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Abstract. A zero-dimensional field theory is studied in which the potential appearing in 
the Lagrangian is non-convex. By using a variant of the instanton approximation the 
effective potential is obtained. This is found to be convex with a curvature of order e-”h. 
This is due to non-perturbative (tunnelling) processes. The Maxwell construction is 
retrieved in the h + 0 limit. 

1. Introduction 

The effective potential in field theory is a function whose minimum lies at the ground- 
state expectation value of the field. It has a precise analogue in statistical mechanics, 
namely the free energy expressed as a function of the magnetisation (or order para- 
meter). We shall utilise the language of field theory for this paper-we could equally 
have used that of statistical mechanics. 

The usual objective is to find the effective potential as a function of the static 
homogeneous field. This is often achieved only at the expense of making approxima- 
tions-many of which lead to a non-convex function of the field. Elementary arguments 
[ l ]  show that the effective potential must be convex. The adhoc proccdure which is 
employed to rid the effective potential of its non-convex portions is the so-called 
Maxwell construction. In this the convex cover (or convex hull) of the approximate 
effective potential is taken. 

It seems natural to enquire into the validity of the Maxwell construction. For 
instance, does the exact effective potentialt have a strictly flat region or does it have 
some curvature? 

In this paper we consider a system whose effective potential can be found to 
sufficient accuracy that: 

(i) deviations from the Maxwell construction can be seen and their origin under- 
stood; 

(ii) the Maxwell construction is seen to follow naturally in an appropriate limit. 
This paper is arranged as follows. In § 2 we set up notation and define the effective 

potential and the system under study. In 0 3  we utilise a variant of the instanton 
approximation to obtain the effective potential. This section is supplemented by an 
appendix which obtains the results in an alternative way. The paper is concluded with 
§ 4. 

+ In some cases (e.g., gauge theories) the effective potential is not unique but gauge dependent. In the 
following work we consider a system with a unique effective potential. I thank D Bailin for informing me 
of this point. 
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2. Defining the system and the effective potential 

In order to achieve the aims of this paper we have to consider the simplest quantum 
field theory we know of a scalar field in no space and one time. This, of course, 
coincides with the quantum mechanics of a single particle. 

The Euclidean Lagrangian is 

,re=;$'+ V ( 9 )  (1) 

where $ = d d / d t  and V ( 4 )  has the double well form given in figure 1. 
We define the function F ( J )  and the generating function Z ( J )  via? 

with T the size of the Euclidean time region. Strictly speaking, the form only 
holds as T + 00. This is the limit we are interested in and we shall take this limit at 
the end of the calculation for F ( J ) .  

The classical or static field & ( J )  is defined by 

h a  - -_  - l n Z ( J )  
T aJ 

i.e. 

(4) 

Assuming that & ( J )  is a monotonic function$ of J we can invert ( 5 )  to obtain 

J = J ( & ) .  ( 6 )  

U ( & )  = F ( J ) + & J  ( 7 )  

The effective potential U ( & )  is defined as the Legendre transform 

with J expressed as a function of &. 
It follows from (7)  and ( 5 )  that 

-- - J  d U ( & )  
d& 

Figure 1. The double well potential appearing in the Lagrangian. 

d[u5]. . . denotes a functional integral over 4. 
$This is explictly verified in (21).  
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and thus when J = 0, d U / d &  = 0 yields the ground-state expectation value of 6. It  is 
a simple matter to show that d2 U / a @  5 0 (see, e.g., [ 1 3 )  and hence the effective potential 
is convex and its minimum coincides with the ground-state value of &. 

We shall now find the effective potential in an appropriate approximation. 

3. Instanton approximation 

We have 

with F ( J )  determined in the T+OO limit. 
If J is sufficiently small (a  definite criterion will be given later) it is reasonable to 

assume that the dominant trajectories in the functional integral take the form of those 
given in figure 2 .  These are composed of instantonsf and anti-instantons (see, e.g., 
[ 2 ] ) .  We approximate the functional integral by summing over all such trajectories. 
In the approximation in which we are working we take the instanton profile to be 
determined by the J-independent part of the Euclidean action$ (and therefore the 
anti-instanton is the mirror image of the instanton). 

Figure 2. A trajectory of the multi-instanton type used in the path integral. 

For J = 0 we denote the Euclidean action of a single instanton by SO and hence 
the action of n instantons is nS, .  Consider now a trajectory composed of 2 n  objects: 
an instanton at ‘position’ t ,  , followed by an anti-instanton at position t 2 ,  . . . . If J # 0, 
the action of this trajectory, SZn, is given by 

S z , ( J ) = 2 n S o - J  1; $ ( t )  d t  (10)  

= 2 n S o - l ( J n r 1 ( - ~ o ) d t + J r ’ 4 0 d t  11 +.. .  

t The instanton is a fast hop from -do to +bo, the anti-instanton is the reversed path-they are a manifestation 
of quantum tunnelling between the two minima of the potential. 
$We therefore solve the Euler Lagrange equation of motion to obtain this profile. The procedure of using 
only the J-independent part of the action was used in [3]. 
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with 

to  = 0, f Z n t l  = 7. (13) 

We shall evaluate Z ( J )  by summing over all trajectories of the above kind (i.e. 
those which start at --I$~ and end at -do)+. In performing the sum we must, of course, 
include contributions from instantons and anti-instantons at all possible locations. 
This involves integrating over their positions. We thus obtain (see, e.g., [3] for related 
calculations) 

In this equation 2, is the generating function when J = 0 in the absence of tunnelling 
between the potential minima (i.e. no instanton contributions). We take it to be the 
free field (i.e. oscillator) result 

- 1  

2, = ( 2  sinh y )  
with w the small oscillation frequency about 4o 

w =‘[ vy 40)]1’1. (16) 
The quantity A appearing in (14) (with the dimensions of time) is given by the ratio 
of two functional determinants [3]. 

Z ( J )  may be found by substituting S 2 , ( J )  from (12) into (14) and evaluating the 
sum. Details of this are given in the appendix. The result is ((A8)-(A10)) 

with 

It is now a simple matter to take the large-T limit of (17) and hence find F ( J ) :  

hw 
2 

F ( J )= - - [A2+(J~o) ’ ]1” ‘  

where for convenience we have defined 
h , -S , /h  

A\----- 
A ’  

The static field 6 ( J )  ( 5 )  is thus 

d F  J4: & ( J )  = --= 
JJ [A‘+(J&J2]I’* 

which is a monotonic function of J as assumed in (6) .  Inverting (21) yields 

7 1 / 2 ‘  
P 61 40 J = J ( 6 )  = - 
4 0  [1-(6/40)-1 

t There are four sectors of trajectories, corresponding to starting and ending at *&. The T - +  5 result we 
obtain for F ( J )  is unaltered if we include contributions from trajectories of the other three sectors. 
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This equation appears to allow us to give the criterion of what constitutes small J. It 
is clear that the unphysical singularities at b; = *& are artefacts of the small-J approxi- 
mations made. We might expect that 6 should be far from these singularities; in which 
case 

However, this is probably too severe. A more realistic criterion would follow from 
considerations of when levels start crossing in the potential wellst. This suggests 

lJI<< fiw / 4" (24) 

and this will be taken as the criterion for small J. 

effective potential. Putting the results of (19) and (22) together we obtain 
We conclude this section by obtaining the quantity at the centre of this paper: the 

U ( I $ ) = F ( J ) + I $ J  ( 2 5 )  

hw A - ?  

2 2d" 
- A + T ~ - +  . . . .  

This is convex (as it must be) with a curvature (at & = O )  of A / 4 ~ K e - S ~ ~ ' h .  Any 
expansion of the effective potential in powers of h would miss this tiny curvature and  
lead to an  effective potential that is flat between -40 and +do. In this way we retrieve 
the Maxwell construction. 

4. Conclusion 

In this work we have provided an  example which shows how non-perturbative (instan- 
ton) effects yield deviations from the Maxell construction. The low-dimensional nature 
of the system studied precludes the existence of broken symmetry solutions (i.e. multiple 
phases). It appears that in systems that are capable of having more than one phase, 
non-trivial complexities of the effective potential exist [4]. 

The instanton method has been used in this paper to obtain the effective potential 
despite the existence of a much simpler method (see the appendix). This was done 
in the hope that related methods may be used in higher-dimensional theories. 

Appendix 

In this appendix we evaluate the sum appearing in (14) and provide an alternative 
derivation of Z ( J ) .  

t Therefore the two-level approximation breaks down (see the appendix). 
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A l .  Evaluation of the sum 

Equations (14) and (12) lead to 

We are thus led to consider 

a3 2 n  

I e  = a2n 1; dt2, dtzn-l . . . exp( - p  (-l)'( tj+, - r j ) )  (A2) 
n =o 

and 

00 2 n + l  

Io= n = O  ( Y ~ ~ + '  [:dt2n+l [of2n+'dr2n.. .exp(-p c ( - l ) j ( C + l - t , ) )  

where in (A2) t 2 n + l  = T and in (A3) t2n+2 = r. 
It therefore follows that 

a 
- I ,  = do - PIe  
a 7  

('44) 

a 
- Io= cYIe+pIo. ( ' 4 5 )  
a 7  

The solution to these equations subject to 

I e ( r = 0 ) = 1  Zo(7  = 0) = 0 

is 

where cr' denotes the j th  Pauli matrix. 
Thus 

I,( T )  = cosh[ ( (Y + p2) ' "~ ]  - s i n h [ ( ( ~ ~ + p ' ) ~ ' ~ r ]  (A81 
( f f 2 + P  ) 
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A2. Alternative derivation of Z(J) 

The result we have obtained for Z ( J )  may be obtained without using instantons. The 
derivation rests on the fact that for large T the only states making a significant 
contribution to Z ( J )  correspond to the lowest two states in the double well potential. 
For small J we may take a basis in this two-dimensional Hilbert space to be lL) and 
I R )  (corresponding to wavefunctions localised about -bo and +C#JO respectively). 

The Hamiltonian consists of the three terms: a zero-point energy term, a tunnelling 
term and a term arising from the source J. 

In a basis in which IL) is represented by ( y ) ,  IR) by (A) we have ( m i  are the Pauli 
spin matrices) 

hw 
2 

in which A is the tunnel matrix element. 

(0 1) e-"'"'(y) coincide. 

H 2: - - A - JC#JO m3 ( A l l )  

If we identify A with ha then we find that to corrections of order e-wr, Z ( J )  and 
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