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The density of states of Fermionic excitations in s-wave Fermi superfluids is calculated. The
order parameter is assumed to have a layered structure with a variation along only a single
direction and the Fermions are allowed to move over the full three-dimensional space. The
density of states for such a system is calculated using the Bogoliubov Hamiltonian in which
the quadratic momentum dependence of the kinetic energy is approximated by a linear
dependence. A representation of the density of states in terms of a Fredholm determinant is
derived. For the case of a piecewise constant order parameter, the Fredholm determinant is
calculated exactly. Explicit results for the density of states are presented for an order
parameter with a periodic variation along a single direction.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Fermi superfluids such as superfluid *He, superconductors, the predicted (but so
far unobserved) superfluidity of a dilute solution *He in “He are all characterised
by an order parameter that plays the role of an off-diagonal potential. The
Fermionic excitations move in the field of this potential and spatial variations of the
order parameter have a significant effect upon the excitations. One way this is
reflected is in the density of states which can be quite different to that of a spatially
uniform system.

The present work has the aim of calculating the density of states for s-wave
Fermi superfluids that are three-dimensional in extent but which contain a
variation of the order parameter along only a single direction. Our interest lies in
the layered structures in the order parameter that are expected to occur in *He-*He
mixtures in a magnetic field at ultralow temperatures [1], where the 3He has
become superfluid. Inhomogeneous order parameter structures were originally
discussed by Larkin, Ovchinnikov, Fulde, and Ferrell [2] in the context of super-
conductivity in the presence of ferromagnetism. Spatially inhomogeneous order
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parameters result from the competition between the paramagnetic influence of a
magnetic field and the tendency towards superfluid pairing.

Note that the density of states calculated here is not directly relevant to high T,
superconductors, where the electrons in such systems, while seeing a one-dimen-
sional variation in the order parameter, additionally have their motion largely
confined to planes (for recent work in this area see, e.g., Ref. [3]). By contrast we
consider Fermions that are not confined to planes but are able to move over all of
space. As a result the calculational methods used here are quite different to those
of, e.g., Ref [3].

The arrangement of this paper is as follows. In Section 2 we define the problem
at hand. In Section 3 we show how the density of states is expressed in terms of a
Fredholm determinant and this is evaluated, in Section 4, for piecewise constant
order parameters. Sections 5, 6, and 7 are concerned with periodically varying order
parameters and for a particular periodic order parameter the density of states is
calculated. Section 8 consists of a short discussion and there are three appendices.
The paper is written in units in which A#=1.

2. DEFINITION OF THE PROBLEM

We consider an s-wave spin § Fermi superfluid that extends spatially in three
dimensions. [t contains an order parameter with a variation only along a single
direction, which is taken to be the x-axis.

The calculations that follow are made within the framework of a model mean
field theory that describes the Fermionic excitations within the superfluid. In terms
of the Pauli spin matrices (o, ¢,, 0,) that act in the space of spin up particles and
spin down holes, the excitations are described by the first quantised Bogoliubov
Hamiltonian:

H=K(p)o;+ U(x). (2.1a)

In this equation K is the kinetic energy measured relative to the Fermi energy
Ec=mvi/2=kL/2m:

K(p)=p*/2m — k2 /2m, (2.1b)

and U(x) is the of diagonal self-energy describing the superfluid. In terms of the
s-wave order parameter 4(x) and its complex conjugate 4*(x) we have

_ 0 A(x)\
U(x)—(A*(x) 0 ) (2.1c)

i.e., its matrix structure is a linear combination of ¢, and o,.
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We view the quantities p and x appearing in Eq. (2.1) as operators acting in the
abstract spaces of Dirac bra and ket vectors; the operators being specified by their
commutator algebra.

The density of states for the Fermionic excitations can be written, in a particle
hole symmetry approximation as',

PE)=Tr;[d(E—H)], (22)

where Tr, denotes a combined trace over both matrix indices and the configuration
space appropriate to a particle moving in three dimensions’ and §(£) denotes a
Dirac delta function. The above equation for the density of states includes the
contribution of both spin orientations of the Fermions. For a normal system,
U(x)=0 and in the particle hole symmetry approximation, the normal density of
states is

pN(E)=2N(0)V (2.3)
with

N(0) = mk/(2n?) (2.4)

and V is the volume of the system.

In order to calculate the density of states for the Hamiltonian H of Eq. (2.1) it
is necessary to have essentially complete information on the spectrum of the
operator in question. In general we do not know how to obtain this but in the next
section we shall employ an approximation which allows us to make considerable
progress.

3. EXPRESSING THE DENSITY OF STATES IN TERMS OF A FREDHOLM DETERMINANT

In Eq. (2.1) the quadratic momentum dependence of the kinetic energy makes the
Hamiltonian a somewhat complicated operator [4]. When, however, the charac-
teristic scale of spatial variation of the order parameter, £, obeys 1/(kp&)< 1 the
quadratic momentum dependence of the kinetic energy may be well approximated
by a linear momentum dependence. This is a simplifying approximation that we
shall make in the present work. In Ref. [5] the essential details of the linearisation
have been given; however, for completeness we present, in Appendix A, a derivation

! Throughout this work we measure all energies, E, relative to the Fermi energy, Er. The particle hole
symmetry approximation entails working to zeroth order in £/Fg and we shall make this approximation
throughout this work.

2 More generally we shall write Tr, for the combined trace over both matrix indices and configuration
space appropriate to a particle moving in d spatial dimensions.
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of the kinetic energy linearisation. The key result is Eq. (A.13} for the trace of a
function f depending on the kinetic energy and x:

nN(0)A

Vg

F

Tra[f (0 — k3 )/2m; x)] = [" dctel il fers0l, G
—F

where A is area of the system in the y, z plane, Tr, is a combined trace over the
matrix indices and configuration space of a particle moving along the x axis and p,
is the momentum operator for motion along this axis. The quantity ¢, with the
dimension of velocity is, in fact, vp cos 3, where v is the Fermi velocity and & may
be thought of as the angle the momentum of an excitation makes with the x axis.
Equation (3.1), when applied to the density of states leads to a particle hole
symmetry approximation. For notational simplicity we write Tr for Tr,, p for p,,
and obtain the following approximation to the density of states:

P(E)=Tr[0E-H)]=

N

F

N(0) 4 [ de |e| Te[8(E—h)] (3.2a)

h=cpo;+ U(x). (3.2b)

Since U(x) has a matrix structure, Eq. (3.2b) is identical to the Dirac Hamiltonian
for a relativistic Fermion moving in one spatial dimension that possesses a spatially
varying mass, the speed of light being given by ¢. A similar Hamiltonian is used to
describe the linear molecule polyacetylene in the continuum limit [6]. The
linearisation in the context of superfluidity therefore turns the calculation into one
associated with a family (by virtue of the ¢ integration) of one-dimensional
polyacetylene-like problems.

When U(x) is sufficiently simple we can directly use Eq. (3.2) to determine the
density of states. In Appendix B we use Eq. (3.2) to calculate a result we shall refer
to later; the density of states for the order parameter A(x)= 4 exp[ —2ikx].

In more general cases, where /# cannot be simply diagonalised, it may be helfpful
to represent the density of states in terms of a Fredholm determinant which may
then be calculated. To obtain this representation we introduce 4,, the Hamiltonian
operator of a normal system obtained by setting U(x)=0:

ho=cpo,. (3.3)
Using the density of states for this system from Eq. (2.3), we can write

N
o(£)="M
v

0)A ¢
——)—y de lc| Tr[0(E—h)—O(E—hy)]+2N(0) V. (3.4)
F —UF
It is the one-dimensional trace Tr[d(E — h)— d(E — hy)] that can be represented in
terms of a Fredholm determinant. To see this we first note that if £, (E,,) are the
cigenvalues of / (h,) then

Tr[3(E—h)—3(E—ho)]1 =} [ME~E,)—(E~ E,)]. (3.5)
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Next, with Im the imaginary part of a quantity, In the principle branch of the
logarithm,® and @(E) the Heaviside step function, we note that

ImIn(E—~E,—i0,)= —~nO(E, — E). (3.6)

It follows that we can represent the delta functions as

1
5(E—E,,)=;6—6-Elm In(E—E,—i0,). (3.7)

Lastly we note that Fredholm (or functional) determinant,*
D(w)=Det[(w—h)/(w—ho]=]] (0 — E,)/(@— E,), (3.8)

contains, for w=E— 0, many factors of the form (E—E,—i0, ), one of which
appears in the argument of the logarithm in Eq. (3.7). Consequently we have

Tr[&(E—/z)—o"(E—ho)]=%£Imln DE—i0,). (3.9)

Using this result in Eq. (3.4) leads to the desired representation of the density of
states in term of a Fredholm determinant:

& (N©)A
pLE) —{ ©

=5 ij delc| Imin D(E—i0+)} +2N(0) V. (3.10)

F —oF

4, METHOD OF OBTAINING THE FREDHOLM DETERMINANT

The Fredholm determinant D(w) given in Eq. (3.8) contains information on the
full spectrum of the operator h of Eq. (3.2b) and as such it is a complicated object.
In order to motivate the method by which we obtain D(w) let us first consider the
problem of determining the eigenvalues of the operator A. To make the problem
well defined we impose a periodic boundary condition over an interval L. Thus on
descending to coordinate representation, the eigenvalues of 4 are the values of E,
such that the two component spinor eigenfunction ¥ obeys both

[—icO.0;+ Ulx)1¢(x)=E, §(x) (4.1a)
and
Y(L)=y(0). (4.1b)

¥ The principle branch of the logarithm, In, is defined on a complex plane cut along the negative real
axis and has an imaginary part lying in (-, ).

* We use the symbol Det to denote a Fredholm determinant and det to denote the determinant of a
finite matrix.
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Since Eq. (4.1a) is a linear differential equation, we can use this equation to relate
W(L) to ¥(0) and generally we find

Y(x)=M(L; E,) $(0), (4.2)

where M(L; E,) is a 2 x 2 matrix.’ The quantization condition Eq. (4.1b) can, using
Eq. (4.2), be recast in the form

1 —M(L; E,)]y(0)=0 (4.3)
and the condition for a nonvanishing eigenfunction is
det[1-M(L. E,)]=0. (44)

This is the condition that determines the eigenvalues FE,; the corresponding
condition for the eigenvalues E,, of by, obtained by setting U{x) =0, is written as

det{1 — My(L; E ¢)]1=0. (4.5)

It is interesting to consider, for general (complex) values of w, the quantity d(w)
defined by
_ det[1 - M(L; w)]

dw)= det[1 — My(L; w)]

(4.6)

We hope to make it plausible, by the following arguments,® that d(w) coincides
precisely with the Fredholm determinant D(w) given in Eq. (3.8). We note, for
completeness, that the calculation of the Fredholm determinant for Schrédinger
operators is well known in the physics literature [7].

Let us proceed now with the arguments for the identification of d(w) and D{(w).
We note:

(i) Both the numerator and denominator of d(w) are analytic functions of
o without any singularities in the finite complex w plane. This follows since the
matrices involved are of finite order and for finite L there is no route for infinities
to enter into the problem.

(ii) As a result of (i), zeros of d(w) follow from the behaviour of the
numerator and poles of d(w) follow from the behaviour of the denominator. Let us
assume that eigenvalues of # are all non-degenerate’ and likewise h,. Then by virtue

® The eigenfunction ¥(x) can, most generally, be written in terms of the path ordered exponential
(with ordering operator P,): |//(x)=P‘.cxp(ij"(‘,‘ dx' o4 E,— U(x")]/c) ¥(0) and hence we can identify
M(x;w)=P expli [§dx" o3[ — U(x")]/c).

¢ After completion of this work, a proof that D(w)=d(w) has been found and will be presented
elsewhere.

71In general some, or all, of the eigenvalues of 4 are degenerate (similarly hy) but we can imagine
adding small terms to 4 and h, whose only important effect is to render all eigenvalues of these operators
non-degenerate.
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of Egs. (4.4) and (4.5) d(w) has zeros only at the eigenvalues of b, E,, and poles
at the eigenvalues of 4, E,,. The property of both the numerator and denominator
of Eq.(4.6) having zeroes at the respective eigenvalues allows us to write
dlw)=f(w) ], (0—-E)/(w—E,)=f(w)D(w), where the assumed analytic
function f(w) has no poles or zeros in the finite complex plane® and D(w) is the
Fredholm determinant given in Eq. (3.8).

(i) Lastly we note that when w goes to infinity along any direction in the
complex w plane except the real axis, it may be explicitly verified that d(w) — 1. In
the same limit the Fredholm determinant D(w)— 1 and we infer that in this limit
f(w)— 1. This is sufficient to show f(w)=1 for all w; the only analytic function
without poles in the entire complex plane being a constant. Thus we identify the
ratio of determinants of Eq.(4.6) with the Fredholm determinant of Eq. (3.8):
d(w)=D(w), ie.,

det[1 — M(L; w)]
detf1 —M,(L; w)]

D(w)=Det[(w—h){w—hy)]= 4.7)

Although the reasoning that led to this equation is not rigorous, we have tested
it in non-trivial cases and believe that the result is generally correct. Granted this,
a certain efficiency of calculation is achieved by its use; the ratio of two second-
order determinants can be used to find the ratio of two infinite-order determinants.

5. OUTLINE OF THE CALCULATION OF THE DENSITY OF STATES FOR
PIECEWISE CONSTANT ORDER PARAMETERS

Equation (3.10) gives the density of states in terms of the Fredholm determinant
D(E —i0,). By virtue of Eq.(4.7) we can determine the Fredholm determinant
merely from knowledge of some 2 x 2 matrices and the evaluation of their determi-
nant. In the case of a piecewise constant order parameter all the 2 x 2 matrices
required for the calculation of D{w) may be given in closed form and this is the
class of order parameters that we shall consider in this work.®

81 the function f(e) did have zeros or poles in the finite complex w plane, these would either change
the order of the zeros (poles) lying at the eigenvalues E, (E,,) or generate new zeros (poles).

° There is a possible objection in using a piecewise constant order parameter in Eq. (3.10) for the
density of states. This comes about since the kinetic energy linearisation described in Appendix A (and
used in the density of states) neglected some derivatives of the order parameter which are not obviously
small for sharply varying order parameter structures. It turns out that the linearisation is perhaps better
than expected. Calculations performed for a single discontinuous jump in the order parameter [8]
indicate that the corrections to the eigenfunctions calculated with the linearised kinetic enegy are of
order 4/Eg, where 4 is a typical magnitude of the off-diagonal potential U(x) appearing in Eq. (4.1a).
It appears that the full second derivative character of the kinetic energy results in a small admixture of
solutions that are omitted in the linearised theory. While these additional solutions may be important
in questions of scattering they do not seem to be important as far as the free energy is concerned.
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The calculation of D(w), as follows from Eg. (4.7), requires the determination of
the matrix M(L; ). From Eq. (4.1a) it follows that the 2 x 2 matrix M(x; w) obeys

[—icd,o5+ Ux)} M(x; w)=oM(x; w), M(O; w)y=1. (5.1)

Let us suppose that

Ux)=U, x,;>x>0

=U, Xy >X> X,
=U, X3>X>X,
and generally
Ux)=U; Xj 1 >X>X, (5.2)

Then rewriting Eq. (5.1) in the form

o, M(x; w) =£ [o;0—0;U(x)] M(x; w) (5.3)
and defining
j=£[a3w—a3Uj], (5.4)
we see that
M(x;w)=exp[(x—0) Ny], x;>x>0
M(x;w)=exp[(x—x,}) N Jexp[(x, —0) Ny], X, > X> X,

M(x; w)=exp[(x—x;) Ny} exp[(x;—x,;} N, ]exp[(x, —0) No], X3 > X2> Xy,
(5.5)

and in this way we can construct M(x; w). This leads to an expression for M(L; w)
as a product of matrix exponentials and the density of states can then be found via
Egs. (4.7) and (3.10).

To understand the correct order of limiting procedures implicit in the above
procedure, we use it to calculate the density of states for the simplest piecewise
constant order parameter: that of a uniform system. We write this quantity as
po( E). The off-diagonal self-energy is

U(x) = do,. (5.6)
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A short calculation results in'°

D(w):2—2cosh((L/c)~/Az—w2) 57)
2—2 cosh((L/c) / —w?)

and for large L we have'

InD w)~—~,/A2 «/ (5.8)

leading to
ImIn D(E—i0, )= {sgn(E) \/E*— A* O(E*— A4*)— E} L/|c|. (5.9)
Substituting this result in Eq. (3.10) yields the standard result

|£]
VE - 4?

Po(E)=2N(0O)V O(E* - 4%), (5.10)

6. CALCULATION OF THE DENSITY OF STATES FOR A PERIODIC ORDER PARAMETER

Having outlined the procedure for finding M(L; w) and hence D(w) for a general
piecewise constant order parameter, we proceed now to look at the density of states
for a periodic order parameter.

We assume that the potential repeats itself cyclically after a distance 24 and that
there are n complete cycles in the length L of the system. Thus

L=2na (6.1)
and we infer from Eq. (5.5) that
M(L; w)=[MQ2a; »)]". (6.2)
The Fredholm determinant takes the form

Diw) = det(! — [M(2a; ®)]") . (6.3)

2 —2cosh((L/c) / —w?)

We have noted in Section 2 that U(x) is a linear combination of ¢, and &, and it

'° The results has been written in terms of ./ —w? and /47— w? where the square roots are cut
along the negative real axis and the branch selected has a positive real part. This form anticipates the
limit L — 50, where a branch cut results from states having a continuous spectrum. For finite L both the
numerator and denominator are analytic functions of w.

"' We perform all calculations to leading order in the length of the system, L, ignoring any boundary
effects and are, effectively working in the infinite volume limit. It is important to note that any large L
approximations are to be made before the imaginary part of « is taken to be infinitesimal.
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follows that M(2a; w) has a determinant of unity. Consequently the two eigenvalues
of M(2a; w) are reciprocals of each other and with hindsight we write

Eigenvalues[ M(2a; w)] =A% A2 (6.4)
and
2 A2n__ A —2n

= S cosh((Le) o)

We denote by A7 the eigenvalue of M(2a; w) which has the largest modulus (which
is greater than unity). It follows that for large L,

D(w

(6.5)

In D(a))zsln /T(a))—iﬂ/—wz. (6.6)

lel

On substituting this into Eq. (3.10) for the density of states, we find that the second
term in Eq. (6.6) cancels with the normal state quantity 2N(0) ¥ in Eq. (3.10) and
we obtain, with V= AL, the volume of the system,

Vv
pE) =5 {2

~ f”F de || TmIn /T(E_i0+)}. (6.7)

Upa

Thus for a periodic system, the density of states is determined by the eigenvalue
of maximum modulus of the 2x2 “transfer matrix” M(2a; @) that propagates
eigenfunctions across a single period of the potential. Since we have not yet made
any assumptions about the continuity of the potential, this result applies not just
for piecewise constant potentials but also for continuous ones.

Let us now focus on a particular periodic potential. We choose a real periodic
order parameter with a “square wave” profile, 4(x), which is given in Fig. 1:

Ad(x)= —4, 2/ +1ya>x>2ja,
/ }j:O, 1,2, ... (6.8)
=4, 2ja>x>(2j+ 1)aq,
Afx)
+A
\ J
- A a

Fi1G. 1. The profile of the “square wave” periodic order parameter 4{x) given in Eq. (6.18) is plotted
as a function of position. The period of oscillation is 2a.
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The matrix M(2a; w) associated with a single period of this potential can be found
in closed form. A straightforward calculation leads to

(4% — w? ch(21)) — wA(ch(2t) — 1) 6, + iw /4% — w? sh(21) 6,

4% —w?

M(Q2a; w)= , (6.9a)

where

/42 _ 2
,=“__A__“’_. (6.9b)

|l

The eigenvalues of M(2a; w) can be written as 4 %> where

JAT— T (1) £ iw sh
A = 4 w;z(tzuizlwsu)' (6.10)

On replacing w by £ —i0_, as is required in Eq. (6.7), the difference in the modulus
of the eigenvalues is infinitesimal. We can save some work on finding which of the
two eigenvalues has the largest modulus by using either of the eigenvalues; there is
only a sign difference between ¢ Im In A(E—i0, )/éEand ¢ ImIn A~ Y(E—iO ,)/0E.
Thus, since the density of states is positive, we can write Eq. {6.7) in an equivalent
but more useful form by making the replacement ¢ ImIn A(£—i0,)/GE by the
modulus of ¢ Im In A(E)/SE (the infinitesimal {0, now playing no role). This leads
to

(N 18
p(E)_{ ~ jwdclc[|aEImlnA(E)i}. (6.11)

F -

In the two cases £2< 4%, E?> A? the behaviour of A(E) is different and it is
necessary to treat these separately. Before we do so, it is convenient to introduce
the notation

A= JIE*— 4% (6.12a)
r=aflc| (6.12b)

and, since the density of states is symmetric in E, we restrict discussion to
positive E.

Case (a). E*< 4% For this case, A =./4>— E? and we have

(E) = JAZch?(rd) — A2 sh2(rd) + i /4% — A% sh(rA)

A 2

(6.13)

From Eq. (6.11) it follows that for A(E) to make a contribution to the density
of states it must have a non-constant phase and from Eq. (6.13) we see that this
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comes about by having /42 ch(rd) — 4%sh?(rA) real, since i./4%—ish(rd) is
always imaginary in this range of energies. The required reality of the square root
can be written as the condition A> — 4? th%(rA) >0 and we find'?

JAE 2 th(r).)) 6.14)

A2 — A2 thX(ri))

0 i,
— 1 =@(A*— A% th3(r})) =
'6E mlnA(E)l O( 47 th*(r ))aEarctan<

[t may be verified that the right-hand side of this equation is always >0.

Case (b). E*> A% For this case, A=.,/E*— 4% and we have

VA2 cos¥(ri) — AZsin®(rd)+i /4% + A2 sin(rd)
A

A(E) = (6.15)

and similar considerations to those of Case (a) lead to

2 2 ]
JA4T+ A tan(rA)) (6.16)

0 . 0 (
—Imin A(E)| = O(i* - A% tan’*(ri)) —arct
. m In A(E) ( an*(ri)) 5Ear an ATt

0E

and, as in Eq. (6.14), the right-hand side is always >0.

The density of states may now be obtained. We perform the differentiations
indicated in Egs. (6.14) and (6.16), substitute the results in Eq. (6.11), and go from
the integration variable ¢ (restricted to positive values) to the variable » given by

u=ri=aijc. (6.17)
We obtain
E 2 o du @47 — 4% th? A? th
R R - e
2N(0)V O Jaiwe /32— A7 thi(u) A u

+@(E2—A2)a_]ﬁfm _d_u@(iz_AltanZ(u))[l+£(1_tayl(u))]

2 22
Up Yaiper U Az—Aztanz(u) A

by e (6.18)
with 4 given by Eq. (6.12a).

2 We have implicity used continuity of Im In A(E) so there are no contributions from differentiating
the Heaviside step function. Im In A(E) is, in fact, given by the continuous function

2__ ;2
Im In A(E) = 6(J* — 4° th¥(r)) arc tan (@’ﬂ)
22— A2 th*(rd)
+ (42 thX(r)) — i) m/2.
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7. BEHAVIOUR OF THE DENSITY OF STATES FOR THE PERIODIC ORDER PARAMETER

Equation (6.18) indicates that the density of states for for the “square wave”
periodic order parameter has a rich structure. Before we delve into some of the
details of this let us check that the result reduces to known results in various
limiting cases:

(i) For 450 we quickly find p(E)— po(E)=2N(0)V, the normal state
result.

(i) For E— o, ie, A2 — oo, the size of the regions where A2tan*(u) is
comparable or larger than A? is very small. Neglecting these regions and replacing

' A*— A% tan®(u)) by A along with discarding terms of order 42, leads again to the
normal state result.

(iii) A far less trivial limit is the behaviour of the density of states as a — cc.
As the sign reversals of the order parameter become further apart, the Fermions, for
most of the time, see only a constant order parameter. We therefore expect that in
the @ —» oo limit the density of states should go over to the resuit of a uniform
system. In Appendix C we show how the density of states of a uniform system is
approached as a — cc.

(iv) It may be verified that in the limit ¢ — 0, the density of states of
Eq. (6.18) goes over to the normal state result; the Fermions apparently seeing
only an average of the order parameter in this limit (cf. the £— o in
Appendix B).

Of the four limits discussed above, it seems that the third is by far the most
severe, the density of states of Eq. (6.18) having no obvious resemblance to the
density of states of a uniform system.

Let us now consider some other features of the density of states. We work with
the dimensionless quantities

d=a dvg (7.1)
e=E/A (7.2)
- p(E)
&) =380y (7.3)

In Figs. 2a, b, ¢ we have plotted the density of states of Eq. (6.18) as functions of
energy for the parameter a taking the values 0.5, 1.0, 2.0. For aid of comparison
we have plotted, in Fig. 3, the density of states for the order parameter
A exp[ —2tkx], given in Eq.(B.5). The value of k selected; k=mn 4/2v¢,
corresponds to the same period of oscillation as that of the square wave order
parameter appearing in Fig. 2b having a=1.
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0 | ‘
0 1

F1G. 2. The density of states is plotted as a function of energy for the “square wave” periodic order
parameter, with profile 4(x) given in Eq. (6.18) and plotted in Fig 1. All quantities plotted have been
rescaled to be dimensionless. ple) is the density of states measured in units of 2N{0)V, ¢ is the energy
measured in units of 4, and @ is the half period of the oscillation measured in units of vg/4.

pple)

0 e ‘

0 1

FiG. 3. The density of states is plotted as a function of energy for the complex order parameter
A exp(—2ikx). p,(e) is the density of states measured in units of 2N(0) ¥ and ¢ is the energy measured
in units of 4. We have selected &k = m 4/2vg; this value of k makes the complex order parameter have
the same period of oscillation as the real periodic order paramter of Fig. 2b.
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It is clear from Figs. 2a, b, ¢ that the density of states in the presence of the
periodic order parameter is non-zero for some ¢ below ¢*=1, ie., for energies
below the magnitude of the order parameter 4. This feature contrasts sharply
with the density of states of a uniform system which is zero at energies below the
gap.

The non-zero density of states of the periodic system “below the gap” comes
about only because the order parameter passes through zero. If there were only a
single sign change of the order parameter then there would exist a single bound
state (for a given value of ¢) in direct analogy with the bound state on a sharp kink
in polyacetylene [9]. The fact that there are many sign changes of the order
parameter results in a band of states lying below the magnitude of the gap. It is
possible to extract the analytical form of the density of states for E < 47; it is quite
singular but does have a finite integral (as it must). It takes the form

)=l S(+OIAD] D <, (7.4)

2 |ef [In(2/lel)

the logarithmic corrections indicating that the leading term is a good approxi-
mation only for extremely small energies.

For the states lying above the magnitude of the gap, ie., scattering states,
the complexity of the expression for the density of states originates from the band
structure associated with the Fermions moving in a periodic order parameter. Thus
in Eq. (6.16) the Heaviside step function repeatedly switches on and off as E, and
hence 4, increases. This indicates that there are, for a given value of ¢, band gaps
in the spectrum. These are smeared out when we integrate over ¢, the integration
summing the contributions of excitations whose momenta make different angles
with the x axis.

Given that both real and complex periodic order parameters have been
considered in investigations of inhomogeneous Fermi superfluids [1, 107, it is
interesting to compare the density of states given in Fig. 2b for the real periodic
order parameter and that in Fig. 3 for the complex order parameter 4 exp(—2ikx).
The periods of oscillation of the two order parameters have been arranged to be the
same by the value of & selected. There are significant differences in the way that
spectral weight is distributed in the two cases and this is most obvious below the
gap, indicating that although both are periodic they are far from equivalent. We
believe this difference would persist even if the square wave order parameter were
smoothed out.

A last feature we shall comment on is the discontinuity of the density of states
as E? passes through 42 ie., as ¢* passes through 1. For a uniform system, with
constant order parameter, A, there is a square root singularity at &* =1 resulting
in a divergence and infinite discontinuity of the density of states. The density of
states for the periodic order parameter, is, by contrast finite at ¢* = 1, there being
only a finite discontinuity. In Figs. 2a, b, ¢ this is discernible for all values of the
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parameter a. An analysis of Eq. (6.18) for the density of states leads, in general, to
the result

ﬁ(e:1#):@(1—&)(,/1—dz—g—arccosé), (7.5)

ﬁ(s=l+)=§6+@(1—ﬁ)(./l—ﬁz—;—larccosd) (7.6)

indicating that for all non-zero a there is a finite discontinuity and the divergence
of the density of states of a uniform system at ¢=1_, can only be reached in the
a= oo limit.

8. DiscussioN

In this work we have presented a method of calculating the density of states for
superfluid Fermi systems possessing order parameters that very only along a single
direction and are piecewise constant. The method centres about the calculation of
a Fredholm determinant and we have given arguments for the identification of this
quantity with the ratio of two finite order determinants.

We envisage a number of applications of the results in this paper; in particular
we note that that in the absence of magnetic fields a knowledge of the Fredholm
determinant is alone sufficient to determine the free energy [9, 11].

Our motivation of this work lies in using the density of states to calculate the free
energy of a *He-*He solution at low temperatures in the presence of a magnetic
field and estimating the order parameter profile. We plan to present our findings on
this elsewhere.

APPENDIX A: LINEARISATION OF THE KINETIC ENERGY

In this appendix we give the steps leading to a linearisation of the momentum
dependence of the kinetic energy, an approximation used in Section 3. A related
derivation has appeared in Ref. [5].

The linearisation is achieved by employing twice an exact relation for a function
g(p; x) with a square matrix structure that depends on the both the x coordinate
operator and the momentum operator p, the latter being appropriate to a particle
moving in 4 spatial dimensions. The relation is

d% d°x

o g(k—iV;x), (A.1)

Tr,[g(p;x)]=tr
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where Tr, denotes a combined trace over both the matrix indices and the configura-
tion space appropriate to a particle moving in d spatial dimensions and tr denotes
the trace over only the matrix degrees of freedom. The differential operator V is
taken to act to the right.

The proof of Eq. (A.1) is straightforward. We have

{x'| g(p; x) |X">=g(—iV';x')J.ddk/(27f)dexp[ik-(X'—X")]
=jddk/(2n)dexp[ik-(x'—x")] gk—iVix).  (A2)

Equation (A.1) then follows by setting x” =x’ =X, integrating each side over x and
tracing over the matrix indices.

We now employ Eq. (A.1) in dimension d=3 for a function f((p* —k32)/2m; x)
that depends on the kinetic energy and the x coordinate. We have

Try[f((p* — k})/2m; x)]

&k d
—tr f (Tn)Tx S = k2)/2m — ik - V/m —V*/2m; x). (A.3)

We set
e=(k>—ki)/2m (A4)

and make the approximations
f d*/2n) ~ f N(O) de f dQ/4n  with N©O)=mke/2n*  (A.5)

—ik-Vim—=V¥2m=~ —ivgk -V, (A.6)

where dQ2 is the element of solid angle about the unit vector k which points in the
direction of k. Equation (A.5) simply neglects the variation of the free particle
density of states at the Fermi energy while Eq. (A.6) neglects the variation of k in
the vicinity of the Fermi energy and, furthermore, assumes the spatial variation of
the order parameter is slow on a scale k. We obtain

Trs[f((p* —k})/2m; x)] ~ tr f d*x f N(0) de f(e~ ivek - V; x). (A7)

The polar axis of £ is orientated along the x axis such that
k-%=cos 3 (A8)

5957226 2-6
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and, since the only coordinate appearing in f is x,
k-V=cos8d, (8,=20/dx) (A9)

Using Eq. (A.9) and making the change of variable from ¢ to &’ (which may be
positive or negative) and is defined by

e=vpk’ cos J (A.10)
allows Eq. (A.7) to be written as (the prime on k has been neglected)

Trs[f((p* — ki )/2m; x)]

dx dk
2n

znvFN(O)Afl d(cos 8) |cos 9| trf fvpcos Stk —id ); x), (A.ll)
~1

where A= | dy dz is the area of the system in the y, z plane and we have performed
the trivial integration over the azimuthal angle in dQ.

The last step in the linearization is to observe that the x, k integral appearing in
Eq. (A.11) is of exactly the form appearing in the right-hand side of Eq. (A.1) with
d=1, allowing us to use that equation from right to left and to return to a trace
over the operator x and its conjugate momentum p.. With the introduction of

c=vpcosd (A.12)

we obtain

N(@0)A cvF
Tr LA~ k2/2m 01 A [ e e T[S 0] (A13)

F —UF

This result constitutes what we mean by a linearisation of the momentum
dependence of the kinetic energy.

APPENDIX B: CALCULATION OF THE DENSITY OF STATES FOR
THE ORDER PARAMETER A{x)= A4 exp[ —2ikx]

In this appendix we use Eq. (3.2) to calculate the density of states for the order
parameter 4(x)= A exp[ —2ikx] corresponding to the off-diagonal self-energy

U(x)= Ao, exp(2ikxa,] (B.1)

and investigate the result in three limits. The density of states for this order
parameter is denoted by p,(E).
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We start with Egs. (3.2a) and (3.2b) which read

pAE):mwmAJW de le| Te[S(E—h)] (B.2a)
F —vF
h=cpoy+ U(x). (B.2b)

It is convenient to perform a unitary transformation on A,

h=explikxo] A expl —ikxo4]
=cpoy—ck + 4o, (B.3)

and for the operator & we impose a periodic boundary condition on its eigen-
functions: Y(L)=/(0). To leading order in L we obtain

Tr[8(E—h)]=Tr[8(E—h)]
L |E + ck|

=HM,ME+MY—A2

O((E + ck)? — 4?). (B.4)

On inserting this result in Eq. (B.2a) we obtain, with V= 4L the volume of the
system,

NOYV
pilE)= ek

—sgn(E —vpk) J/(E—vgk)* — 4> O{E — vek)? — 4%) ). (B.5)

We take three limits of this result:

{sgn(E+vpk) J(E+vek)? — 42 O((E +vpk)’ — 47)

(i) 4-0, k+#0, leading to the normal state result
pn(E)=2N0)V. (B.6)

This result is necessarily independent of k since in the original Hamiltonian,
Eq. (B.2), all £ dependence drops out when 4 =0. Note that the & independence of
the 4 =0 limit is not entirely trivial from the viewpoint of the unitarily transformed
Hamiltonian, Eq. (B.3), since the k and 4 dependence are apparently separated.

(i) 4+#0, k>0, leading to the standard resuit for a uniform Fermi super-
fluid:
|E|
VEI-47

Po(E)=2NO)V O(E* - 4%). (B.7)
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(i) A4+#0, k— oo, leading again to the normal density of states given in
Eq. (B.6). Evidently, in the large & limit the Fermions see only the spatial average
of the rapidly varying order parameter.

APPENDIX C: APPROACH TO THE DENSITY OF STATES OF
A UNIFORM SYSTEM AS ¢ —» ®©

In this appendix we see how the density of states given in Eq. (6.18) approaches
the density of states of a spatially uniform system. For the purposes of this
appendix we shall set v, 4, and 2N(0)V to unity. There are two cases:

(a) E?<1. Here, we use the property of the Heaviside function in Eq. (6.18)
to write

p(E)=ai’@(A* —th*(al)) ja)rc s %ﬁ [1 —11—2 (1 - thiu))] (C.1)

i=1—-E2 (C.2)

The Heaviside function now outside the integral vanishes if
a > arc tanh(4)/4. (C.3)

For 1 = E >0, the ratio arc tanh(4)/2 is finite and hence for a fixed energy in this
range the density of states will vanish for sufficiently large a. The point £=0, i.e.,
A=1, where arc tanh(4) diverges, is a singular point of the density of states and the
order of limits £— 0, a— oo lead to different answers. This does not pose a
problem since the density of states usually appears in an integral and there a single
point makes a negligible contribution.

We thus see that for E* < 47 in the limit a — oo, the density of states of Eq. (6.18)
vanishes, making it identical, in this range of energies, to the density of states of a
uniform system p,(E) given in, e.g., Eq. (5.10).

(b) E?>1. Here

3 < du @(A* — tan*(u)) 1 tan(u)
p(E)_aAZLA e [1 +F(1—-———u )] (C.4)
A=JE* 1. (C.5)

Then for an arbitrary function f(u) we have the identity

}

o x al+n
duf()= Y Jl du flu+(n—1)m). (C.6)
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Applying it to Eq. (C.5) and noting that tan(u + =) = tan(u), we have

©  aien 1 O(4% —tan’(u))
E)=al? d
pE)=a EILA “Tut (n— Dl /i —@ni(w)
1 tan(u)
[rer(-amaomm)) 7

The Euler Maclaurin summation formula [12] can then be applied to the sum. The
leading a ! dependence arises from the factor [#+ (n—1)n]~? in the integrand,

x 1 o0 1 1
—_—— = CS8
,Z:l [u+(n—1)=n]? J‘o du [u+(n—11r]*> =nu—nY (C8)
and for large a (or more strictly large al),
ai+n 1 | pat+n
at L’: un(u—;z) ”Li - (C9)

the corrections to Egs. (C.8) and (C.9) being of order ¢! down, on the leading
terms. Using Egs. (C.8) and (C.9) in Eq.(C.7) yields an integral that is independent
of a plus O(a™"') corrections. On evaluation, we obtain

/12
VAL +0(a™").

p(E)= 7

|E|
VE -4

For a — oo this is identical to the E2> 4% density of states of a uniform system.

=2N(O)V +0(a ). (C.11)

We have therefore shown generally that Eq. (6.18) for the density of states
approaches the result of a system with uniform order parameter for large a.
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