
Perturbative Approach to Landau-Zener Transitions

D Waxman
School of Mathematical and Physical Sciences,
The University of Sussex, Brighton BN1 9QH,

Sussex, United Kingdom

January 14, 2003

Abstract

The Landau-Zener level-crossing problem is analysed perturbatively.
We consider the operator H(t) = Φ(t)σ3 +∆σ1 where Φ(t) is an external

(time-dependent) force, σi are the Pauli matrices and ∆ is taken to be a small
parameter.

By considering the operator U(t,−t) that evolves states in time from −t
to t, it is possible to develop a perturbation series in ∆. For three choices of
Φ(t), U(t,−t) is determined for small ∆.

For Φ(t) periodic with period θ a small ∆ approximation to U(t,−t) is
obtained that is valid for times of order θ/(θ∆)3. A slow modulation of this
time evolution operator is found and for certain values of the parameters the
slow modulation may stop, leaving U(t,−t) ≈ 1 for all t.

The effects of fluctuations in Φ(t) on the transition probability are also
calculated. To O

¡
∆2
¢
it is found that for Φ(t) ∝ t, white Gaussian noise

modifies the probability of a transition in a finite time but leaves unaltered
the long time transition probability. This is in accordance with the findings
of Y Kayanuma (Phys Rev Lett 58 (1987), 1934).
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1 Introduction

When two instantaneous eigenvalues of a quantum mechanical system come close
together due to an external time-dependent force1, transitions between the states
associated with the eigenvalues occur. These processes are conventionally referred
to as Landau-Zener level-crossing transitions. Such a situation is common in a
number of branches of physics as well as biophysics and chemistry and the results
of Landau and Zener have applications in these subjects (see [1] for a list of some
recent applications).
The purpose of the present work is to analyse the level-crossing problem by

perturbation theory. This yields a surprisingly large amount of information on the
dynamics of the system and, as we show below, the leading non-trivial terms of
perturbation theory require only the evaluation of integrals for their determination.
In Section 2 we give the basic perturbation calculation for the time evolution

operator that evolves states from time −t to time t; this object has a particularly
simple perturbative development. Next, in Section 3, we look at the results for
several different choices of the time-dependent external force; this freedom is a
luxury made available only by the restriction of the calculation to the perturbative
regime. Of particular interest is the case of an external force that is periodic in time;
here an approximate time-evolution operator is found that applies for many cycles
of the external force. Section 4 deviates from the path of the previous sections and
focuses on the transition probability. It is possible to explicitly include the effects
of random fluctuations in the external force and, for a particular choice of external
forcing, we determine the transition probability as a function of time. The work is
concluded with a short summary and there are two appendices.
All calculations are performed with h̄ set to unity.

2 Perturbative calculation

Zener’s original paper on the level-crossing problem [2] was concerned with transi-
tions from the ground state to the excited state of an essentially two level system
due to a time-dependent force in the Hamiltonian.

In terms of a pair of basis states which may be taken as |1i ≡
µ
1
0

¶
and |2i

≡
µ
0
1

¶
, the Hamiltonian adopted in [2] was equivalent to

H(t) = Φ(t)(|1ih1|− |2ih2|) +∆(|1ih2|+ |2ih1|)

≡ Φ(t)σ3 +∆σ1
(1)

where σi (i = 1, 2, 3) are the Pauli matrices.
Zener made the choice Φ(t) = vt with v (and ∆ ) positive and time-independent.

For the purposes of this section we shall, however, consider more general Φ (t) and
specify only that the function is odd:

Φ (−t) = −Φ (t) . (2)

If U(t, t0) (a 2× 2 matrix) denotes the time evolution operator for H(t):
1We shall use the term “force” to label the time-dependent term in the Hamiltonian originating

from an external influence.
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i∂tU(t, t0) = H(t)U(t, t0), U(t0, t0) = 1, (3)

then in Zener’s original calculation in which the ground and first excited states for
t→ −∞ were |1i and |2i, the asymptotic (long time) transition probability between
these states can be cast in the form

lim t→∞t0 → −∞|h2|U(t, t0)|1i|2 = 1− exp(−π∆2/v) = π∆2/v + ... . (4)

This result is analytic in ∆. It suggests that a perturbative expansion, e.g. of the
time evolution operator, in powers of ∆ is possible for general t and we shall now
proceed to develop this expansion.
We assume that the result in (4) is insensitive to the order in which the limits are

taken and the result of this equation follows from the large t limit of the “symmetric”
time-evolution operator U(t,−t). We shall study this evolution operator for general
positive t and accordingly define2:

V (t) ≡ U(t,−t), t ≥ 0. (5)

The virtue of the evolution operator V (t) is that a perturbation expansion is more
naturally and simply expressed in terms of it rather than U(t, t0). As a simple
example of this, consider the case ∆ = 0. Since Φ(t) is odd, V (t) = 1 for all times
while by contrast, U(t, t0) is, in general, different from unity (in this case however,
U(t, t0) and V (t) are both diagonal matrices and neither leads to transitions between
|1i and |2i).
The formal solution for V (t) that follows from (3) is

V (t) = T exp(−i
Z t

−t
H(s)ds), t ≥ 0 (6)

where T denotes the usual time ordering operator and is required since, in general,
the commutator [H (t) ,H (t0)] 6= 0 for t 6= t0. Differentiating the above equation
with respect to t leads to

i∂tV (t) = H (t)V (t) + V (t)H (−t) . (7)

and using (1) and (2) allows (7) to be written as3

i∂tV (t) = [Φ (t)σ
3, V (t)] + {∆σ1, V (t)}. (8)

Let us define

α (t) =

Z t

0

Φ (s) ds (9)

and introduce W (t) via

V (t) = e−iα(t)σ
3

W (t)eiα(t)σ
3

. (10)

This leads to
i∂tW (t) = ∆{e2iα(t)σ3σ1,W (t)}, W (0) = 1, (11)

2In investigating the time evolution of the system, it is possible to look at U(t, t0) as a function
of t when t0 is held fixed at a finite but arbitrary value. Alternatively we can make the symmetric
time choice and consider U(t,−t). Both objects lead to the same long-time (t → ∞, t0 →
−∞) transition probabilities but differ in their functional dependence on t. Given that each has
implications that are experimentally accessible, it is merely a matter of choice and convenience
which one is considered and the present paper deals with the symmetric time choice.

3In appendix A we provide an alternative formulation of the equation of motion for V (t), Eq.(8),
by going to a vector representation.
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or

W (t) = 1−
Z t

0

ds{i∆e2iα(s)σ3σ1,W (s)}, (12)

A development ofW (t) in powers of ∆ is obtained by iterating this equation4. Even
low order terms contain a significant amount of information since (i) Φ (t) is kept
to all orders in each term and (ii) the results apply for arbitrary values of the time
t, thereby making some global properties of the time evolution readily accessible.

3 Results for different Φ (t)

Iterating (12) a few times leads, after a little simplification, to5

W (t) = 1− Ω(t) + Ω
2(t)

2
+O((∆ t)3),

Ω(t) = 2i∆
R t
0
ds e2iα(s)σ

3

σ1.

(13)

Thus the perturbative treatment of the time evolution operator rests only on the
evaluation of integrals (which can, if necessary, be calculated numerically). Because
of this it allows us to consider choices of Φ (t) that may not lead to an exact solution
for the evolution operator in terms of special functions.
We shall evaluate the above expression for W (t) for three different choices of

Φ (t): Φi (t) (i = 1, 2, 3) and quantities associated with the different Φ’s will also
be labelled accordingly.

3.1 Φ1(t) = vt

For the above choice for Φ (t) the corresponding α (t) and Ω(t) are

α1(t) =
vt2

2
, Ω1(t) = 2i∆

r
π

2v
[C1(
√
vt)σ1 − S1(

√
vt)σ2] (14)

where C1(x) and S1(x) are the Fresnel Integrals [3]

C1(x) =

r
2

π

Z x

0

du cos(u2), S1(x) =

r
2

π

Z x

0

du sin(u2). (15)

Substituting α1(t) and Ω1(t) into (10) and (13), gives an explicit expression for
the symmetric time evolution operator which applies for arbitrary values of t. To
linear order in ∆,

V1 (t) ≡ U1(t,−t) = e−iα1(t)σ
3

·
1− 2i∆

r
π

2v
[C1(
√
vt)σ1 − S1(

√
vt)σ2] + ...

¸
eiα1(t)σ

3

(16)
To make connection with the result of Zener for the asymptotic transition

probability (4), we use the property of the Fresnel integrals: limz→∞C1(z) =
limz→∞ S1(z) =

1
2 . Thus

V1(t) ≈ e−iα1(t)σ
3

·
1− i∆

r
π

2v
[σ1 − σ2]

¸
eiα1(t)σ

3

, tÀ 1/
√
ν. (17)

4Writing W (t) =
P∞

n=0Wn(t) where W0(t) = 1 and Wn(t) = O(∆n) allows (12) to

be written in a form suitable for repeated iteration. With ω(s) = − i∆e2iα(s)σ
3
we have

Wn+1(t) =
R t
0 ds{ω(s),Wn(s)}, n = 1, 2, 3... .

5It may be shown that Ω2(t) in (13) is a multiple of the identity matrix. It is therefore a
correction to the ”1” in W (t) and (1 + Ω2(t)/2)2 ≈ 1 + Ω2(t) is, to O(∆2), the probability of a
“direct transition.”
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This leads to

lim
t→∞ |h2|U1(t,−t)|1i|

2 ≈ π∆2

v
, (18)

reproducing correctly the leading small ∆ approximation of Zener’s original calcu-
lation (4).

3.2 Φ2 (t) = V0 tanh
¡
t
τ

¢
With this choice we have

α2 (t) = V0τ ln cosh

µ
t

τ

¶
, Ω2(t) = 2i∆τ

ÃZ t/τ

0

ds exp
£
2iV0τσ

3 ln cosh(s)
¤!

σ1.

(19)
Provided we include a convergence factor into the integrand of Ω2(t) (which for
convenience we take to be exp [−δ ln cosh(s)], with δ a positive infinitesimal) then
Ω2(t) converges in the limit t→∞ (see [5], Eq.(3.512 2)) and

lim
t→∞W2(t) ≈ 1− i∆τ

Γ
¡
1
2

¢
Γ
¡−iσ3V0τ¢

Γ
¡
1
2 − iσ3V0τ

¢ σ1. (20)

We can justify the inclusion of the convergence factor by comparing the implications
of (20) with the small∆ approximation to the exact result for, e.g., limt→∞ |h2|U2(t,−t)|1i|2.
Both (20) and the exact result lead to

lim
t→∞ |h2|U2(t,−t)|1i|

2 ≈ ∆
2πτ

V0
coth(πV0τ) (21)

provided ∆2 ¿ V 2
0 and also

¡
∆2πτ/V0

¢
coth(πV0τ) ¿ 1. Note that (18) can be

obtained from (21) by writing V0 = vτ and taking the limit τ → ∞. Note also
that the limit τ → 0 of (21) leads to the small ∆ approximation for the “sudden”
variation Φ(t) = sgn(t).

3.3 Φ3 (t) = A sin(2πt/θ)

In this case it is advantageous to shift α(t) by an additive constant relative to the
definition in (9):

α3(t) ≡
Z t

0

Φ3 (s) ds+
Aθ

2π
= −Aθ

2π
cos

µ
2πt

θ

¶
. (22)

All other expressions depending on α remain unaltered in form, thus

Ω3(t) = 2i∆

Z t

0

ds exp

·
−iAθ

π
cos

µ
2πs

θ

¶
σ3
¸
σ1. (23)

Φ3 (t) is periodic over the interval θ and we shall consider the evolution operator
for t = θ/2. Since V (t) evolves states from −t to t, V3(θ/2) corresponds to evolution
over a one complete period of Φ3 (t).
The result for V3(θ/2) is found, in linear order, to be

V3(θ/2) ≡ U(θ/2,−θ/2) = e−iα3(θ/2)σ
3

·
1− i∆ θ J0

µ
Aθ

π

¶
σ1 + ...

¸
eiα3(θ/2)σ

3

(24)
where J0(z) is a Bessel function of the first kind of order zero [3] and we assume
“small ∆” means here: θ∆¿ 1.
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Equation (24) can be used to determine the time evolution operator over an
integer number of periods of Φ3 (t). Using the results of Appendix A, we have

V3

µ
n
θ

2

¶
=

½
[V3(θ/2)]

n

σ1 [V3(θ/2)]
n
σ1

n even
n odd

(25)

Using
£
1− Ω(θ/2) +Ω2(θ/2)/2 +O((θ∆)3)

¤n
= exp[−nΩ(θ/2) + O(n(θ∆)3)], we

find we can write the small ∆ approximation of V3(nθ/2) (for both even and odd
n) as

V3(nθ/2) ≈ e−iα3(nθ/2)σ
3

exp

·
−i (nθ)∆J0

µ
Aθ

π

¶
σ1
¸
eiα3(nθ/2)σ

3

, n = 1, 2, 3...

(26)
corrections being of relative order n(θ∆)3. Because of our assumption that θ∆ ¿
1, the corrections become significant only after many cycles of Φ3(t), (i.e. n ∼
(θ∆)−3 À 1).

V (nθ/2) evolves states through a time of nθ and (26) indicates, by the inner
exponential, that there is a unit amplitude, slow frequency modulation underlying
the time evolution. Thus, on top of the comparatively rapid oscillations resulting
from the e±iα(nθ/2)σ

3

factors, there is a slow modulation with period

Θ =
2π

∆
¯̄
J0
¡
Aθ
π

¢¯̄ . (27)

The period, Θ, is a non-linear function of the parameters in the problem and
when Aθ/π coincides with a zero of the Bessel function, Θ can become infinite.
When this occurs, it indicates that to the accuracy we are working to, V3(nθ/2) = 1
for all integer n. Thus for a particular combination of parameters, the periodic
forcing results in essentially no transitions between |1i and |2i. This feature is not
unique to a sinusoidal Φ (t); a number of different choices of periodic Φ (t) all yield
the same behaviour. It appears the divergence of Θ (vanishing of the frequency of
slow modulation) for a particular combination of parameters is a general feature of
periodic forcing. A possibly related behaviour has been seen in a different context
involving two-level systems associated with circular motion [6].
We end this section by noting that (26) suggests an approximation to V3(t) for

the wide range of times satisfying t¿ θ (θ∆)−3, namely exponentiate Ω(t) in (13):

V3 (t) ≡ U(t,−t) ≈ e−iα3(t)σ
3

e

h
−2i∆ R t

0
ds e2iα3(s)σ

3
σ1
i
eiα3(t)σ

3

. (28)

4 Effect of fluctuations

So far we have considered a two-level system forced by a function Φ(t) which is
odd in t. It commonly happens that superimposed on the systematic forcing are
random fluctuations f(t). We make the assumption that the fluctuations are com-
pletely characterized by a distribution function (“classical fluctuations”) and shall
average observable physical quantities over f(t) to yield ensemble averages. A re-
cent example of such fluctuations in the context of population inversion in lasers
is given in work by Kayanuma6 [4]; we shall not deal here with the fluctuations
associated with quantum environments, (see for example [1]).

6It may be shown that the equation of motion of the density matrix appearing in Eq.(3)

of [4] follows (in the notation of Ref.[4]) from the Hamiltonian

µ
vt

2
+ f(t)

¶
(|1ih1|− |2ih2|) +

J (|1ih2|+ |2ih1|) where f(t) is a delta correlated Gaussian random variable with zero mean. On
averaging the equation of motion resulting from the above Hamiltonian with respect to f(t), Eq.(3)
of [4] results.
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To proceed it is necessary to generalise the treatment given in Section 2 to the
case where Φ(t) is not an odd function of t. With the introduction of

α± (t) =
Z t

0

dsΦ(± s) (29)

and following the procedure of Section 2, we find that to linear order in ∆:

W (t) = 1− i∆

Z t

0

ds
£
exp

¡
2iα+(s)σ

3
¢
+ exp

¡−2iα−(s)σ3¢¤σ1. (30)

Next we take

Φ(t) = Φ0(t) + f(t) (31)

where Φ0(t) is deterministic and odd:

Φ0(−t) = −Φ0(t) (32)

and f(t) is random variable. We take f(t) to have a Gaussian white noise distribu-
tion (an over-bar denotes an ensemble average with respect to f(t)) characterized
by

f(t) = 0, f(t1)f(t2) = λ δ(t1 − t2). (33)

Then with

α0(t) =

Z t

0

dsΦ0(s), β±(t) =
Z t

0

ds f(±s) (34)

(30) takes the form

W (t) = 1− i∆

Z t

0

ds exp(2iα0(s)σ
3)
£
exp(2iβ+(s)σ

3) + exp(−2iβ−(s)σ3)
¤
σ1.

(35)
It is inappropriate to average U(t,−t) ≡ V (t) (given in (10)) with respect to f(t)

since this contains probability amplitudes and is not an observable quantity. Instead
transition probabilities should be averaged. We therefore consider the average of

P (t) ≡ |h2|U(t,−t)|1i|2

= |h2|V (t)|1i|2 = |h2|W (t)|1i|2.

(36)

Omitting some straightforward algebra, it follows from (35) and the properties of
the Gaussian noise that to lowest non-trivial order in ∆,

P (t) = 2∆2
R t
0
ds1

R t
0
ds2 e

2i[α0(s1)−α0(s2)] £e−2λ|s1−s2| + e−2λ(s1+s2)
¤

= 4∆2
R t
0
ds1

R s1
0

ds2 cos (2 [α0(s1)− α0 (s2)])
£
e−2λ(s1−s2) + e−2λ(s1+s2)

¤
.
(37)

We shall evaluate this expression for the special case where

Φ0(t) = vt, α0(t) =
vt2

2
. (38)

We change variables in (37) to x = s1 − s2, y = s1 + s2, and symmetry of the
integrand with respect to x←→ y allows us to enlarge the domain of integration in
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the (x, y) plane to the triangular region bounded by the x and y axes and the line
x+ y = 2t:

P (t) = ∆2
R 2t
0

dx
R 2t
0

dyΘ(2t− x− y) cos (vxy)
£
e−2λx + e−2λy

¤
= 2∆2

R 2t
0

dx
R 2t−x
0

dy e−2λx cos (vxy)

(39)

carrying out the y-integration and rescaling the results leads to

P (t) =
π∆2

v
I(vt2;

λ

vt
), I(a, b) ≡ 2

π

Z 4a

0

du

u
e−bu sin(u− u2

4a
). (40)

Note that

lim
t→∞ I(vt2;

λ

vt
) = 1 (41)

so to O(∆2), P (∞) = π∆2

v
i.e. independent of λ and hence the noise7. It follows

from (40) however, that for all finite values of t, P (t) does depend on t. In the
Figure we present plots of P (t)/P (∞) ≡ I(vt2; λvt ) as a function of t for λ zero and
non-zero. It is evident that the effect of the noise is to accelerate convergence of
the probability to its large t limit.

5 Summary

In this work we have explored Zener tunnelling in the perturbative regime corre-
sponding to small ∆. It has been possible to determine the time evolution operator
for a number of different choices of the forcing term Φ(t) including the interesting
case where it is periodic. It has also been possible to determine the effects of fluc-
tuations on the transition probability.
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Beyond leading order, however, the results of this reference show that P (∞) does depend on the
noise.
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A Vector representation for the symmetric evolu-
tion operator V (t)

In this appendix we express the symmetric evolution operator, V (t) = U(t,−t) in
terms of a vector representation. Such a formulation may shed insight into the
behaviour of V (t).
We proceed by noting the following implication of the equation of motion for

V (t), Eq.(8), combined with the initial condition, V (0) = 1, namely, V (t) consists
of a combination of σ0 (the unit 2×2 matrix), σ1 and σ2, but is independent of σ3.
This suggests the vector representation:

V (t) = (a.σ)σ3, a = (ax, ay, az). (42)

Substituting this into Eq.(8) yields

da

dt
= b ∧ a, b(t) = (2∆, 0, 2Φ(t)). (43)

The factors of 2 appearing in (43) arise from the fact that V (t) evolves over a time
interval of 2t.
The initial condition V (0) = 1 implies a(0) = (0, 0, 1). Reality of b(t) and

Eq.(43) then ensures that a(t) remains real and of unit length for all times.
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B Some properties of the time evolution operator
for periodic Hamiltonians

In this appendix we derive some properties of the time evolution operator that apply
when the external force is periodic over the interval θ and has the properties

Φ(t+ θ) = Φ(θ) (44)

Φ(t+ θ/2) = −Φ(θ). (45)

An example of such a function is Φ(t) = A sin(
2πt

θ
).

B.1 Translation through a full period

First, the Hamiltonian H(t) (1) is periodic

H(t+ θ) = H(t), ∀t (46)

and by shifting both t and t0 by θ in (3) we obtain [i∂t −H(t)]U(t+ θ, t0+ θ) = 0.
Then U(t, t) = 1, results in U(t0 + θ, t0 + θ) = 1, and since U(t + θ, t0 + θ) obeys
the same differential equation and boundary condition as U(t, t0) it follows that

U(t+ θ, t0 + θ) = U(t, t0). (47)

B.2 Translation through a half period

Let us shift both t and t0 by θ/2 in (3). Since Φ(t+ θ/2) = −Φ(t), (3) leads to

¡
i∂t −

£−Φ(t)σ3 +∆σ1¤¢U(t+θ/2, t0+θ/2) = 0, U(t0+θ/2, t0+θ/2) = 1. (48)

By pre and post multiplying this equation by σ1 and using the properties of the
Pauli matrices we obtain

[i∂t −H(t)]σ1U(t+ θ/2, t0 + θ/2)σ1 = 0, σ1U(t0 + θ/2, t0 + θ/2)σ1 = 1. (49)

Again making the comparison with U(t, t0) we infer

σ1U(t+ θ/2, t0 + θ/2)σ1 = U(t, t0). (50)

B.3 Expressing U(nθ/2,−nθ/2) in terms of U(θ/2,−θ/2).
We can combine the results of (47) and (50) with the group property

U(t, t00)U(t00, t0) = U(t, t0) (51)

to express U(nθ/2,−nθ/2), with n integral, in terms of U(θ/2,−θ/2).
We have, by repeated application of (47):

U(nθ/2,−nθ/2) =
½
[U(θ/2,−θ/2)]n n odd

[U(θ,−θ)]n/2 n even.
(52)
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This can be simplified. Application of (51), (47) and (50) yields

U(θ,−θ) = U(θ, 0)U(0,−θ) = U(θ, 0)U(θ, 0) =
£
σ1U(θ/2,−θ/2)σ1¤2 (53)

thus (52) can be written

U(nθ/2,−nθ/2) =
½
[U(θ/2,−θ/2)]n n odd
σ1 [U(θ/2,−θ/2)]n σ1 n even

(54)

and this is the principal result of this appendix.
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Figure Caption
We define P (t) = |h2|U(t,−t)|1i|2 ≡ the noise-averaged transition probability.

With P (t) and P (∞) calculated to O(∆2), the ratio P (t)/P (∞), with is plotted
as a function of t. The deterministic part of the external force has been taken
as Φ0(t) = vt with v = 1 throughout. The two graphs correspond to the noise
autocorrelation parameter λ (see equation (33))taking the values 0 and 1

2 . We note

that to O(∆2), P (∞) is independent of λ but P (t), for finite t, does depend on λ.
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