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In this paper, we show that the scale of spatial variation of the order parameter & in extreme type
I superconductors has a temperature dependence other than that of the temperature dependent
Ginzburg Landau coherence length &(7T). Furthermore for temperatures in the vicinity of the
critical temperature 7. our results indicate that &/£(7T) decreases with decreasing temperature.

When an external magnetic field is applied to a type II superconductor, vortex
lines form provided that the magnetic field is below the upper critical field He.” For
temperatures just below the superconducting transition temperature 7, or for a
magnetic field just below Hcs, such vortices can be analysed within the Ginzburg
Landau (GL) framework.” For temperatures further below 7. the Eilenberger and
Bogoliubov equations have been investigated, through interative or variational
methods.®™® Kramer et al.¥ and Gygi et al.® find that the scale of spatial variation
of the order parameter divided by the GL temperature dependent coherence length
decreases with decreasing temperature. On the other hand Dorsey et al.” claim that
there is no appreciable temperature dependence in this quantity.

Instead of formulating the problem in terms of Green’s functions and the order
parameter we adopt a path integral approach. Here the fermion fields associated
with the electrons are integrated out, resulting in a formal expression for the free
energy in terms of a functional determinant. The order parameter configuration is
then given by minimisation of the free energy.

In this paper we will be concerned with the quantity A= é/néo( T), where £ is the
scale of spatial variation of the order parameter and &f T) is the GL temperature
dependent coherence length. Any temperature dependence of A indicates that &€ has
a temperature dependence that is different from the GL variation. This work aims
to determine whether A has any temperature dependence.

The vortex free energy, relative to that of the uniform configuration, at finite
temperature, 7'=1/8, can be written as a ratio of two path integrals over Grassmann
fields®
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where L=/d%z¢(8:+H)¢, g is the coupling constant defining the system and S
arises purely from magnetic field contributions. The Hamiltonians are given by

H:(73€(ﬁ+8A03)+ V,
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Also, e(p)=(p?/2m)— 1, where p is the chemical potential, 4 is the order parameter,
o the uniform gap and A4 the vector potential. For a vortex of unit quantised flux -
along the z-axis, d=4f(7/E)e”*, where f(0)=0 and f(c0)=1, r=,z*+4* and
g=arctan(y/x). We assume that, with regard to the minimisation of the free energy,
it is adequate to approximate the functional variation of f by a single scale parameter
£. Below we take f=tanh(#/£). This assumption has been questioned for very low
temperatures by Gygi et al;* they found that two scales are required. We will
investigate this possibility in a later work. The vector potential is given by
A=—3/r a(¥/€s), with a(0)=0 and a(co)=1. We have assumed, as for the order °
parameter, that only a single length scale need be considered in the variation of A-and -
have taken this to be &z.

Integrating over the Fermi fields we obtain

2 2
F—Fo=—--3"TrIn <M)+% [@ (14— 4)+ F, ()

B nZ + HOZ

where w,=(7/8)(2#+1) are the Matsubara frequencies and the trace is to be under-
stood in the functional sense. That is, Tr(---)=tr/d3z<x|(---)|x> and tr is the trace
over the internal matrix space. In deriving Eq. (5) we have made the replacement

In Det(d: + H) Z%ln[Det(Gz +H) 0.+ H) T]=%~1n Det(— 3.2+ H?) |

which holds for real positive determinants. We have also used the standard identity
In Det(---)=TrlIn(- ) The gap equation is given by minimising Fo with respect to o,
that is,

4 1 [ -
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Using this the order parameter contribution to Eq. (5) can be absorbed into the trace
_ (l)nz -+ H2 > Hz ]
F—Fo= BZT[ o2zt wn2+Ho +Fs. ()
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The argument of the trace can be represented as an integral over the “proper time”,
s. We find, in a similar way to Ref. 7),

_ ____1,.00 wd_s —5(wn2+402)
T / b, K(s)+Fs | (8)

where K(s) is a modified heat kernel, given by
K(s)=Treg sHor—do0)(gsHe? o=sH__1 4 o( H2— H?)) . 9

The modified kernel K(s) can be expanded in powers of the proper time s. The
expansion of K(s), when substituted into. Eq. (8), does not result in any infinities
because there are no s~/ or s'* terms in the expansion.” Moreover, this expansion
has a well-defined zero temperature limit.® This is because the large s part of the
integrand of Eq. (8) is exponentially damped by the factor exp(—s4?). Let us write
the series as

K(s)= 3, Ans" " (10)

In evaluating the expansion it is convenient to drop the vector potential and
~ introduce it later by gauging the A,’s. Of course some terms will be missed by this
procedure; these are either pure magnetic terms or combinations of the magnetic field
with covariant derivatives of the order parameter. As we are concerned with
extreme type Il systems, where the vector potential varies over a much larger scale
than the order parameter, such terms will make a negligible contribution. Evaluat-
ing the trace in Eq. (9), we obtain (see Appendix 3 of Ref. 9) for additional steps
leading to this equation)

K( _ / d’k_ ;s —;ez(k) —S(H2(B~ k—id)—e2(k)—402) 2 2
s)=tr Wd xe [e —14+s(V2—4%)] , (11)

where @ acts on everything to its right. The problem can be substantially simplified
by linearising the spectrum.'® This is a good approximation as all the integrals are
peaked about the Fermi surface. Linearising we make the replacement

where % is a unit vector (and not an operator) and N (0)=mpr/27% is the density of
states at the Fermi surface. Also, neglecting derivatives of the order parameter in
favour of powers of the Fermi momentum, we have

H p—>k—i0)— e (k)— 4= —2icvrk - 8 — vi*( k- 3)?
~iosvrk - (OV)+ V2— A2 . , (13)

Now let us convert to dimensionless variables: s s/4%, x— x/&, e~ edi?, V- VA2 So
that the modified heat kernel becomes

. LN(0)vs? dk (1, ser (s
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132 Progress Letters Vol 8§ No. 1

where L is the length of the vortex and the operator O is given by

0=—2Ek-0—~2(k ) —Ficsk-(3V)+ V-1 (15)

with A=4&/vr=E/n&(T) and &(T) the temperature dependent GL coherence length.
This enables us to define the dimensionless coefficients 4., given by

T An s B

A= TN | 1o
with

K= M?A (n-1/2) (17)

0

From the nature of 0, Eq. (15), it follows that A.’s are functions only of A. When
they are gauged they will have an additional contribution, which will be a function of
AlAs, where Az=~Ez/n&(T). So that the free energy takes the following form:

_ 7 LN(0)vs” f‘”ﬁi —slwmld0)2+11'51 A n-1/2
e 7 a3
If, therefore, the value of 4 that minimises F—Fy is indepéndent of temperature it
implies that the same A minimises each of the coefficients A, individually. This
follows since changing the temperature changes wn/4o and hence the weighting of the
different A,’s within the proper time integral of Eq. (8). Thus the logic is: given

AF—F)| _
8/1 A=Ade
then Aot Ao(T)=>-%4n aA" =0."%. (19)

A=de

We are now in a position to determine whether A. is a function of temperature. First
we note that in the GL region only A, has an appreciable contribution to the free
energy since higher order terms are down by powers of 4. Thus the GL value for A,
is obtained by extremising A.. In fact we can construct an expansion in powers of
A(T)/T, from Eq. (18), which is valid for temperatures just below T.. It takes the
form
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After a lengthy calculation we find
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The above are gauged by making the replacement @— @+2iedsA and remembering
that A=—(@/r)a(#4/As). Note that we have twice the electric charge since the order
parameter is bilinear in the Fermi fields. Gauging the A,’ s and substituting for the
order parameter profile, f(r) tanh(7), we find

A= ”3/2[/12<?(1n2) ———) ?[1< /{L )]

A=t —g)-d5)oeii) @

where the integrals I, are given by

o B 2
L= / drr|sech*» +(1— a(rxl//ls))zm—ng—r—] ,
o R v

L= /0 drr %tanhzrsech“r-éi-((l—a/(r/i//ls))z——tarig r ] ,

°° 3 2 . . 2 2 :
L= L. drr| 2sinhr sechsr———sec’lz1 r +(1—a(7/1/,13))22rf;_"”] . (23)

For extreme type II systems /<1 and we find; independently of profile choice for «,
that

oL 1
ol _ |
a/] == @(1//'13) . (24)

This means that for an extreme type II system the vector potential can be neglected
in . We find that 5=1246---. Extremising A, with respect to A, we find A
=1/ (41n2—i) =0.75---, which is the temperature independent GL result for A. On the
other hand A; has no extremum value of A. This allows us to conclude that A.
depends on the temperature. This is in contrast to the extremum size of kinks in
polyacetylene.®’ 'Thus decreasing the temperature in the vicinity of 7. results in
corrections to the leading term in F—F, (which is the GL contribution). From
Eq. (20) we see that this includes the As term. Since 4s/0A is positive we can infer
that decreasing the temperature in the vicinity of 7. results in the decrease of A..

In conclusion we make the following statements:

(i) The ratio £/& is generally temperature dependent implying that the vortex scale &
has additional temperature dependence beyond that of Ginzburg Landau theory.

(ii) At temperatures close to the transition temperature 7, the dimensionless vortex
scale A. is smaller than the Ginzburg Landau value 1//(41n2—1) =0.75--

What happens for very low temperatures has to be answered using a different
approximation,'” since the expansion for the free energy, Eq. (18) has been tested on
~ an exactly solvable system and yielded errors in the analogue of A. of approximately
50 %. This inability of the method is not surprising since at 7°=0 there is no small
expansion parameter.
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