—En’l'/ﬁ ,
n

2.9

which corresponds to the density matrix of Egs. (2.6) and
2.7).

To illustrate this we consider the specific case where ¢
and q’ lie in region III. In this region we have

(mNn)l/Z 1
J

Xn(@)=——""—exp | —
e @172 7|75

: 1p.(¢") |dg’ | (2.10)

with
Pa(g)=[2m(e, —V(g))]'/?

and g, is defined by p,(q,)=0 (g > g, >0).

The factor N, arises from the smooth joining to the os-
cillator wave functions. Use of Eq. (2.10) in Eq. (2.9)
yields

(2.11)

N,m 1 q q
plg,q';T)= - exp ——{ | pn | dg” + |p |dq"+e,,f} (2.12)
; [ 1P(@)pnlg") | 1" #i f"n ! f”» "
The sum is converted to an integration over energy
N(E)p(E)m 1 { q " q " ]
,q;7)= | dE - E)|d (E)|d E , (2.13)
Aladin=] VIp@Bp @B T | A fq(E) P (E)]dg +fq(E) |P(E)|dg"+Ex
[
where p(E) is a density-of-states factor. Equation (2.11) enables us to write
The integral is evaluated by making a Gaussian approx- Ip(g" Ey) |2
imation to the integrand in which the extremum and M_V(qrr):_ E, . (2.16)
quadratic fluctuations are determined solely by the ex- 2m
ponent. The velocity (parametrized by the position g’'),
The extremum occurs at an energy E_ which is the y 'p (" Ey)] Y p a
solution of é(q“)g———-——p q"; a’l (2.17)
Ty(Eg)=T, (2.14)
corresponds to the motion (b) in the inverted potential de-
where picted in Fig. 3. It follows that g(q"’) is the same trajec-
_re mdq"’ q mdq"’ ‘ tory that appears in Eq. (2.6).
Ta(E)= fq(E) |p(q",E)| + fq(E) |p(g",E)| ~ (2.13) The Gaussian approximation to Eq. (2.13) is thus
I
N(E,)p(Ey) _ © (E—Ey)? | TY(Ey)
plg,q';T)=— .1 Pl e Sk f dE exp— ! 2|ﬁ 1(Ea) |
[1g(r/2)g(—7/2)|]'? o
172
oE, _
=[27#N (Ey)p(Ey)] - 1 - I 3 ! e—S@l/A (2.18)
2mh | G(r/2)g(—7/2) | T

where

q ol 7 = _n ”
S[?]=fqlm17(q”)dq"+ ch]mq(q )dq" +EqT

CeT/2
= f dt . (2.19)
—7/2

=2
i"g—m+ V(g(1)

! Equation (2.18) is to be compared with Eq. (2.7). We
do not arrive at any inconsistencies if we assume the two
results are identical. The factor 27#AN (E)p(E,,) is thus
identified as unity. This can be confirmed by considering
9,9’ in region II—the (approximately) harmonic region in
which the Gaussian approximation may be considered ex-
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act. We conclude this section with the comment that the
Gaussian approximation automatically converts a WKB
sum into an integral.

III. TUNNEL ESCAPE RATE IN THE ABSENCE
OF DISSIPATION

In this section we show how to obtain the finite-
temperature tunnel escape rate from the density matrix
derived in the preceding section. In the WKB approxima-
tion the calculation of the tunnel escape rate of a particle
in a metastable state with energy E may be carried out in
the following way. :

In the classically accessible region IV of Fig. 1 we
specify an outgoing wave '

(3.1

Yrvig)= —‘/TE(—;)-eXp -;— fqz (E)p(q')dq' +im/4

[g,(E) is the turning point between regions III and IV].

Using the WKB connection formulas® we obtain the
wave function in the classically forbidden region III of
Fig. 1:

_ C (s [1P |p |dg’
Ymlg)= "‘T p_(_q) I \e a
. q(E) ,
+oe [ 1e1d (3.2)

In regions I and II we approximate the wave function
by the function X,(g) defined previously: normalized
harmonic-oscillator wave function in region II joined to
the WKB solution of region I which vanishes as g— — oo
The coefficient C of ¥yy;(g) is determined by matching the
amplitude of ¥y and the harmonic-oscillator wave func-
tion over a part of region III. In doing so we ignore the
small imaginary part of ¥(q).

We can now compute the probability current in region
III or region IV, they are the same. We find a current

2
1‘=Lfn'— . (3.3)

This current corresponds to the tunneling of particles
out of the metastable well and I'~! is the average time
spent in the potential well. We shall refer to I" as the tun-
nel escape rate.

If we consider only the spatially decaying part of
¥m(g), i.e., the part which goes as

1 ra ,

exp | — [ iplde |,

which is the real part of the wave function:
C asm [1E \p |dg
X(g)=Reyy(g)=—F——=—c¢ , (34)
q Ymlq @]

and we define the velocity

7(g)= r(:) , (3.5)

we can write the tunnel escape rate as
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2 .
r=1SLC_ iim G@xg|?. (3.6)

m g—q(E)—

Now if we construct a probability density which consists
only of spatially decaying WKB wave functions beneath
the barrier, i.e.,

P(q)=|X(g)|? (region III), (3.7)
then Eq. (3.6) can be written as
I'= lim g(q)P(q). (3.8)

q—q(E)—

This formula has a generalization to finite temperatures
which will form the basis of our approach to finite-
temperature tunneling.

Before we discuss this generalization let us note that if

.we keep the definitions of the wave functions 1 in regions

I and'II unaltered in the definition of the probability den-
sity, then P(q) is approximately normalized to unity in
the sense

q
[ D P@dg~1, (3.9)

where gy is a point deep in region III.
Returning to Eq. (3.8), the finite-temperature generali-
zation of this is

lim  g(q,7)P(g,7), (3.10)

94, (1)~

I'(r)=

where P(q,7) is a WKB approximation to the probability
density (built out of spatially decaying WKB wave func-
tions beneath the barrier) at temperature T =#/kpT and
g(g,7) is an appropriate velocity function which vanishes
at g =g, (7).

We have, of course, a candidate for P(q,7), namely the
probability density derived from the density matrix of Eq.
(2.6). However, p(q,q’;7) is not normalized to unity. We
shall normalize it in the sense of Eq. (3.9) by dividing the
trace of the density matrix corresponding to the stable po-
tential, namely the harmonic oscillator. For this potential
we have

polg,q;7) =N det = [ —md2+mawdle 772> | (3.11)
where
2y _ Do
(¢*)= Iman coth 5 (3.12)
Hence
P(gr)= (%’r‘;;” , (3.13)
0
1 det(—md2+ V"(g(r)) -2
Plg,m)= 2y,1/2 Y P
(2m(q?)) det( —m; +mawg)
xeSEVA (3.14)

In Fig. 5 we show the trajectory g(¢) in the inverted po-
tential. We assume w7>27 where — mw? is the curva-
ture of V'(q) at the top of the barrier (i.e., at gg).

We note that if Eq. (3.10) [with P(q,7) as given by Eq.
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FIG. 5. A returning but nonperiodic classical trajectory in
the inverted potential.

(3.14)] is to have a meaning, then for g in the vicinity of

gp(7) (at which point 17 vanishes) P(g,7) must be of the
WKB form

P(gn=2127) (3.15)
q(q;7)
with A(q,7) a function possessing a limiting value as

qg—qp(7)—.

If we consider the motion of Fig. 5, it is evident that
the largest value of the end point g that can be specified
for the prescribed trajectory to exist is ¢ =g,(7) at which
point the end point is a turning point of the motion. As is
well known, many quantities of classical mechanics are
singular in the vicinity of a turning point and for the
above probability density [Eq. (3.14)] the singularity man-
ifests itself in the lowest two eigenvalues of the functional
determinant ‘

N~2det[ —m3*+V"(g(2))] .

It is very natural to expect the behavior of Eq. (3.15) to
arise from these two eigenvalues and hence we shall inves-
tigate their behavior as a function of q at fixed 7.

The operator —md?+ V"(g(z)) is analogous to the
Hamiltonian operator in the Schrodinger equation where
the role of the coordinate is played by the time z. We
shall always imagine the potential ¥ (g) to be of the form

mag

Vig)= q*(1—q/b) ; (3.16)
however, the conclusions we come to will be of more gen-
eral validity.

We use the following procedure to obtain detailed infor-
mation on the lowest two eigenvalues of the Schrodinger

operator. The eigenvalue equation is [Eq. (A15)]

[—m3}+ V" (G()]hn(t)=Any (1) (3.17)
with boundary conditions

bp(£7/2)=0. (3.18)
The equation of motion which g(z) satisfies is [Eq. (A6)]

—mg()+V(g(1)=0. (3.19)
The time derivative of this is

[—mdi+V"(g(1)]g(H)=0. (3.20)

We note that g(z) is an antisymmetric function with a
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single node. When 'q;(i7'/2)=0, g(¢) satisfies both the
eigenvalue equation [Eq. (3.17)] and the boundary condi-
tions [Eq. (3.18)]. Thus only when g(+7/2)=0 is g an
eigenfunction of Eq. (3.17) with the correct boundary
behavior. The antisymmetric eigenfunction associated
with the second smallest eigenvalue, ¢,(z), is similar to
é(t) in that it has a single node. It is clear that when
g(+7/2)—0, g(z) must (within a normalization) become
do(2).

Accordingly, for small q'( +7/2) it is a good approxima-
tion to write

ga(0=L1 (3.21)

where

. T . /:
idi= (77 d2wa]”

ensures the approximation to ¢,(¢) is correctly normalized
to unity.
Let us now form the following quantity. For n =2

1 3.22)

‘ multiply Eq. (3.17) by g(¢) and subtract Eq. (3.19) multi-

plied by ¢,(¢). We obtain

—m [G(1)0%,(1) —bx()G (1)1 =Ayby(1)G(2) . (3.23)
Integrating this_ foom 0 to 7/2 and 'using
&2(7/2)=¢,(0)=g(0)=0, we obtain

. . 7/2 .

—mq(r/2)6o(r/2)=D [ dt $o(1)g(1) . (3.24)

Use of the approximation Eq. (3.21) in Eq. (3.24) gives

Azzﬁ‘—‘”i_%z—”—é(r/z)
7

(we have used the fact that g§(7/2) <0). Equation (3.25).
reveals the way A, vanishes as the end-point velocity be-
comes small.

Let us now use a similar method to find the lowest
eigenvalue A;—belonging to the symmetric eigenfunction
¢1(2). We go back to Eq. (3.17), set n =2, multiply by
¢1(2), and subtract the corresponding quantity with 2=1.
Integrating this from O to 7/2, we quickly find for small

g(r/2)

(3.25)

= 28T oy AT, (3.26)
g
where
a112 0)d,(0
a=—1all fjlz( 0. 3.27)
1g(r/2)| 2 [ dt g1(1)ga(2)

From the behavior of ¢, and ¢, it immediately follows
that A>0. (We have found A=0 only for 7= .) The
implications of Egs. (3.26) and (3.27) are that P(g,7) does
not behave as in Eq. (3.15), but rather

1

P(q,7) = - .
[g(r/2)[q(r/2)—A]]'"?

1
(AyAp)1 72 o« (3.28)
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This is at first sight a surprising result. It means
P(q,7) does not diverge in a WKB manner (i.e., as the in-
verse of the velocity) at g =g,(7), but because of the pres-
ence of A it diverges at a value of q smaller than g, (7).

In order to understand the behavior in Eq. (3.28) let us
first note that Eq. (2.7) gives a representation of p(q,q';7)
which results on setting ¢’ =g, in

0E 4
ar

172

P(q,7) xp(q,q,7) (3.29)

3(1/2)
Equations (3.28) and (3.29) can be reconciled to one
another if

dE cl
or

g(r/2)
?(1’/2)—A

(3.30)

In Appendix B we show that this is indeed the case.

The anomalous behavior [g(7/2)—A]~'/? is therefore
directly attributable to the factor |3E/d7|!”?, which
from Eq. (2.18) can be seen to arise from quadratic energy
fluctuations about E. Thus for g in the vicinity of g,(7)
the Gaussian approximation as used in Eq. (2.18) is break-
ing down.

The resolution of the problem is to repeat the derivation
leading to Eq. (2.18) this time using the “exact” wave
functions in the vicinity of g =g,(7). These are, of
course, Airy functions. The calculation is straightforward
and we find for g extremely close to g,(7), inter alia, the
factor |9E, /dr|'/? is replaced by |0E, /07| 172 where
— E, is the energy of the periodic motion in the inverted
potential (i.e., the motion starts and ends at g,(7) and
takes a time 7 to do so). Thus to correct the quadratic en-
ergy fluctuations for g close to g,(7) we make the replace-
ment

3E,, 172 oE, 172 an
or or '
However, from Eq. (B14) we have
172
172 . 172
9E, g(r/2)—A dE
- | = : ) (3.32)
aT q(T/Z) 87'
hence Eq. (3.31) can be written as
172
172 . 172
dE g(r/2)—A 9E (3.33)
ar g(r/2) or

which is a simple multiplicative correction. .

The probability density corresponding to Eq. (3.14) but
with the corrected quadratic energy fluctuations is, by vir-
tue of the implicit | dE /37| !/? factor,

1/2

q(r/2)—A P(g,7)

P(g,r)= |42
g(r/2)

(3.34)

and using Eq. (3.28) we see that

Plgyr)oc — . (3.35)

g(r/2)

On account of the g(7/2)~! factor, P(q,7) is of manifest-

ly WKB form and is the correct probability density to use

in Eq. (3.10) for the finite-temperature tunnel escape rate.
We have

lim glg,7)P(q,7),
qg—q,(7)—
and using Egs. (3.14), (3.25), (3.27), and (3.34) we obtain
[this result may be shown to be equivalent to Eq. (9) of
Ref. 7; it follows directly from Egs. (2.18), (3.13), (3.32),

(3.34), and (3.36)]:

1 lg|?
'(n)=
Q2m(g® )2 o |g(r/2) |
det"(—md; +V"(q(t)) ]_1/23—3[?1']/5

det(—md?+mawd)

(3.37)

where the double prime on the determinant denotes the
omission of the lowest two eigenvalues.
For the potential
1-4
b }

and in the zero-temperature limit, it is possible to analyti-
cally evaluate Eq. (3.37). We find

,mw% N
2 q

Vig)=

1/2
305, —So/#i
Ty=wo e ,
Th
(3.38)
16 mwgh®
15 2

which is identical with the ground-state WKB result. We
shall conclude this section with some comments on the
formula (3.37) for the tunneling rate.

A. Number of metastable states

In the derivation of the tunneling-rate formula we did
not make any assumptions about the number of metasta-
ble states bound in the potential well, but we did make the
semiclassical approximation to the density matrix. In
principle, it should be possible to determine (from an ex-
amination of the semiclassical approximation) the
minimum number of metastable states required for validi-
ty of Eq. (3.37); at present, however, this is still an open
problem. We should note that in order to have a tunnel-
ing rate which is temperature dependent [which always
follows from Eq. (3.37)] it is necessary to have at least two
metastable states within the potential well.

B. Maximum temperature of validity

The periodic orbit used in Eq. (3.37) corresponds to
tunneling being concentrated about the horizontal line
shown in Fig. 6 which lies at energy E,. As the tempera-
ture is increased, E, increases and the horizontal line
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FIG. 6. The line about which tunneling is concentrated in the
metastable potential.

q

moves up. This eventually takes us into a small region
near the top of the barrier where the linear WKB
turning-point formulas break down. If the curvature at
the top of the barrier is denoted by — mw?, then the
breakdown occurs at temperatures close to, but less than,
T =#w/27ky (i.e., or=27). Such behavior has been dis-
cussed in Ref. 7 and interpreted as the crossover from
quantum to classical escape processes. The formula for
I'(7) will be valid outside this region (i.e., lower tempera-
tures) but it is a delicate problem to specify the precise
temperature at which it ceases to be valid.

Let us note that in the formula of Eq. (3.37) the ex-
ponent S[g]/#% has the value BV, for kzT > #iw/2mw,
where B=1/kgT and V| is the height of the barrier. This
is the exponent of the classical activation process (Ref. 1).
It is therefore natural to assume that S[g]/4 is the
correct escape-rate exponent for all temperatures.

Unlike the exponent, the prefactor in (4.2) (i.e., the
quantity multiplying e ~5/#) cannot be used in the vicinity
of kpT =%w /27 with meaningful results. This is because
at the temperature T =#w/2wky (wr=2m) the factor

117112/ |g(7/2)| vanishes and so does the prefactor.

C. Generalization to include dissipation

Let us remark that the reason why we convert the
(simpler) Eq. (2.18) into the (more complicated) Eq. (3.37)
is that the former has no obvious generalization to the dis-
sipative case.

IV. TUNNEL ESCAPE RATE IN THE PRESENCE
OF DISSIPATION

In the preceding section we calculated the finite-
temperature tunnel escape rate in the absence of dissipa-
tion. In the calculation the central role was played by the
approximate wave functions in the probability density and
not the energy levels of the metastable system. This em-
phasis will, as we shall see in this section, enable us to ap-
ply a similar procedure in the case where dissipation is
present.

The problem we avoid by not concentrating on energy
levels is that they are quite different in the dissipative and
nondissipative cases. In particular, in the dissipative case
the metastable system must be viewed as part of a larger
system—the metastable system and its environment—
which has a continuous set of energy levels.

In order to incorporate dissipation into the finite-
temperature tunneling calculation we use a model of dissi-
pation formulated by Caldeira and Leggett.!! This em-
ploys the Lagrangian
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»2

-2 2.2
_ g MaX g  MaweXx
L__ —V( ) _ a a
) q +§ 5 5
C2
1
-9 caXa—79" 3 — 5 . 4.1)
a a Ma@y

The coordinate g represents the variable of the system
of interest (the tunneling variable), we shall call it the
“particle.” The variables {x,} denote the degrees of free-
dom of the environment and the coupling between the
particle and the environment is governed by the constants
{ca}. A detailed justification of the above Lagrangian as
a description of linear dissipation has been given in Ref.
11 for the case of zero temperature; we shall assume it has
validity at nonzero temperatures.

All information on the environment of relevance to the
particle is contained in the spectral density

T ¥
J)=73 —=

2 myo,

8w—awy,) . (4.2)

If
J(w)=no (4.3)

it can be shown'! that the classical equation of motion
which g obeys is (at zero temperature)

dV(q)

dg (4.4)

mg+ng=—

Hence 1 in Eq. (4.3) corresponds to the friction constant
of the classical motion of the particle and can be experi-
mentally determined.

We shall limit ourselves to the linear spectral density of
Eq. (4.3); however, it is probable that the methods we
shall adopt apply to more general spectral densities.

The procedure we use to obtain the tunneling rate in the
presence of dissipation takes the following form. We in-
vestigate the behavior of the approximate probability den-
sity which describes the metastable state. We take the sig-
nature of tunneling to be the appearance of a velocity
denominator which is characteristic of WKB wave func-
tion. The probability current is then assumed (this as-
sumption has been considered in some detail in Ref. 24) to
be given by the same formula as in the undamped case.

Let us now make an explicit statement of our objective.
We have a particle (or more generally a system) with coor-
dinate g subject to dissipation as described by Egs. (4.1),
(4.2), and (4.3). It is known that initially the particle is lo-
calized in a metastable minimum of the potential. We as-
sume the particle comes to a local thermal equilibrium at
the temperature T =7i/kgt of the oscillator environment.
Our objective is to determine the rate of the tunneling of
the particle out of the metastable minimum. The calcula-
tion of the tunneling rate now follows.

We first have to obtain the density matrix describing
the metastable state. The complete density matrix
describing the particle and the environment at tempera-
ture T =#/kpT is given (Ref. 11, Sec. IV) by



4460

p(g{xa},q'{x5},7)

—E,7/% @4.5)

=2 ¢n(q{xa } )¢n(q'{xéz } Je
_ 9lxahr2 —Slqlx,}1/%
=J ity IaI d[x,1d[qle . (4.6)

In Eq. 4.5) ¢,(g{x,}) are the eigenfunctions of the
quantum-mechanical Hamiltonian derived from the La-
grangian of Eq. (4.1) and the E, are the corresponding
eigenvalues. In Eq. (4.6)

2

— /2 72 max
Slalxa}l=[_ dt | = +V(@+3 —5-=
Ma@oX s
2
4.7)

+4caXq+9q 2 2
’ 2m g wy

Provided we only compute currents of the particle and
make no specifications on the state of the environment,
the appropriate density matrix is not the full density ma-
trix but rather the reduced density matrix obtained by
tracing out the environment. The reduced density matrix
is defined by

f_ww H dx.p(q{xs},q"{xa};7)

I [2sinh(w,7/2)] "]

a

pla,q', )= (4.8)

Following Ref. 11 we perform the x, integrations (in this
work we do not periodically continue the trajectory unlike
Ref. 11) to obtain '

oy 277 —S[ql/h
plgq'sT)= fq,,_f/zd[q]e lal/% | 4.9)
where ‘
_ T/2 qu
Slql= fq/zdt T+ Vig)
2
qm 72 /2 q(t)—q(s)
+ ds dt | ——F—"—
442 f——‘r/l f—‘r/2 . m(t —s)
sim |——
r
(4.10)

The semiclassical approximation to the reduced density
matrix may be obtained by using the methods of Appen-
dix A. We find

plg,q',7)=" Ndet™ [ —md>+V"(g;(1))+0,]
j

xe SEE @.11)
where the integral operator 6, is defined by
A T/2 —
bipin="L [ g5 $D=90s) _ (4.12)
TZ -/ ) 7(t —s5)
sin” | ————
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and each extremal trajectory satisfies

g(—7/2)=q’', g(v/2)=q,
. (4.13)
—mg(t)+V'(g(t))+0,q (t)=0 .

The density matrix for the metastable state in the pres-
ence of dissipation now results from Eq. (4.11) by the
same considerations we gave in Sec. II for the undamped
case. That is, out of the set of extremal trajectories {g;}
in Eq. (4.11) we select the single trajectory g correspond-
ing most closely to the trajectory determining the reduced
density matrix of the (damped) harmonic oscillator. The
contribution of g in Eq. (4.11) results in the required den-
sity matrix: ’

plg,q";7)=N det™ 1] —md*+ V"(Z]‘(t))+6,]e —Slgl/A

(4.14)
The normalized probability density is given by
P(gr=RDLT) 4.15)

Trpo

where p, is the density matrix for the damped harmonic
oscillator. In Appendix C we show that the diagonal ele-
ments of p, are

polg,q;7) =N det™ /A —md2+maj+0,)e~7/%a"

(4.16)
where
2 #i ®d T 2yw
=— oth |—— .
(a*) mi fo @° 2 | (0i—0?+2ye)?
(4.17)

Hence Eqgs. (4.14)—(4.16) give, on evaluating the trace, the
probability density

—1/2
1 det[ —m 3} + V"' (§(1))+O,]
P(g,7)= XN ) > A
(2m(g?)) det(—mad; +mawy+O0,)
Xe~SWEVA (4.18)

In order to investigate the behavior of the lowest two
eigenvalues of the anharmonic determinant (e,

det[ —md*+ V"(q(t)H—@, ] we introduce the notation
1

- w(t —s)
T

K(s—t=1T—

4.19
2 ( )

sin?

The eigenvalue equation (for each of the eigenvalues of
the anharmonic determinant) is

[—m32+V"(G(2)]1d,(2)

7/2
+ [, ds K(s =0 @n()— ()] =Rnbs ()
(4.20)
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and the time derivative of the classical equation of motion  gmaj] 7(r/2) are given by
[Eq. (4.13)] is -
' . _2m |g(z/2)] -
[—mdZ+V"(@N]g(1) A= = 3(r/2), (4.22)
/2 N = q
+ [ ,dsK(s—n[gn—g(s)]=0. @21
If we repeat the steps following Eq. (3.20) that led to e 2m —é'(,,- /2)| -
equations (3.25) and (3.26), but this time using the above 2= < [g(r/2)—A], (4.23)
two equations, we find on using symmetry of K (s) and g1l
antisymmetry of ¢,(s) that the lowest two eigenvalues for ~ where
1
. . /2 /2
G2 m106a0)+2 [ Tds [ dr K (s +0)gi(s)ga2) w2
" 2m |g(r/2) | fo”zdt 61()ds(2) ' :

We see, therefore, that A; and A, take the same form as
in the nondissipative case (however, A has a modified
structure). Hence Eq. (3.28) still describes the behavior of
the probability density when g(r/2) is small.

In the nondissipative case the origin of the (7 —A)!/?
factor was explicitly known—it arose from the breakdown
in quadratic energy fluctuations when the end-point velo-
city was small. The different quadratic part of the action
of the dissipative system has resulted in A having a modi-
fied structure; however, the underlying origins of this fac-
tor must be the same. We therefore make the assumption
that the way to correct these quadratic fluctuations in the
dissipative case takes precisely the same form as in the
nondissipative case, namely multiply P(q,7) by the factor

172

g(r/2)—A
g(r/2)

(4.25)

where g(7/2) and A are appropriate to the dissipative
case.

The probability density with the corrected quadratic
fluctuations is

172
Blgn= |LT2=A 1 pir. (4.26)
g(r/2)
We find
Blg,r)= llg][2
g(q) 2m |g(7/2)|
.~ 12
det"[ —md}+V"(g(1))+0,]
det(—ma,2+mw(2)+6,)
Xe~SAlA 4.27)

In the absence of dissipation, the tunnel escape rate (i.e.,
the probability current beneath the barrier) was given by

lim  g(q,7)P(q,7) (4.28)

q—-qp(r)—

'(r)=

T
in which P(g,7) was constructed out of WKB wave func-
tions.

In the dissipative case we have a probability density Eq.
(4.27) which possesses a factor g(g)~!. This factor indi-
cates that the probability density is constructed out of
WKB wave functions of which g(q) is characteristic of
the “average” wave functions. [A decomposition of
P(q,7) into the form:

P(q"r)=2 Cnm¢:(q)¢m(q)

is always possible.] We make, therefore, the natural con-
jecture that Eq. (4.28) generalizes to give the tunnel escape
rate in the presence of dissipation. Making use of the
above conjecture we use Eq. (4.27) in Eq. (4.28) to obtain
the finite-temperature tunnel escape rate in the presence
of dissipation:

1 Il

I(r)= "
QTN 2 | G(r/2) |

‘ -
det”’[ —md*+V"(g(¢))+O,]

det( -—m8%+mw%+6,)

Xe~S@lA (4.29)

where S[q] is given by Eq. (4.10) and all quantities are
evaluated on the trajectory in which g(7/2)=0. :

The formula (4.29) is the main result of this paper. Let
us note that the exponent of the tunnel-escape-rate formu-
la of Eq. (4.29) S[g]/# coincides with the action found
by Caldeira and Leggett!! in the zero-temperature limit.
For finite temperature it coincides with the result found
in Ref. 21.

We also note that with similar behavior to the nondissi-
pative case, the exponent achieves the classical activation
rate BV at sufficiently high temperatures and we shall as-
sume that S[g]/% is the correct escape-rate exponent for
all temperatures. ‘
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V. NUMERICAL EVALUATION
OF THE TUNNEL-ESCAPE-RATE FORMULA

The result obtained for the finite-temperature tunnel es-
cape rate in the presence of dissipation has the form
Ae ~5/% where A is termed the prefactor and S the action.
The tunneling rate depends sensitively on the action and
relatively insensitively on the prefactor. In this section we
shall fairly precisely evaluate the action and approximate-
ly evaluate the prefactor. ' The potential we consider is the
case of practical interest; quadratic plus cubic.

First we evaluate the action. The action S[q] in the

escape-rate formula is given by Eq. (4.10). We write the
potential appearing in this as
2
Vig= g% (1—q/b) . (5.1)

The distance b is the width of the barrier.
V(q) has a maximum at ¢ =2b /3 and the height of the
potential barrier [with respect to V(g =0)] is

Vo=V(2b/3)=— mab’ (5.2)

27 2 ’

Let us introduce some dimensionless quantities
u=wot, V=wgs , (5.3
0

QE = .
@oT kpT ° (5.4)
Z(u)=q(t) /b, (5.5)
a=n/2maoy, (5.6

mawgh?

olZ]=S[q)/A) [ —— (5.7

The dimensionless action of Eq. (5.7) can be written as
/2 5 X ,
olZl= [ dulZ'w’+ZuP—Zu)]

Z(u)—Z(v)
m(u —v) J

a fn/z . Q2
—-Q2 —9/2 Q

— sin

T Q

(5.8)

Since g(#) is an extremum of S[q], it follows that Z (u)
is an extremum of o[Z]. Hence Z (u) obeys the equation
of motion

2
_z"(u)+Z(u>—3f (u)
Q72 —
42 0 Z(u)—Z () >=0. (5.9
) L G | =)
T Q

Chang and Chakravarty (Ref. 17, Sec. III) solved this
equation for the case Q= o0, Z (% o0 )=0, and hence ob-
tained the action o[Z]. By a generalization of their pro-
cedure we have solved Eq. (5.9) for the case of finite Q
(i.e., nonzero temperature) with boundary conditions upon
Z (u) appropriate to our case:

DAVID WAXMAN AND ANTHONY J. LEGGETT 32

Z(—-Q/2)=2Z(Q/2), max,Z(u)=Z(Q/2) . (5.10

The generalization consists of replacing Fourier in-
tegrals by Fourier sums and using a different choice of

starting function. The procedure is as follows: Z(u) is
represented as a Fourier sum
Zw= 3 Z"“" o, =2 (5.11)

Q

n=—o0

The equation of motion (5.9) can be written in terms of
the Fourier components { Z,} as

3/2

Z, = (5.12)
(wn+2a|wn|+1)2 vZ
We introduce an operation O,(A,Z) defined by
0,(AZ)= A >2Z,Z, ,. (5.13)

(0% +2a | o, | +1) %

The discretized iteration procedure equivalent to that of
Ref. 17 is (1) start with an initial function with Fourier
components {Z\”} and an initial choice of A, Ag; (2) cal-
culate ZV=0,(1,Z)Vn; (3) calculate A=Ao/E?
where £= z“’/z“” @) find Z¥=0,(A,ZV)Vn; (5) re-
peat steps (2)—(4) until a convergence criterion is met.

This procedure yields the set of numbers Ay, { ZM},
where N is the number of iterations. The Fourier com-
ponents of the solution of Eq. (5.9) are given by

Z,=— —zZM (5.14)
and in terms of these the action is
olZ]=0 [223<w%,+2a|w,. |+ 1= 3 Z0ZuZo 1
n nm
(5.15)

The functions with which we started the iteration pro-
cedure were of the qualitative form shown in Fig. 7. In
the evaluation of the operation O, we truncated the sums
at n =50 or 100 (this is of course determined by the tem-
perature, low temperatures require a larger number of
terms). By comparison with known results, we estimate
the error in the action over the range of temperatures we
consider to be smaller than 0.1%.

Let us now consider the temperature range over which
the tunneling-rate formula Eq. (4.29) is valid. In the non-
dissipative case the corresponding formula became invalid
when temperatures were sufficiently high that tunneling
was principally occurring close to the top of the barrier.

q(t)

t

FIG. 7. The trajectory of Fig. 5 as a function of time.
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TABLE 1. Dimensionless cross-over temperature kpTy/#iwg
as a function of the damping parameter a.

kpTy
a Feo

0.00 0.155
0.02 0.152
0.05 0.148
0.10 0.141
0.25 0.122
0.50 0.096
1.00 0.065
2.00 0.037

At these high temperatures the trajectory g(z) in the in-
verted potential is a relatively small oscillation about g,
(see Fig. 5). Similar conclusions hold in the dissipative
case. The precise temperature above which Eq. (4.29)
ceases to be valid is difficult to determine. Instead we
shall determine the lowest temperature T, at which the
action S[g]/# is in a small range of the exponent of the
classical escape process BV,. The tunnel-rate formula
should be valid for temperatures slightly lower than T.

To the extent that both quantum and classical escape
processes are determined largely by the exponent of the
appropriate escape-rate formula, T, corresponds to the
temperature at which there is a crossover from the
quantum-mechanical rate to the classical rate. The action
obtained numerically enables us to determine T, for arbi-
trary values of the damping parameter . We used the
following method to determine T'.

At a fixed value of a we selected an initial temperature
that was low in the sense BV, > S[g§]/#A. The temperature
was then increased until

BVo—S[gl/#
Slgl/#

The temperature at which Eq. (5.16) holds serves as our
definition of Tj. The choice of the numerical constant on
the right-hand side of the above equation was determined
by the accuracy to which S[g] was known.

=0.001 . (5.16)

OJSJ

kgl 0.104
Fo CLASSICAL
g ESCAPE
QUANTUM
SCAPE
oos{ ESC
0.03 . -
0 I 2

a

FIG. 8. Contour of crossover between quantum and classical
escape in the (a, T') plane.
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3.0 X 0
ﬁwo
2,5l
XS X' o7
Ffwg :
KT
1.5 =£_-0.10
fwg
0.5 1o

' FIG. 9. Dimensionless action o as a function of damping, a.

In Table I we present a range of values of the damping
parameter o along with ‘the corresponding values of the
crossover temperature.

In the (a,T) plane of Fig. 8 we have drawn the contour
where the crossover in behavior occurs; T =Ty(a). We
have indicated the appropriate regions of the graph where
the two different escape processes dominate. In Figs. 9
and 10 we show the behavior of the dimensionless action
as a function of a at fixed T and as a function of T at
fixed a. In Fig. 9 for sufficiently large a the action satu-
rates to the classical exponent (i.e., S[g]/A—BV,). In
Fig. 10 the action is seen to be relatively weakly depen-
dent on temperature for low T. At higher temperatures it
rapidly approaches the classical exponent.

Let us now consider the prefactor of the tunnel-escape-
rate formula of Eq. (4.29),

A= 1 ligl[?
2w (g*)V? 2m |g(7/2)|

~ )12
det”[ —md?+V"(g(2))+O,]

— (5.17)
det( —md?+mwi+0,

In terms of the dimensionless variables of Egs. (5.3)—(5.6),

b 1z’
22w (g*N)? | Z"(Q/2)]

AZCOQ

—-1/72
det’[—d2+1—3Z(u)+0,]

det(—3d2 +1+0,)

, (5.18)

where

a=0.05

1.10 4

1.05 4
1.00 4
0.95 T T T
o} 0.05 0.10 0.15
Kol
Fwg

FIG. 10. Dimensionless action o as a function of tempera-
ture.
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1
’ @2 ’ 2 F(Q,a): '—1_5— -\(_)—‘ 2 L "
Nz'|)=[_, ,dulZ'w)] (5.19) 2 |47 S (@2 42alon |+
n

and O, is defined by

5uy(u)=2—a o dv y(u)—y ) 5 .
m m(u —v) H

-Q/2 Q i
T Q

(5.20)

All the factors in Eq. (5.18) multiplying the deter-
minant ratio can be expressed in terms of known quanti-
ties and hence are also known, e.g.,

b maoh? 172
22m{g*)W\? | 2%
172
0 1
4 3 (0h+2a e, | +1)7 ’
n
(5.21)
(wn=2mn/Q),
Z'|=Q 3 wrZs , (5.22)
n
1Z"(Q/2)| =3 (=102 Z} . (5.23)

n

These can be straightforwardly evaluated. All that
remains to be determined is the determinant ratio.

Let us consider first the undamped (a=0) determinant
ratio. Defining

—172
det"(—md?+1—3Z 19)
p= |9 (—md;+ » (Z)+ u) (524
det(—md?+1+0,)
we have for T =0 (i.e.,, Q=)
D(Q=w,a=0)=7.50, (5.25)
and for T =%iwy/2mkp (i.e., Q=2m)
3sinh(27) | ,
D(Q=2m,a=0)= %”—) =7.99 . (5.26)

Equations (5.25) and (5.26) and explicit calculations for
similar potentials make it more than plausible that D has,
over the whole temperature range of interest, a variation
of less than 7%.

For weak damping (say, a <0.05) the change in the re-
sults of Egs. (5.25) and (5.26) is estimated to be as small as
the error with which we can calculate this (12%), hence in
this regime we make the approximation of replacing D by
its zero-temperature, zero-damping limit, Eq. (5.25).

We can write the prefactor A [Eq. (5.18)] in terms of a
dimensionless prefactor F(Q,a) defined by
172

mcoobz
F(Q,a)

2%

A=w, (5.27)

and in the above approximation we have

12
« Z

Tz (5.28)

In Fig. 11 we show the behavior of F(Q,a) as a func-
tion of temperature at fixed a. The (unphysical) vanish-
ing near the crossover temperature (as noted in the un-
damped case) is clearly manifested.

Let us now consider the prefactor for more general
values of a. In this case the determinant ratio cannot be
treated as a constant. The approach we adopt to evaluate
the determinant ratio is similar to that used in Ref. 17 and
is quite direct. We go to a matrix representation of the
operators in Eq. (5.24), truncate the infinite matrices at
finite order, and evaluate the determinants.

To obtain the matrix representation, we use the eigen-
functions of the undamped harmonic-oscillator operator
(i.e., —32%+1). These eigenfunctions satisfy the boundary
conditions of vanishing at +€ /2 and are

172
¢l u)= a ! sin(w,u), w,= 2;;" , (5.29)
172
$2(u)= l—é cos(v,u), vn=@—%)” (5.30)
with n =1,2,3,....

After some calculation we find the following nonzero
matrix elements:

Q2 A 2 H 144
f_n/zdu Sm(u)[—0; +1—3Z(u)+0, 162 (u)

=(0i 42| 0y | +1)8n+3Zysm—Zn_m), (531)

FIG. 11. Dimensionless prefactor F as a function of tem-
perature.
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kT
£ :005
T\wo

FIG. 12. Logarithm of the dimensionless prefactor F as a
function of damping, a.

a2 s 2 A 142
S o, @4 () (— 3% +1-3Z () +0, )% (w)

= (VA D8y =3 Zy 41+ Zim—n)

2av, V(= )"t = wp

2 23(a,2 2
‘Qz P=1 (Vm _wp)(vn _wp)

(5.32)

[The last term arises from expressing cos(v,u) in terms of
{cos(wpu)}.]

In principle, the above method can give the prefactor to
arbitrary accuracys; it is only necessary to take sufficiently
large matrices. We truncated the matrices at size 50X 50
(and hence computed 100 eigenvalues). The error in the
prefactor in the known region ( T'—0, a—0) was found to
be 12%. In Fig. 12 we plot the logarithm of the dimen-
sionless prefactor F(Q,a) as a function of « at fixed T.

Since the qualitative behavior of the tunnel escape rate
is dominated by the action of the exponent S[g]/#, we
can qualitatively summarize the results of this section as
follows.

(1) At fixed a the tunnel escape rate is an increasing
function of T which approaches the classical escape rate.

(2) At fixed T the tunnel escape rate is a decreasing
function of a. Increasing the damping (a) results in the
tunnel escape rate decreasing to the classical escape rate.

VI. CONCLUSION

In this paper we have used an unorthodox method to

calculate the rate of tunneling at finite temperatures out

of a metastable potential well in the presence of dissipa-
tion. Our results for the exponent .S /7% in the expression
equal to A exp(—S /#) agree with those of other authors.
With regard to the prefactor A4, our results agree in the
limit of zero dissipation with those obtained previously;’
in the limit of zero temperature we have been (so far) un-
able to show analytically that they agree with the results
of Ref. 11, but the numerical values obtained for the pre-
factor coincide within the accuracy of the calculation.
The question of agreement or disagreement with the re-
sults?"2® based on Eq. (1.9) for the case of finite dissipa-
tion and finite temperature remains an open one.

The astute reader will have noticed that, having criti-
cized the use of Eq. (1.9) on the grounds that it may not
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adequately handle in a steady-state situation the effects of
the finite relaxation time to the Boltzmann distribution,
we have ourselves used a method of calculation which is
vulnerable to the same criticism. This is because, in
evaluating the density matrix under the barrier, we used
the expression (4.5) corresponding to a thermal equilibri-
um distribution. However, we believe that the assumption
embodied in Eq. (4.5) [or more precisely in its use to ob-
tain Eq. (4.18)] is in some sense weaker than that neces-
sary to obtain Eq. (1.9): the use of Eq. (1.9) requires, pri-
ma facie at least, that the thermal equilibrium Boltzmann
distribution gives a correct account, to the accuracy re-
quired, of the imaginary and real parts of the free energy
(or more precisely of the quantity which becomes the free
energy in thermal equilibrium), our method, by contrast,
requires only that it gives an adequate account of the (re-
duced) probability density near the far side of the barrier.
Nevertheless, the physical assumptions (as distinct from
the formal manipulations) are clearly closely related in the
two methods, and we should remain open to the possibili-
ty that neither method will correctly give the prefactor for
a genuinely “steady-state” situation. More generally, it
could well be that (as may be the case in the Kramers
problem) the correct expression to use for the prefactor in
the tunneling rate will depend on the details of the way in
which the system is prepared and allowed to come to
equilibrium with its environment. We believe this ques-

. tion deserves further study.

We should emphasize, however, that this subtle techni-
cal point will affect only the detailed temperature and dis-
sipation dependence of the prefactor, which is unlikely to
play a major role in most real-life experimental situations;
with regard to the dominant exponent in the tunneling
rate, our formal expression agrees completely with those
of other authors. Thus, our numerical evaluation of this
exponent should be useful in the comparison of theory
with experiment in this area, and should complement the
analytical work of other authors.
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APPENDIX A: SEMICLASSICAL
APPROXIMATION TO THE DENSITY MATRIX

In this appendix we briefly review the semiclassical ap-
proximation to the canonical density matrix. The unnor-
malized canonical density matrix for a particle at tem-
perature T =#/kp7 with the Hamiltonian
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2

H:f’;—}—V(q) (A1)
iSZ9

p(a,q'57)=3 Un(@(g")e " (A2)
where

7/2 mq2
Stal=[",dr| "= +v(@ (A4)

and the path integral of Eq. (A3) is over all trajectories
starting at ¢’ at time —7/2 and ending at g at time
+7/2.

The semiclassical approximation is based on the fact
I
1 T/2 T/2 528
=S[g =S[q]l+—=— dt———
Slql=S[g+y1=S[q]+; [ a7 52900 |,
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that S[q] has a minimum in function space about a tra-
jectory g(z). This trajectory satisfies the extremum condi-
tion

N

6q (1) 7

=0, g(—7/2)=q’, g(7/2)=q (AS)

- For the action of Eq. (A4) the extremum condition is

mg(t)—V'(g())=0

Note the minus sign in front of the potential. This equa-
tion evidently corresponds to the classical motion of a
particle which moves in the potential — V' (q), the inverted
potential.

In Eq. (A3) we write

(=g +y(8), p(+71/2)=

hence

(A6)

(A7)

yisy)+ - (A8)

The semiclassical approximation is made by simply truncating the functional Taylor series in y (¢) at quadratic order.

The semiclassical approximation to p(q,q’;7) is then

0,7/2 T/2
st [ dIv]exp

plg,q';7)=

The integral in Eq. (A9) is a Gaussian which can be
evaluated by expressing y (¢) in terms of a complete set of
orthonormal functions {¢,} satisfying ¢,(+£7/2)=0,

y()= c,dn(t), (A10)

and furthermore the {¢,} are chosen to be eigenfunctions
of the Hermitian operator

8%8
Bq(tl )8q(t2)

That is, each eigenfunction obeys

8s

T/2
f—r/zdtzm_) _¢'n(f2)=7»n¢n(t1)

u(xr/2)=0, [’ /zdrqﬁ,,(t)d)m 8um - (A1D)

Using equations (A10) and (A11), we can write Eq. (A9)
as

] d
pla.gsm)=e—TVN [ T] V—;L?CXP
. n T

1
—E zkncr%] ’
(A12)

where

dc,
d[y]:NH‘/m . (A13)

Evaluating the integrals in Eq. (A12), we obtain

Z‘ﬁ f "'/2 Sq(tl)Sq(tz) 7

2
&S y(t)y(t,) (A9)

plg,q';7)=N lH A;l/zJe—S[W" ) (A14)
n

For the action of Eq. (A4) the eigenvalue equation
(A11) can be written as

[—mdZ+V"(G(1)]d, (1) =N, ,(2) ,

5 (A15)
9, =— Fvl
In view of this we can write Eq. (14) as
p(g,q";7)=N det™ [ —md?+ V"' (g(1))]e ~Sl@V/%
(A16)

Implicitly we have assumed that a unique trajectory
q(t) satisfies Eq. (A5). In the case of several distinct ex-
trema (minima) we add their individual contributions to
obtain

—md+V"(g(1))]e—SaVA

(A17)
This is the semiclassical approximation to the canonical
density matrix. This is expected to be valid whenever the
average quadratic fluctuations about an extremal trajecto-
ry are small compared with characteristic length scales of
the potential V' (q).

plg,q';7)=F Ndet™!/[
J

APPENDIX B: BEHAVIOR OF E (1)

In this appendix we investigate the derivative of the en-
ergy 0E /d1. E is the solution of
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T(Ey)=T, (B1)
where
T4(E)=V2m 1__dg’ (B2)

% [V(g')—E]'?

and q, is defined by V(q)=E. Ty(E) is the period of
the motion given in Fig. 5.

It will be convenient to evaluate not E((7), but rather
its reciprocal

oT,(E)

Ty(Ey)= 3E

E

cl

We rewrite Eq. (B2) in a form that makes it straightfor-
ward to differentiate T (E) with respect to E. We use
the identity
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[V(g)—E]-"2=—2— 9 [y(g)—E]' (B3)
V'(q) 3¢
to write
_ ?9,, 1 9 N /2 B4
Ta(E)=2vV2m [, dg Vg a7V @)~ E] (B4)

=2v7m [ qe—1 d
=2V2m fqldq Viq) og

X {[V(g")—E]"*—[V(go)—E]'"?} ,

(BS)

where g, corresponds to the maximum of the barrier
[V'(g0)=0, see Fig. 5]. Integrating (B5) by parts yields

[ V@ —E1—[V(go)—E1  [V(go)—E]"
Tcl(E)=2 2m V'(q) V’(ql)
+2vam [Fdg L1y (g — B2 [V(go)—E1 .

Equation (B6) is in a form that can be differentiated with
respect to E. Doing so, and defining

2 172
glg)= | = - , B7)
9= | V(g E]] (
we obtain for ¢ > qq
| Tu(Eq) | =X(gnTL9=2 (BS)
q(q)
where
q , Vll(ql) 1 1
Xgm=2 ], dg'— oy | ==~
Jott g 3¢ Glg)
2 1 1
- (B9)
s ‘V’(q,) V(g
and
A= 2 (B10)

X(g,7) | V'(q)|

We can repeat the above calculation for the periodic orbit
(i.e., the trajectory of Fig. 5 that starts and ends at g,(7)
with zero velocity and takes a time 7 to achieve this). The
energy of this orbit is — E,(7) and is the solution of

T,(E,)=r, (B11)
where
TE)=vam [ — % (B12)
q; [V(qr)_E]I/Z
and g, (7) is defined by Vi(g,)=E,(7).
After some calculation we find
| T, (Ep) | =X(qp(7),7) (B13)

(B6)

with X again given by Eq. (B9). For g close to q,(7), Egs.
(B8), (B9), (B10), and (B13) give

| TyEy) | = |[L2=2 | ()| (B14)
g(q)
with
A= 2 (B15)

T THE) | [ V(g

APPENDIX C: DIAGONAL ELEMENTS
OF THE REDUCED HARMONIC-OSCILLATOR
DENSITY MATRIX

In this appendix we obtain the diagonal elements of the
reduced density matrix for a harmonic oscillator subject
to dissipation. The required quantity is
%

T7/2
polggin)=[ " dlgle St/ (el
with
2 22 molg?
- mg” g
Slal= [_ dt | "+ — }

2
q(t)—q(s)

(t —s)
T

nT T/2 T/2
oz ), f__r/zdt
sin

. (c2)
The semiclassical approximation to pg(g,g,7) is exact since
S'[q] is quadratic in ¢ (¢). From Eq. (4.14) we have

po(g,q";7) =N det™ /[ —md+mawi+0,]e—SEVE
(C3)
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Decomposing g(¢) into a Fourier sum as in Ref. 11,

7= 3 g™, v,=20 (C4)

n=—c
yields for the action
S[g] _mr 2 02 1
%4 - 2% z(vn+27/|vn l +w0)qn’ Y= m .

The {g,} are determined by using the fact that the action
is stationary to first-order variations of the {g,} subject
to the constraint

g(x7r/2)=g=3(—1)"g, .

(C5)

(C6)

The variation is

3
9q,

S [(VE+2y | v, | +08)g7 —2M(—1)"g,]=0, (CT)
where A is a Lagrange multiplier.

Equations (C6) and (C7) yield

(Va+2y | | +00) "
S04y v | 40"
n

gn=q(—=1)" (C8)
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Hence the action is

S[g]l mq*r 1
= . (C9)
# 2% 3 (va+27 | v | +0p) !
n
Introducing
<q2>s—ﬁ—2(vﬁ+2y1v,, | +wd)~! (C10)
mr <
# ® oT 2yYw
=— dw coth—
mir »fo 2 (03_02)2_'_(27/&))2 (C11)
enables the action to be written as
S[g]l __4*
—LL . (C12)
#i 2{q*)

Hence Eq. (C3) is
po(q,q;7)=N det ™1/ —md}+mawi+0,)e —a%/2q?)
(C13)

the required result.
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