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A detailed theoretical study of the dynamical behaviour of a quantitative trait under stabilizing selection is given for
an effectively infinite sexual population. The trait is controlled by a finite number of loci and the exact equation
obeyed by the distribution of allelic effects in gametes is derived and investigated. Results are derived for the effects
of selection over one generation when the population is initially in linkage equilibrium, allelic effects are normally
distributed, but the strength of selection is arbitrary. When weak stabilizing selection is operative, a more general
analysis is presented. This includes explicitly identifying the linkage disequilibrium generating aspect of selection.
In addition, the way quantities may be obtained from summing over effective one-locus haploid loci, is derived from
the explicit dynamics. Numerical tests of dynamical results over 104 generations and equilibrium results are pre-
sented.
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1. Introduction and overview

The dynamical behaviour of a multilocus trait is the
outcome of a number of different processes and is
complex. In this work we consider a single multi-
locus trait of a sexual population of diploid individu-
als. The aim of this work is to provide theoretical
insight into the interplay between the various pro-
cesses that affect the dynamics. To achieve this we
establish the exact equation for the dynamics and
show how various features follow directly from the
dynamics.

The model we adopt for our analysis is that intro-
duced by Lande (1976), in which a quantitative trait
is controlled by a finite number of linked loci (with
non-zero, but otherwise arbitrary, recombination
fractions between loci). At each locus, there are as-
sumed to be an effectively infinite number of alleles
and this is modelled by treating possible alleles as
having a continuous set of effects (Crow and
Kimura, 1964). The alleles contribute additively to
the trait, which, in the present work, is taken to be

subject to stabilizing selection. The population is
taken to be sufficiently large that stochastic effects
may be neglected.

Lande (1976) analyzed his model using a Gaussi-
an distribution of allelic effects. This was based on
an approximation of Kimura (1965), which was sub-
sequently shown to not apply for sexual populations
under normal circumstances (Turelli, 1984). Flem-
ing (1979) also analyzed Lande’s model, under what
is essentially the Gaussian approximation of Kimura
(1965).

Bulmer (1980) analyzed a related model, where
discrete effect alleles at an effectively infinite num-
ber of loci, each of infinitesimal effect (the infinites-
imal model), control a quantitative trait. The central
limit theorem allowed him to invoke normality of
the distribution of genotypic values and to infer an
approximate form for the contribution of linkage
disequilibrium to the genetic variance. Generally,
however, there are not an extremely large number of
small effect loci controlling a trait and the distribu-
tion of genotypic values deviates from a Gaussian
(Turelli and Barton, 1994). There are additional arti-
facts of the infinitesimal model. In particular, selec-
tion does not cause changes in gene frequencies, but
only generates pairwise correlations (linkage dis-
equilibria) between genes in gametes of common
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parental origin. In practise gene frequencies do
change after a modest number of generations (Tu-
relli and Barton, 1994).

The exact equation obeyed by the distribution of
allelic effects in gametes in the Lande model incor-
porates mutation, selection and recombination. We
partially analyse this in one particular case when se-
lection is arbitrary and provide a systematic analysis
when selection is weak. In the weak selection case,
various terms in the equation are separated accord-
ing to their effects. We explicitly identify the terms
in the selection function that generate linkage dis-
equilibrium as well as terms which simply sum con-
tributions from individual alleles. The framework
we present is distinct from that in other recent work
on multilocus systems and is complementary to
these investigations (Bürger, 1993; Bürger and Hof-
bauer, 1994; Barton and Turelli, 1991, 1994; Nagy-
laki, 1993; Christiansen, 1999). We also believe that
the mathematical approach to the dynamics pre-
sented here may be generalizable to more complex
situations.

We adopt the convention that summations with
unspecified limits cover the full range of the summa-

tion index and that all integrals range from –∞ to ∞.
Generally, but not always, we use the convention
that quantities represented by a capital letter denote
a random variable, and those in lower case denote a
particular realization of that variable. Additionally,
the only correlations we consider in this work are
those between alleles at two different loci, i.e. pair-
wise linkage disequilibria, and for brevity we shall
omit the adjective “pairwise” throughout the paper.

2. Model

Consider an effectively infinite population of dip-
loid, randomly mating dioecious sexual organisms.
Their lifecycle takes place in discrete generations.
One generation consists of: (i) the random union of
gametes to form zygotes, (ii) viability selection on a
single polygenic trait, (iii) the production, by surviv-
ing individuals, of gametes and the death of these in-
dividuals shortly afterwards.

The trait under consideration is controlled by L

linked loci where 2L alleles reside. These alleles
combine, both across and between loci, in a purely
additive manner i.e. without dominance or epi-
stasis.

The phenotypic value of the trait, Z, is the sum of
the genotypic value, G, and an environmental effect
E. Thus Z = G + E where

G X Yi ii

L= +
=∑ ( )

1
(1)

and Xi (Yi) is the contribution of the paternally (ma-
ternally) inherited allele at locus i. Each Xi and Yi is
continuous (Crow and Kimura, 1964) and can take

any value from –∞ to ∞. The environmental effect,
E, is a random Gaussian variable that is independent
of G. It has a mean of zero, and a variance of Ve.

Each allele in an individual is a copy of an allele
in one or other of its parents. Any difference be-
tween a parental allele and the allele passed on to an
offspring is due to mutations. Alleles are taken to
mutate independently of all other alleles and all loci
are equally mutable. The probability of a mutation

per replication of an allele is denoted by µ and the
effect of a mutated allele is taken to be normally dis-
tributed around the parental allele of which it is a
copy (Kimura, 1965). Given the occurrence of a mu-
tation that e.g. alters the allele of paternal origin at
locus i, the probability that the mutated offspring
will inherit an allele, with effect Xi in the infinitesi-
mal interval u + du > Xi > u, is f(u – x*)du, where x*
is the paternal value of Xi,

f x m x m( ) ( ) exp( / ( ))/= −−2 22 1 2 2 2π (2)

and m2 is the variance of mutated effects around the
parental value.

Fertility is taken to be independent of phenotype
and selection acts only on viability, which is deter-
mined by an individual’s phenotypic value. The via-
bility of an individual, with phenotypic value z, is
taken to be proportional to

exp[ ( ) / ( )]− −z Vθ 2 2 (3)

(Haldane, 1954) where V > 0. This corresponds to
normalizing selection where the optimal phenotypic

value is θ (a constant). The quantity V–1 is a measure
of the strength of selection on phenotypic values;
small V–1 corresponds to weak selection and vice
versa. Averaging (3) over environmental effects
yields the viability of individuals in terms of their
genotypic value. An individual whose genotypic

value is ( )x yi ii

L +
=∑ 1

has a viability proportional
to
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w x y Vi ii

L

s( , ) exp( [ ( ) ] / ( ))x y ≡ − + −
=∑

def
θ

1

2 2 (4)

where

V V Vs e≡ +
def

. (5)

In (4), we have introduced a convenient vector nota-
tion, so generally, a function depending on x will de-
pend on the L variables x1, x2, ..., xL.We shall refer to
w(x, y) as the fitness of individuals with genotypic

value ( )x yi ii

L +
=∑ 1

.

3. Compact representation of the dynamics

For the model outlined, the population, in generation

τ = 0, 1, 2, ..., is characterized by the distribution
(probability density) of allelic effects of paternal ga-
metes

Φ Φτ τ( ) ( , , ... , ).x ≡ x x x L1 2 (6)

Assuming no sexual dimorphism, the distribution of
maternal gametes is identical to that of paternal ga-

metes, namely Φτ(x). A property of Φτ(x), since it is
a probability density, is

Φτ ( )x d xL =∫ 1 (7)

where dLx = dx1dx2...dxL.

In generation τ, the distribution of allelic effects

of zygotes, under random mating, is Φτ(x)Φτ(y).
Thus prior to selection, the expectation of an arbi-
trary quantity H(X,Y) that depends on the effects of
paternally and maternally inherited alleles, X = (X1,
X2, ..., XL) and Y = (Y1, Y2, ..., YL) is denoted by
Eτ [H (X, Y)] and is given by Eτ [H (X, Y)] =

H∫ (x, y)Φτ(x)Φτ(y)dLxdLy. (The expectation after

selection, in generation τ, is Eτ[w(X, Y) H(X, Y)]/
Eτ[w(X, Y)].

The dynamics determines how Φτ(x) changes
from one generation to the next. The equation for
this is

Φ
Φ Φ

Φ
τ

τ τ

τ
+ = ∫

1( )
( ; , ) ( , ) ( ) ( )

( , ) ( )
x

x u v u v u v

u v u

K w d ud v

w

L L

Φτ ( )v d ud vL L∫
(8)

where K(x; u, v) incorporates mutation and recom-
bination. This equation is derived Appendix B and,
in equations (B1) to (B5) of this Appendix, we give a
specification of K(x; u, v). In Appendix C some
properties of K(x; u, v) are derived.

4. Results following from the exact dynamics

Equation (8) contains an exact statement of the dy-
namics. It is possible to extract a small number of
exact results from this and we shall present these be-
fore considering an approximate treatment.

Consider the effects of a single round of selection
on a population that, in generation 0, is in linkage
equilibrium. We take the distribution of allelic ef-
fects in gametes to be given

Φ 0 1
( ) ( )x xj jj

L=
=∏ χ (9)

χ πα αj j j j j jx x c( ) ( ) exp [ ( ) / ( )]/= − −−2 22 1 2 2 2 (10)

corresponding to the effects of alleles at locus j be-
ing normally distributed around xj =cj and having a
variance of α j

2 . Let us define

G c Vj gj

L

j

L

0 01

2

1
2 2≡ ≡

= =∑ ∑
def def

, , α j (11)

then in Appendix D we show that the following
hold, with no approximation:

x d x c G V Vj

L

j j s gΦ 1 0
2

0( ) ( ) / ( ),x∫ = − − +θ α (12)

x d x x d xj

L

j

L2
1 1

2Φ Φ( ) ( ( ) )x x− ∫∫
= + − +µ α αm V Vj j s g

2 2 4
0/ ( ), (13)

x x d x x d x x d xj k

L

j

L

k

LΦ Φ Φ1 1 1( ) ( ) ( )x x x− ∫∫ ∫
= − + ≠α αj k s gV V j k2 2

0/ ( ), ., (14)

These three results hold for arbitrary L and Vs

−1 , the

latter being a measure of the strength of selection.
Let Varτ denote the variance of a quantity in gen-

eration τ and Eτ the corresponding expectation.
Then sinceα j

2 = Var0(Xj) is the variance of Xj in gen-

eration 0, we can write (14) as

E X X E X E Xj k j k1 1 1( ) ( ) ( )− =

− +Var Var0 ( ) ( ) / ( ).,X X V Vj k s g0 0 (15)

This quantity is a measure of pairwise linkage dis-
equilibrium. We shall compare this with an approxi-
mate result in a later section.
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5. Strength of selection

Let us estimate the strength of selection in the above
model when loci are unlinked. Without loss of gen-
erality, quantities may be scaled so Ve =1. With this
scaling, typical values of the parameters m and Vs as
estimated by Turelli (1984), are in the vicinity of

Vs = 20 and m = 0.2. We furthermore take µ =10–5 as
a typical allelic mutation rate (Griffiths et al., 1996).

The typical values of taken for Vs, m and µ indicate

that µVs/m
2 <<1 and under this condition a “House of

Cards” approximation applies (Turelli, 1984). This
approximation is related to a mutation scheme of
Kingman (1978). The essence of the approximation
is that the distribution of allelic effects is much nar-
rower than the typical change in allelic effect caused
by a mutation. Let E denote the expectation operator
for equilibrium. The mean equilibrium genotypic

value coincides with the fitness optimum: E[G] = θ.
Furthermore, the mean fitness of the population is

E[exp(–(G – θ)2/(2Vs))] and expanding the expo-
nent yields

E G Vs[exp( ( ) / ( ))]− −θ 2 2

= − + − +1 2 84 2V V E G E G VG s s/ ( ) [( [ ]) ] / ( ) ... (16)

where V E G E GG ≡ −
def

[( [ ]) ]2 is the equilibrium ge-

netic variance. Results from Appendix A, namely

(A2) and (A3), yield VG/(2Vs) ≈ 2Lµ and E[(G –

E[G])4] / (8Vs
2 ) ≈ (2Lµ)m2 / (4Vs) + (3/2)(2Lµ)2 (1 –

1/(2L)).When the ratio of quartic to quadratic mo-
ments in (16) is small, namely when m2 / (4Vs) <<1

and 2Lµ << 1, selection is weak and the fitness of in-

dividuals with genotypic value ( )x yi ii

L +
=∑ 1

is

w x y Vi i si

L
( , ) [ ( ) ] / ( ).x y ≈ − + −

=∑1 22

1
θ (17)

6. Approximation of the dynamical equations

when selection is weak

Assuming selection is weak in typical dynamical sit-
uations, as well as in equilibrium, allows us to write

w(x, y) ≈ 1 – s(x, y) where

s x y Vi i si

L
( , ) [ ( ) ] / ( ).x y = + −

=∑ θ 2

1
2 (18)

For unlinked loci under the “House of Cards” ap-
proximation, s(x, y) has an approximate mean equi-

librium value of 2Lµ.
An approximate analysis of (8) when s(x, y), (or

its mean value) and µ are treated as small quantities
of comparable magnitude can be obtained by ne-

glecting terms of order s(x, y) × s(x, y), s(x, y) × µ
and µ × µ along with higher order terms.

To begin the approximate analysis, expand

K(x; u, v), of (8), to linear order in µ:

K , K
K

( ) ( ; , )|
( ; , )

x u v x u v
x u v

; ≈ +=
=

µ
µ

µ ∂
∂µ0

0

≡ +
def

;K , K0 1( ) ( ; , ).x u v x u vµ (19)

Appendix C is devoted to the functions K0(x; u, v)
and K1(x; u, v) and some important properties of
these are given in (C2) and (C3).

Equation (8), on expansion to the stated order,
takes the form

Φτ τ+ ≈ − −∫1 0 1( ) ( ; , ){ [ ( , ) ]}x x u v u vK s s

×Φ Φτ τ( ) ( )u v d ud vL L

+ ∫µ τ τK d ud vL L

1 ( ; , ) ( ) ( )x u v u vΦ Φ (20)

where s s d xd yL L

τ τ τ= ∫ ( , ) ( ) ( )x y x yΦ Φ .

Equation (20) can be written in a form where the
detailed significance of different terms can be
readily appreciated. We achieve this by separating
the selective difference, s s( , )u v − τ into various
components related to their influence.

7. Decomposition of the selection coefficient

Selection in the diploid stage of the lifecycle has a
number of different effects that arise because selec-
tive deaths, due to genotypic differences, result in
changes in the genetic constitution of a population.
The most obvious of these results in changes in al-
lele frequencies of non-equilibrium populations. In
addition there are changes in correlations with the
following origins.

(i) At the start of a generation, immediately after
random union of gametes, alleles of different paren-
tal origin are uncorrelated and at this point the popu-
lation is in Hardy Weinberg equilibrium. During the
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course of a generation, selective deaths cause corre-
lations between the alleles of different parental ori-
gin that exist in surviving individuals. Via recombi-
nation, some of these alleles may end up in the same
gamete and as a result, correlations of alleles in ga-
metes are generated (this is one source of linkage
disequilibrium). These correlations may then be
passed on to the next generation.

(ii) At the start of a generation, newly formed in-
dividuals, containing alleles of the same parental or-
igin, may already contain correlations. Selective
deaths may generate additional correlations between
these alleles. Some of these alleles may also end up
in the same gamete. Selection may thus generate ad-
ditional correlations between alleles in gametes and
these will then affect the next generation (this is an-
other source of linkage disequilibrium).

We shall shortly see which terms in the selection
coefficient are responsible for changes in frequency
or production of linkage disequilibrium.

Part of the selection coefficient is comprised of a
sum of contributions from the separate alleles pres-
ent in an individual and is written as sg(u, v). Gen-
erally, this causes changes in gene frequencies. In
the language used by Bulmer (1989) when discuss-
ing genetic variance, sg(u, v) is a “genic” contribu-
tion, obtained by summing contributions from indi-
vidual genes.

The part of the selection coefficient that produces
correlations between alleles in gametes originating
in a single parent is written as sL(u, v).This term is
responsible for the generation of linkage disequilib-
rium, and is termed a “linkage” contribution.

Using the notation

G E Gτ τ≡def
[ ], X E Xi i, [ ]τ τ≡def

δτ τu u Xi i i≡ −def

, , δτ τv v Xi i i≡ −def

, (21)

we find we can write

s s s sg g( , ) [ ( , ) ],u v u v− = −τ τ

+ −[ ( , ) ],s sL Lu v τ (22)

where

s
V

u G Xg

s

i i i( , ) ( ),u v = + − − +∑1

2
2

τ τ θ

+ + − −∑1

2
2

V
v G X

s

i i i( ),τ τ θ (23)

s
V

u u v vL

s i j i j

i j i j( , ) ( )
, ( )

u v = + +
≠

∑1

2
δ δ δ δτ τ τ τ

+ ∑1

2
2

V
u v

s i j

i j

,

δ δτ τ (24)

s s d ud vg g

L L

, ( , ) ( ) ( ) ,τ τ τ= ∫ u v u vΦ Φ

s s d xd yL L

L L

, ( , ) ( ) ( )τ τ τ= ∫ u v u vΦ Φ . (25)

The form of the genic contribution, sg(u, v), may
be appreciated if it is noted thatG X iτ τ− , is the aver-
aged effect of all alleles controlling the trait, with the
exclusion of the effect of the paternal allele at locus
i. Thus [ ] / ( ),u G X Vi i s+ − −τ τ θ 2 2 corresponds to

the selection coefficient against individuals carrying
a paternal allele at locus i with effect ui, when all
other alleles have their mean effects and a quadratic
approximation to the selection coefficient applies.

It is not immediately obvious that the linkage
contribution, sL(u, v), is a term that generates link-
age disequilibrium. We shall shortly show, how-
ever, that it does indeed have this property.

8. Weak selection dynamics

The approximate dynamical equation (20), can now
be written as

Φ Φ Φτ τ τ+ ≈ ∫1 0( ) ( ; , ) ( ) ( )x x u v u vK d ud vL L

+ − −∫{ ( ; , ) ( ; , ) [ ( , ) ]},µ τK K s sg g1 0x u v x u v u v

×Φ Φτ τ( ) ( )u v d ud vL L

K s sL L0 ( ; , )[ ( , ) ] ( ),x u v u v u∫ − τ τΦ

Φτ ( )v d ud vL L . (26)

We shall sometimes use a shorthand notation where
terms in this equation are written as
Φ Φ Φ Φ Φτ τ τ τ τµ+ = + − −∫∫1 0 1 0K K K s sg g( [ ])

− −∫K s sL L0 [ ] .Φ Φτ τ

8.1. Interpretation of terms

(i) The term K 0Φ Φτ τ∫ contains only effects of re-

combination [see (C4) for K0]. Thus if all terms on
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the right-hand side of (26), with the exception of
K 0Φ Φτ τ∫ , were absent, the linkage disequilibrium

between alleles at locus i and locus j would decrease
by a factor of (1 – rij) each generation, where rij is
the recombination fraction between these loci. Thus

for i ≠ j, the term K 0Φ Φτ τ∫ yields, with Cij ( )τ =

= −E X X E X E Xi j i jτ τ τ( ) ( ) ( ),

C r Cij ij ij( ) ( ) ( )τ τ+ = −1 1

(result of recombination term). (27)

This result may be derived directly from (26) by
multiplying (26) by either xi or xixj, integrating over
x, and using the properties of K0(x; u, v) derived in
Appendix C.

(ii) The term ∫ − −( [ ])µ τ τK K s sg g1 0 Φ Φ con-
tains two parts, one of which carries a factor of the

mutation rate, µ. It follows that ∫ µ τ τK1Φ Φ is re-

sponsible for the mutation of individual alleles.
The term ∫ − −( [ ])µ τ τK K s sg g1 0 Φ Φ also con-

tains the part ∫ K s g0 Φ Φτ τ which is the genic selec-
tive force that consists of a sum of 2L selection coef-
ficients against the 2L alleles controlling the trait
[see the form of sg in (23)].

It follows that ∫ − −( [ ])µ τ τK K s sg g1 0 Φ Φ con-
tains opposing evolutionary forces that are each a
sum of terms from individual alleles.

(iii) The term ∫ K s L0 Φ Φτ τ is unique in that it is
the only term that generates correlations between al-
leles that end up in a single gamete. In (24), sL is split
into two sums, the first of which is responsible for
generating correlations between alleles originating
in just one of the parents of the individual producing
the gamete. The second sum in (24) generates corre-
lations between alleles originating in different par-
ents of the individual producing the gamete, but
which, due to recombination, find themselves in the
same gamete. Thus ∫ K s L0 Φ Φτ τ is responsible for
the production of linkage disequilibrium. To see this
explicitly, consider a situation of complete linkage

equilibrium in generation τ : Cij (τ) = 0. In Appendix

E it is shown that the next generation, when i ≠ j,

C X X Vij i j s( ) ( ) ( ) /τ τ τ+ ≈ −1 Var Var

(result of the linkage term). (28)

This result can be compared with the exact, but
somewhat specialized result of (15) which was de-

rived when, in generation 0, the population was in
linkage equilibrium with normally distributed allelic
effects. By comparison, it follows that (28) is a valid

approximation when 2
1
Varτi

L

i sX V
=∑ <<( ) .

8.2. Dynamics of correlations

We shall assume that all recombination fractions be-
tween loci, rij, are large compared with the allelic

mutation rate µ. Thus if rmin is the smallest recombi-
nation fraction between loci controlling the trait:

rmin = mini,j (rij), (i ≠ j), we assume

rmin >> µ . (29)

A simple picture of the dynamics of correlations
then emerges. This comes about since there are then
two distinct timescales in the problem. There is the
short timescale ~ minr −1 , associated with recombina-

tion processes. The other timescale is longer, very
roughly of order µ–1, and is associated with changes
caused by mutation and selection processes.

To obtain evidence for this two-timescale picture,
we combine the results for correlations, (27) and
(28), namely

C E X X E X E Xij i j i j( ) [ ] [ ] [ ]τ τ τ τ+ = −+ + +1 1 1 1

≈ − − ≠( ) ( ) ( ) ( ) / , .1 r C X X V i jij ij i j sτ τ τVar Var (30)

Combining results is justified if linkage disequi-
librium remains small and this is automatically

satisfied if 2 Varτ ( ) ,X Vi si

L <<
=∑ 1

in which case

∫ K s L0 Φ Φτ τ only affects, to leading order, the as-
sumed very large linkage equilibrium aspect of
Φτ ( ).x The solution of (30) is

C r C rij ij ij ij

n

n
( ) ( ) ( ) ( )τ τ τ≈ − − −

=

−∑1 0 1
0

1

× − − − −Var Varτ τn i n j sX X V1 1( ) ( ) / . (31)

The correlations associated with linkage disequilib-
rium therefore change because of recombination
[which causes the various powers of (1 – rij) in (31)]

and also because Varτ (Xi) depends on τ, so there are
dynamical changes in the variance of allelic effects.
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8.3. Dynamics of allelic effects

The result given in (31) requires the variance of ef-
fects of alleles (of e.g. paternal origin), Varτ (Xi), at

different loci and for different τ. The assumption we
have previously made, that linkage disequilibrium is
small, allows the calculation of the allelic variances
under the approximation of linkage equilibrium. At
locus i the distribution of effects of alleles of pater-

nal origin, is, in generation τ, defined by

ψ δ,τ τi i i i

Lx x y d y( ) ( ) ( )= −∫ Φ y

= − +∫Φτ ( ) ... ... .x dx dx dx dx dxi i L1 2 1 1 (32)

The equation obeyed by ψ τi ix, ( ) follows by multi-

plying (26), for Φτ+1(y), by δ(xi – yi) and integrating
over all y. After some work we obtain

ψ τi ix, ( )+ =1

= + − −∫ψ µ ψ ψτ τ τi i i i i ix f x u u du x, , ,( ) [ ( ) ( ) ( )]

− −[ ( ) ] ( ), ,S x S xi i i i iτ τψ

+ linkage disequilibrium contributions (33)

where

S x x G X Vi i i i s( ) ( ) / ( ),≡ + − −def

τ τ θ 2 2 (34)

S S x x dxi i i i i i, ,( ) ( ) .τ τψ≡ ∫
def

(35)

The linkage disequilibrium contributions in
equation (33) may, in situations close to equilib-

rium, be estimated to be of order 2Lµ smaller than
other terms present and is thus neglectable when

2Lµ << 1.
Equation (33) is a dynamical equation that deter-

mines the change ofψ τi ix, ( )with τ. With the neglect

the linkage disequilibrium contributions, (33) has
the form associated with a one locus haploid prob-
lem where Si(xi) is the selection coefficient against
alleles of effect xi. We can solve the resulting equa-
tion for ψ τi ix, ( ) and hence can determine Varτ (Xi) =
∫ −( ) ( ) ., ,x X x dxi i i i iτ τψ2

8.4. Considerations of general dynamics

Equation (26) contains the general dynamics of the

distribution function Φτ(x) under conditions of weak
selection. We shall not consider the general dynam-
ics in any appreciable detail but shall simply point
out that equations may be obtained from (26) that re-

late quantities in generation τ +1 to quantities in

generation τ. For example, the mean genotypic

value in generation τ +1, E G E X Yi iiτ τ+ += + ≡∑1 1[ ] [ ( )]

2 1E X iiτ + ∑[ ], may be obtained by multiplying (26)

by x ii∑ and integrating over all xi. Details of the
calculation are given in Appendix F. One virtue of
the analysis is that the dynamical origin of the differ-
ent terms, whether from genic or linkage parts of se-
lection, is immediately known.

9. Approach to equilibrium

From (31) and (33) we can infer the following pic-
ture of the approach to equilibrium.

(i) On short times, of order rmin ,−1 all correlations

associated with linkage disequilibrium settle down
to a quasi-equilibrium value, given by the balance
between recombination and linkage disequilibrium
generating aspects of selection. During changes

over time-intervals small compared with µ−1 we may
imagine that genic changes (associated with changes
in individual allele frequencies) vary so little that

they may be treated as a constant. Thus when µ−1 >>

τ >> rmin
−1 we can replace the sum in (31) by

( ) ( ) ( ) /1
0

1

1 1− ≈
=

−
− − − −∑ r X X Vijn

n

n i n j s

τ
τ τVar Var

Var Varτ τ( ) ( ) / ( ).X X r Vi j ij s Thus when µ−1 >> τ >>

rmin
−1

E X X E X E Xi j i jτ τ τ( ) ( ) ( )−

≈ −Var Varτ τ( ) ( ) / ( ).X X r Vi j ij s (36)

The rapidity with which recombination causes
the quasi-equilibrium result of (36) to be achieved
(namely over ~ rmin

−1 generations) indicates recom-

bination is generally a very strong genetic force. The
equilibrium value of the right-hand side of (36),
which, under the “House of cards approximation,” is
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of order µ2Vs / rmin, indicates that recombination pro-
duces a high degree of linkage equilibrium.

(ii) After the relatively rapid “recombination”
generated approach to quasi-equilibrium, genic ef-
fects undergo their approach to equilibrium on the

longer timescale of ~ µ–1. Over this longer time-
scale, (36) indicates that correlations associated
with linkage disequilibrium are controlled by (or are
slaves of) the changes in genic quantities.

10. Equilibrium genetic variance

In equilibrium, quantities do not have any τ depend-
ence and the genetic variance is given by

V G X YG i ii

L≡ = +
=∑def

Var Var[ ] [ ( )]
1

. This can be

split into the following parts (Bulmer, 1989), VG =

Vg + CHW + CL where

V Xg ii

L=
=∑2

1
Var( ) (37)

C E X Y E X E YHW i j i jj

L

i

L= −
== ∑∑2

11
( [ ] [ ] [ ]) (38)

CL j

L

i

L

i j

=
==

≠
∑∑2

11
( )

( [ ] [ ] [ ])E X Y E X E Xi j i j− (39)

Vg arises from contributions of individual genes
and is called the genic variance (Bulmer, 1989). In
the absence of linkage disequilibrium, the genetic
variance coincides with the genic variance.

CHW is a Hardy Weinberg disequilibrium term
that arises from correlations between pairs of alleles
originating in different parents. Since CHW is calcu-
lated immediately after random union of gametes,
alleles originating in different parents are statisti-
cally independent and CHW = 0.

CL arises from linkage disequilibrium, i.e. from
statistical correlations between pairs of alleles at dif-
ferent loci, the alleles having the same parental ori-
gin.

To calculate these quantities, we proceed by first
calculating equilibrium quantities associated with
alleles at a single location within a locus (each locus,
being diploid, has two locations where alleles can
reside) and then feed these into the results already
obtained for linkage disequilibrium correlations. In
this way we are able to determine the genetic vari-
ance.

10.1. Genic variance

We first calculate the variance allelic of effects. The
selection function, Si(xi), of (34) may be simplified
since equilibrium entails G =θ. Thus (33) may be
written as

( )
( ) ( ) ( )

x X

V V
u X u du xi i

s s

i i i i

− − − +








∫

2
2

2

1

2
ψ µ ψ

− − ≈∫µ ψf x u u dui i( ) ( ) .0 (40)

As Lande (1976) pointed out, the X i ’s in equilib-
rium need not be zero. Apart from the constraint

2
1
X ii

L =
=∑ θ, they have arbitrary values which

are ultimately determined by initial conditions. Let

Ψ (xi) be the equilibrium solution of (40) when all

X i =0 (so Ψ (xi) is real, positive, symmetric and

∫ Ψ(xi)dxi = 1). Then for all i, ψi(xi) = Ψ(xi – X i ). We

can thus write the linkage equilibrium approxima-

tion to Φ(x) as Ψ( )x Xi ii

L −
=∏ 1

where 2
1
X ii

L =
=∑ θ,

and Ψ(x) obeys ([ ( ) ] / ( ) )x u u du Vs

2 2 2− ∫ +Ψ µ ×

Ψ Ψ( ) ( ) ( ) .x f x u u du− ∫ − ≈µ 0 Under the assump-

tions about parameters that we have made, Ψ(x) may
quite accurately be determined in the “House of
Cards Approximation” (Turelli, 1984), which ap-

proximates ∫ −f x u u du( ) ( )Ψ by f(x) because Ψ(x) is

appreciable only over a small range compared with
m (the standard deviation of mutant effects). The net

result is Ψ(x) ≈ +2 2 2µ λV f x xs ( ) / ( ) where λ ≈
2πµV ms / . This distribution has a mean of zero and

variance ∫ ≈x x dx Vs

2 2Ψ( ) µ . We thus have, for all i,

Var(Xi) ≈ 2µVs (41)

which is the result found by Turelli (1984).
With (36) and (41) we have all of the ingredients

needed to calculate the equilibrium genetic vari-
ance.

In particular, using (41), the genic contribution to
the genetic variance is

Vg = 2 4
1

Var
i

L

i sX L V
=∑ ≈( ) .µ
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10.2. Linkage contribution

Using (36) and (39) we obtain an equilibrium link-
age contribution of

CL i

L

i

L

i j

=
==

≠
∑∑2

11
( )

Cij

≈ −
==

≠
∑∑2

11 i

L

i

L

i j( )

Var Var( ) ( ) / ( )X X r Vi j ij s (42)

Let us define

1

1

1

11

11
r

r

ij

j

L

i

L

i j ij

j

L

i

L

i j

=
==

≠

==
≠

∑∑

∑∑
( )

( )
=

− ==
≠

∑∑1

1

1

11L L rj

L

i

L

i j
ij( )

.

( )

(43)

Then using Var(Xi) = Vg/(2L), we can write (42) as

C
V

V r L
L

g

s ij

≈ − −

 


1

2

1
1

1
2

(44)

[cf. the result found by Bulmer (1974) for the infini-
tesimal model].

10.3. Genetic variance

From (44) we obtain VG » Vg + CL i.e.

V V
V

V r L
G g

g

s ij

≈ − −

 
















1
1

2

1
1

1
. (45)

This equation closely corresponds with Bulmer’s
equilibrium result for an infinite population [e.g.
equation (8) of Bulmer (1989)] when linkage is pres-
ent and an infinite number of equivalent loci with
discrete alleles exist. Note that at no point have we
based any approximations on the value of the num-
ber of loci, L, thus (45) applies for L = 2, 3, ..., and in-
deed any number of loci provided the population lies
in a regime of weak selection.

11. Numerical results and discussion

The results we have presented indicate that much of
the dynamics as well as equilibrium properties can
be explained from knowledge of the distributions of
allelic effects at the 2L different “haploid” locations

in the genome. In an L locus model, one such distri-
bution of allelic effects is determined by assuming
that alleles at one particular location exist in a ge-
netic background consisting of the averaged effects
of alleles at the remaining 2L –1locations [see Equa-
tions (33) and (34)]. Once the distributions are
known, they may be used to calculate the allelic
variance, Varτ(Xi), and from this determine the genic
variance in a non-equilibrium situation:

V Xg ii

L
( ) ( ).τ τ=

=∑2
1
Var (46)

The allelic variance may also be used in (31) to de-
termine the pairwise correlations between alleles
and from this the non-equilibrium linkage contribu-
tion to the genetic variance may be obtained.

C CL j

L

i

L

i j

ij( ) ( )
( )

τ τ=
==

≠
∑∑2

11

≈ −
==

≠
∑∑2 1 0

11 j

L

i

L

i j

ij ijr C
( )

[( ) ( )τ

− − − −=

−
− −∑ ( ) ( ) ( ) / ]1 10

1

1r X X Vij

n

n in n j sVar Varτ
τ

τ (47)

and the genetic variance is simply the sum of Vg(τ)

and CL(τ).
An inspection of the approximations made indi-

cates that the key assumptions are that selection is
weak and that the smallest relevant recombination
fraction, rmin, is much larger than the allelic mutation

rate µ. It thus follows that, with the necessary
changes made, the results derived should also apply
when allelic effects are discrete and not continuous.
It may also be observed that the number of loci is not
a key feature of the validity of the results (this is in
sharp contrast to the infinitesimal model, which re-
lies on the number of loci approaching infinity).
This allows us to perform a numerical test on an L

locus, biallelic model. We have taken the allelic ef-
fects in this model to be 0 and 1 and this amounts to
having a variance in mutant effects of m2 ~ 1, which
is larger than that of the typical value (m2 ~ 0.04).
Accordingly we have inflated Vs to the value Vs =
400, so the value of m2/Vs is comparable with the ra-
tio when m2 and Vs have typical values. Furthermore

the results presented apply for rmin >>µ (29) and we

have taken µ = 10–5. For the simulations, we have
assumed all L loci run contiguously and have taken
the recombination fraction between adjacent loci, r,

to be ≥ 0.05. Other recombination fractions have
been calculated in the absence of interference.
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We have numerically solved the exact difference
equations describing the gamete frequencies for this
model for various numbers of loci, assuming the
special case of linkage equilibrium at τ =0 [i.e. CL(0)
= 0]. The dynamical behaviour arising from the ex-

act difference equation is contrasted with the dy-
namical predictions of this work.

As a particular example, in Figures 1A and 1B,
we plot the genic contribution to the genetic vari-
ance, Vg, for a recombination fraction between adja-
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FIG. 1. Genic contribution to the genetic variance

In Figure 1A, the genic contribution to the genetic variance, Vg,
is plotted against the number of generations, τ. The exact result
(continuous line) is obtained from iteration of the exact equa-
tions determining the dynamics of the population. The approxi-
mate result (dashed line) is obtained by: (i) numerically solving
the equation for the “haploid” allele distribution at the 2L differ-
ent locations, (33) and (ii) determining, from the distributions,
the various allelic variances and using them in (46). For the pur-
poses of the simulation, the trait was determined from the addi-
tive effects of 6 biallelic loci. Possible allelic effects at each lo-
cus are 0 and 1. A normalizing fitness function of the form (4)
was adopted, where θ = 5 and Vs = 400. The allelic mutation rate
of µ = 10–5 was used. Initial frequencies of alleles with effect
“1” at the 6 loci were (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) and all alleles
were in linkage equilibrium in the initial generation. All 6 loci
were assumed contiguous and the recombination fraction be-
tween adjacent loci was r = 0.5. Other recombination fractions

have been calculated in the absence of interference.

In Figure 1B, Vg is plotted when the recombination fraction be-
tween adjacent loci is r = 0.05 and all other quantities are identi-

cal to those used in Figure 1A.

FIG. 2. Linkage contribution to the genetic variance

In Figure 2A, the linkage contribution to the genetic variance,
CL, is plotted against the number of generations, τ. The exact re-
sult (continuous line) is obtained from iteration of the exact
equations determining the dynamics of the population. The ap-
proximate result (dashed line) is obtained by: (i) numerically
solving the equation for the “haploid” allele distribution at the
2L different locations, (33) and (ii) determining, from the distri-
butions, the various allelic variances and using them in (47). For
the purposes of the simulation, the trait was determined from the
additive effects of 6 biallelic loci. Possible allelic effects at each
locus are 0 and 1. A normalizing fitness function of the form (4)
was adopted, where θ = 5 and Vs = 400. The allelic mutation rate
of µ = 10–5 was used. Initial frequencies of alleles with effect “1”
at the 6 loci were (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) and all alleles were
in linkage equilibrium in the initial generation. All 6 loci were
assumed contiguous and the recombination fraction between ad-
jacent loci was r = 0.5. Other recombination fractions have been

calculated in the absence of interference.

In Figure 2B, CL is plotted when the recombination fraction be-
tween adjacent loci is r = 0.05 and all other quantities are identi-

cal to those used in Figure 2A.

Time (generations) Time (generations)

Time (generations) Time (generations)



cent loci of r = 0.5 and r = 0.05, respectively. The ap-
proximate result is calculated from the “haploid”
approximation used in this work and it is compared
with the exact result obtained by iteration of the ex-
act equations governing the population.

In Figures 2A and 2B we plot, for r = 0.5 and
r = 0.05, respectively, the linkage contribution to the
genetic variance, CL, as calculated from the approxi-
mation of this work (47), and compare it with the ex-
act results.

It is evident from the Figures that the genic vari-
ance, Vg, is little affected by linkage and indeed stays
almost constant for of order102 generations. By con-
trast the linkage contribution to the genetic variance,
CL, changes appreciable on a significantly smaller
timescale and is substantially affected by the degree
of linkage.

We note that the approximate dynamical results
in Figures are derived from knowledge of variances
of allelic effects at different locations and these were
calculated from the dynamics of a single haploid lo-
cus in a background comprising the averaged effects
of alleles at the remaining 2L – 1 locations. Thus the
approximate calculations require no knowledge of
how the alleles are associated together in haploid or
diploid stages of the life cycle.

While the dynamical results produced in this
work appear to be reasonably accurate over a num-
ber of generations, we have not been able to put any
bounds on the error of the value of dynamical quan-
tities.

In addition to the dynamical results, we have also
investigated the equilibrium result for the linkage
contribution to the genetic variance, CL, which is
given in (44). For the mutation rates we have consid-
ered, equilibrium is only achieved after relatively
long times (~ 104) generations. We have found that

CL following from (44) is not accurate if it is calcu-
lated from the variance of allelic effects of a haploid
locus in an averaged genetic background. The lack
of accuracy of (44) stems not from (44) itself, but
from numerical errors in those approximate allele
frequencies that are close to 0 or 1. We have thus cal-
culated the equilibrium linkage contribution to the
genetic variance, CL, from (44), when the equilib-
rium allele frequencies produced by the exact differ-
ence equation for the model are used. Below we give
equilibrium values of CL, as calculated from (44),
along with results arising from the exact dynamics.
In all cases, the optimal genotypic value Gopt = 5,

Vs = 400 and µ =10–5, and iterations were terminated
when gamete frequencies changed by less than
0.5 × 10–5 in one generation.

Some environments do may not remain station-
ary for 104 generations (the number of generations
the numerical studies were made for in this work).
Changing environments have, however been consid-
ered elsewhere (see Waxman and Peck, 1999; Bur-
ger, 1999 and references therein).

The results presented in this work deal with the
most basic situation of a population’s approach to
equilibrium, or the equilibrium itself. We believe it
should be possible to extend the results to a variety

of other situations from further analysis of the exact
equation governing the population’s dynamics (8).
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Recombination fraction between adjacent loci, r = 0.5

L 2 3 4 5 6

CL (exact) –1.21 × 10–5 –9.23 × 10–4 –1.62 × 10–3 –2.55 × 10–3 –3.17 × 10–3

CL (approx.) –1.22 × 10–5 –9.32 × 10–4 –1.70 × 10–3 –2.69 × 10–3 –3.25 × 10–3

Recombination fraction between adjacent loci, r = 0.05

L 2 3 4 5 6

CL (exact) –1.03 × 10–4 –7.67 × 10–3 –1.23 × 10–2 –1.74 × 10–2 –1.78 × 10–2

CL (approx.) –1.23 × 10–4 –7.95 × 10–3 –1.32 × 10–2 –1.85 × 10–2 –1.97 × 10–2
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APPENDIX A

In this Appendix, we provide details of the calcula-
tion for moments of the distribution of genotypic
values. We deal with the case of L unlinked loci,
when linkage disequilibrium is neglected and the
“House of Cards” approximation (Turelli, 1984) ap-
plies.

The genotypic value is G = ( )X Yj jj

L +
=∑ 1

where Xj (Yj) is the effect, at locus j, of a paternally
(maternally) inherited allele.

We deal here only with variances of Xj or Yj. The
variance of e.g. Xj is unaffected by adding a constant
to Xj. We thus define Xj and Yj (and hence G) so that
their mean value vanishes E[Xj] = E[(Yj] = E[G] = 0
where E denotes the expectation operator appropri-
ate to equilibrium. Then the genetic variance is VG =

E[G2] = E X Y X Yj jk

L

j

L

k k[( )( )]+ +
== ∑∑ 11

. The ne-

glect of linkage disequilibrium means Xj and Xk are

statistically independent if j ≠ k. Furthermore,
Hardy–Weinberg equilibrium entails Xj and Yk be-
ing statistically independent for all j and k.

It follows that since all Xj and Yj have the same
probability distribution,

E e E ei G L i X j[ ] [ ( )] , ( ) [ ].λ λλ λ= ≡Ω Ω2 def
(A1)

We can use (A1) to simply determine the variance
and fourth moment of G about the origin: E[G2] and
E[G4].

We write Ω′(0) =
d

dλ
λ

λ

Ω Ω( ) , ( )
=

′′ =
0

0

=

 




=

d

dλ
λ

λ

2

0

Ω( ) etc. and use the result that the dis-

tribution of Xi is symmetric about Xi = 0 so all odd
derivatives of Ω(λ) vanish at λ = 0. Then VG = E[G2]
= –2L Ω′′′′ (0) = 2LE( )X j

2 and E[G4] = 2L Ω′′ (0) +

6L(2L – 1) × [Ω′′ (0)]2 = 2LE[X j

4 ] + 6L(2L – 1)

(E[X j

2 ])2. The results of Turelli (1984): E[X j

2 ] ≈

2µVs, E[X j

4 ] ≈ 2µVsm
2 then yield

V L VG s≈ 4 µ (A2)

E G L V m L
L

Vs s[ ] ( )( )4 2 2 24 12 1
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2
2≈ + −µ µ
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1
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APPENDIX B

In this Appendix we derive the equation (8) for the

distribution of allelic effects Φτ(x) in a continuum of
alleles model. The key quantity in this equation
is the function K(x; u, v) that incorporates muta-
tion and recombination. Before deriving the above
equation we give a summary of the properties of
K(x; u, v).

Summary of equations defining K(x; u, v)

The equations that determine the key properties of
K(x; u, v) are

K R M( ; , ) ( ) ( )x u v x= −∑ s x
s

(B1)

=∑ ∑∑∑ = ±= ±= ±s
...

σσσ L 12 111
(B2)

R Ri( ) , ( ) ,s s
s s∑ ∑= =1 0σ

σ σi j ijR r( )s
s∑ = −1 2 (B3)

M x f xi ii

L
( ) [( ) ( ) ( )]x = − +

=∏ 1
1

µ δ µ (B4)

ξ σ σi i i i iu v= + + −( ) / ( ) / ,1 2 1 2

( , , , ... , )i L= 1 2 3 (B5)

where δ(x) denotes a Dirac delta function of argu-
ment x.

We show, in Appendix C that despite the appar-
ent complexity of K(x; u, v), it is straightforward to
calculate properties of this function.

Two locus model

We motivate the result for the dynamical equations
by starting with a two locus model. The lifecycle is
schematically,

Gametes Zygotesrandom union viability selection
→ →

Adults Gammeiosis with recombination

death of adults
etes.

We denote alleles at locus 1 and 2 by Ai and Bj, re-

spectively, where i and j are discrete labels. nij(τ)
represents the frequency of an AiBj gamete in gener-

ation τ (= 0, 1, 2, ...). Ordered genotypes are written

as AiBj / AkBl where the gamete AiBj (AkBl) has a pa-
ternal (maternal) origin and the frequency of zygotes

of this ordered genotype is nij(τ)nkl(τ). Let w(ij, kl) ≡
w (kl, ij) be the fitness of these zygotes (proportional
to viability since fertility is independent of pheno-
type). After selection, the frequency of AiBj / AkBl

adults is ρijkl(τ) where

ρ τ τ τ τijkl ij klw ok kl n n w( ) ( , ) ( ) ( ) / ,≡def

w w ij kl n n
ijkl ij klτ τ τ=∑ ( , ) ( ) ( ). (B6)

Loci are linked, with recombination fraction r12 and
the frequencies of an A Bp p1 2

gamete at this point in
the lifecycle, written as np p1 2

∗ ( ),τ is

n rp p p p kl

kl
1 2 1 2

1

2
1 12

∗ = − ∑( ) ( ) ( )τ ρ τ

+ − + ∑∑1

2
1

2
12

12

1 2 1 2
( ) ( ) ( )r

r
ij p p p jkp

jkij

ρ τ ρ τ

+ ∑r
ip p l

il

12

2 2 1
ρ τ( ). (B7)

Mutations result in the frequency of an A Ba a1 2
ga-

mete in generation τ +1 being given by

n M na a a a p p p pp p1 2 1 2 1 2 1 21 2
1( ) ( ),τ τ+ = ∗∑ (B8)

where M a a p p1 2 1 2, contains information on the muta-
tion scheme. With equally mutable loci and each al-
lele mutating independently of all others, M a a p p1 2 1 2,

is given by M a a p p1 2 1 2, = − +∑∏ =
[ )1

1

2 µ δspi a psi i i

+µa pi i
] where µji is the probability that an allele i

undergoes a mutation to allele j.
(B8) can be written in a compact form that readily

allows generalization to more than two loci, and pro-
vides a practical tool for calculation of quantities for
multiple loci. Introduce two independent variables

σ1 and σ2 that can only take the values ± 1 and de-
fine

R r r( , ) ( )| | / | | /σ σ σ σ σ σ
1 2 12

2
12

1 21

2
12 1 2 1= −− − − (B9)

where r12 is the recombination fraction between the

two loci. R(σ1, σ2) gives the probability that a ga-
mete produced by an individual contains a copy of
an allele of particular parental origin at locus 1 and
2. For example, R(1, –1) is the probability that in a
gamete, the allele at locus 1 is of paternal origin, and
that at locus 2 is of maternal origin. Apart from nor-
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malization [ , ) ]R(σ σ1σσ 211
1

21
=

= ±= ± ∑∑ , R( , )σ σ1 2

may be simply verified to have the properties

σ (σ σ1σσ 2
1 211

0 1 2
1

R i, ) , ,= =
= ±= ± ∑∑ (B10)

σ σ (σ σ1σσ 2
1 2 2 1211

1 2
1

R r, ) .= −
= ±= ± ∑∑ (B11)

Furthermore, let us define, for i = 1 and i = 2,

α α σ σ σi i i i i i i i ic d c d≡ = + + −( , , ) ( ) / ( ) / .1 2 1 2 (B12)

We can then write (B8) as

na a1 2
1( )τ + =

= ∑∑∑
= ±= ±

1

1 2 1 21

1 2 1 2

11
1 2

w
R M

c c d d

a a

τ σσ
α α

2

σ σ( , ) ,

× w c c d d n nc c d d( , ) ( ) ( ).1 2 1 2 1 2 1 2
τ τ (B13)

We write (B13) in a natural vector notation as

n R M wa c d a c d( ) ( , )
, ,τ + = ∑∑1 ( )s

s a

×n n wc d( ) ( ) / .τ τ τ (B14)

where
s∑ ∑∑=

= ±= ± σσ 21 11
and the remaining

sums cover the full range of possible allele labels.

Generalization to L linked loci

In the form given in (B14) it is straightforward to
generalize the results to L linked loci which are la-
belled 1, 2, ..., L.

We define

a = ( , ,... , ),a a aL1 2 a = ( , ,... , ),α α α1 2 L

c = ( , ,... , ),c c cL1 2 d = ( , ,... , ),d d d L1 2 (15)

with αi defined by (B12) for i now ranging over i = 1,
2, ..., L.

Additionally, let s = ( , ,... , )σ σ σ1 2 L , where each

element of s takes the values ± 1.Then s can achieve

2L different values. The variable s is the device we
use to count all 2L different gamete recombinants
that are possible from one parent (the 2L recom-
binants need not be distinct). A related device has
been used in previous work (Karlin and Lieberman,
1978). The probability of a gametic output associ-

ated with a given s is given by the generalization of

(B9) to L loci: a function we denote by R(σ), with an
analogous interpretation to the 2 locus case. An ex-

plicit form for R(s) can be determined in case of re-
combination without interference between loci. For
the purposes of this work, however, we shall not
need the detailed form of this function, only a
knowledge of a few of its moments, analogous to
normalization (B10) and (B11), namely R( )s

s
=∑

1, σ iR( )s
s

=∑ 0, σ σi j R ( )s
s∑ = (1 – 2rij) where

rij is the recombination fraction between locus i and
locus j. These moments are calculated in Appendix
C from elementary, but general principles.

Assuming again that each allele mutates inde-

pendently of all others, we have Ma,b = [(1
1

−
=∏ i

L

− +∑ µ δ µsbs a b a bi i i i i
) ].

Let c denote a paternally inherited gamete that
contains alleles with labels (c1, c2, ..., cL), and d a
maternally inherited gamete. The fitness of an indi-
vidual resulting from the union of these gametes is

written w(c, d) ≡ w(d, c), and w wτ =∑c d
c d

,
( , )

×n nc d( ) ( ).τ τ The generalization of (B14) to L loci is

n R Ma c d a( ) ( )
, ,τ σ

σ α+ = ∑∑1

×w n n w( , ) ( ) ( ) /c d c dτ τ τ (B16)

α σ σi i i i ic d= + + −( ) / ( ) /1 2 1 2 (B17)

where now ≡
= ±= ±= ± ∑∑∑∑ def

... .
σσσσ 2 L 1111

Continuum of alleles model

The L locus model with continuous alleles may be
inferred from (B16) by allowing discrete labels such
as a to be identified with a continuous allelic effect x

(where ∞ > x –∞ ) and summations replaced by inte-
grations. It is convenient to define here x = (x1, x2, ...,

xL). We identify na(τ) with Φτ(x)dLx where Φτ(x) ≡
Φτ(x1, x2, ..., xL) is the distribution of allelic effects of

gametes in generation τ and dLx = dx1dx2...dxL. The

quantity µα α1 2
is identified with µ × f(x1 – x2) where

µ is the probability of a mutation per allele and f(x1

– x2) is the distribution of mutation effects. This
form of distribution function corresponds to mutants
having allelic effects that are distributed around
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their parental values (Kimura, 1965). Throughout
this work we take f(x) to be the normal distribution
given in (2).

Lastly we define

M x f xi ii

L
( ) [( ) ( ) ( )].x ≡ − +

=∏def
1

1
µ δ µ (B18)

Then with ∫ ≡ ∫ ∫ ∫d u du du duL

L1 2... , the continuum

of alleles analogue of (B16) isΦτ + = ∫∑1 ( ) ( )x R s
s

M w d ud v wL L( ) ( , ) ( ) ( ) /x u v u v− x Φ Φτ τ τ where

w w d ud vL L

τ τ τ= ∫ ( , ) ( ) ( )u v u vΦ Φ is the mean fit-

ness in generation τ, and x is an L component vector
with elements

ξ ξ σ σ σi i i i i i i i iu v u v= = + + −( , , ) ( ) / ( ) / ,1 2 1 2

i L=1 2 3, , ,... , . (B19)

Setting

K R M( ; , ) ( ) ( )x u v x≡ −∑def
s x

s
(B20)

allows (B16) to be written compactly as

Φ Φ Φ
Φτ

τ τ

τ
+ = ∫

∫1 ( )
( ; , ) ( , ) ( ) ( )

( , ) (
x

x u v u v u v

u v u

K w d ud v

w

L L

) ( )Φτ v d ud vL L
⋅

APPENDIX C

In this Appendix we derive some properties we use
of the function K(x; u, v) which is summarized at the
beginning of Appendix B.

K(x; u, v) encapsulates the effects of mutation
and recombination and although it is a complicated
function all moments of it may be found with suffi-
cient effort. Here we shall derive results for this

function when it is expanded to linear order in µ:

K(x; u, v) ≈ K(x; u, v) |
( ; , )

µ µµ ∂
∂µ= =+0 0

K x u v

≡ +def
K K0 1( ; , ) ( ; , ).x u v x u vµ (C1)

Summary

We provide a summary of results before deriving
them.

K d xL

0 1( ; , )x u v =∫
x K d x u vi

L

i i0 2( ; , ) ( ) /x u v = +∫
x x K d x r u u v vi j

L

ij i j i j0 1 2( ; , ) ( )( ) /x u v = − + +∫
+ +r u v v uij i j i j( ) / 2 (C2)

K d xL

1 0( ; , )x u v =∫ ,

x K d xi

L

1 0( ; , )x u v =∫
x x K d x mi j

L

ij1
2( ; , )x u v =∫ µ δ (C3)

where δij is a Kronecker delta and has the value 1 for
i = j and is zero otherwise and rij is the recombina-
tion fraction between locus i and locus j.

Derivation

K(x; u, v) is defined in (B1)–(B5) from which,

K0(x; u, v) = K(x; u, v)|µ=0

= −∑ ∏ =
R x

j

L

j j( ) ( )s
s

δ ξ
1

K1(x; u, v) =
∂
∂µ µK ( ; , )x u v =0

= − − −∑ ∑ =
R f x xi i i ii

L
( ) [ ( ) ( )]s

s
ξ δ ξ

1

× −
=

≠
∏ j

L

j i

j jx
1

( )

( )δ ξ (C4)

[δ(x) denotes a Dirac delta function of argument x].

It immediately follows, using properties of δ(xj –

ξj) and f(xj – ξj), that

K d x RL

0 ( ; , ) ( )x u v =∑∫ s
s

(C5)

x K d x Ri

L

i0 ( ; , ) ( )x u v =∑∫ s
s

ξ (C6)

x x K d x Ri j

L

i j0 ( ; , ) ( )x u v =∑∫ s
s

ξ ξ (C7)

K d xL

1 0( ; , )x u v =∫ (C8)

x K d xi

L

1 0( ; , )x u v =∫ (C9)

x x K d x m Ri j

L

ij1
2( ; , ) ( )x u v = ∑∫ µ δ s

s
. (C10)

Thus we need to establish the values of R( ),s
s∑

R i( )s
s

ξ∑ and R i j( )s
s

ξ ξ∑ .
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Since ξi is, from (B5), given by ξi ≡ ξi(σi, ui, vi) =

(1 + σi) ui / 2 + (1– σi)vi / 2, it follows that we need to
equivalently know the values of R( ),s

s∑
R i( )s

s
σ∑ and R i j( )s

s
σ σ∑ .

The first sum required, R( ),s
s∑ is unity, as fol-

lows from the probabilistic interpretation of R(s).
Thus R( )s

s∑ = 1.
Next, we note that R i( )s

s
σ∑ must vanish iden-

tically, since this sum equals (+1) × (probability the
allele in a gamete at locus i is of paternal origin) +
(– 1) × (probability the allele in a gamete at locus i is
of maternal origin) and the two probabilities are
equal. Thus R i( )s

s
σ∑ = 0. More generally, the

equivalence of paternal and maternal contributions
to the gamete of an individual, means we can change

s to –s without changing any results. This has the
consequence that all sums involving the product of

an odd number of σ’s vanishes identically.
Lastly consider R i j( )s

s
σ σ∑ . We note that if

i = j, σiσj = 1, and the sum is unity, by virtue

of R( )s
s∑ = 1. When i ≠ j, we have that

R i j( )s
s

σ σ∑ is given by (+1) × (probability of no
crossover between locus i and locus j) + (– 1) ×
(probability of crossover between locus i and locus
j) = (+1) × [1 – rij]) + (– 1 × rij) = 1 – 2rij where rij

is the recombination fraction between locus i and lo-
cus j. The general rule for all i and j is thus

R i j( )s
s

σ σ∑ = 1 – 2rij provided we agree to set

rii = 0.
We can now combine the above results to

straight-forwardly obtain the results of (C2) and
(C3).

APPENDIX D

In this Appendix, we give a derivation of exact re-
sults following from the exact dynamical equation
(8). The distribution of allelic effects in gametes, in
generation 1, is Φ 1 0

1( ) ( ; , ) ( , )x x u v u v= ∫−w K w

Φ Φ0 0( ) ( )u v d ud vL L where w w0 0= ∫ ( , ) ( )u v uΦ
Φ 0 ( )v d ud vL L . The form of fitness, w (u, v), is given

by (4) and we write this as w (u, v) = Vs / ( ) exp2π ∫
[ ( ( ) ) / ]i u v V dj j sj

λ θ λ λ+ − −∑ 2 2 . In generation 0

we consider a population in linkage equilibrium, and

take Φ 0 1
( ) ( )x =

=∏ χ jj

L

jx where χ j jx( ) =

= − −−( ) exp[ ( ) / ( )]./2 22 1 2 2 2πα αj j j jx c cj( xj) is the

distribution of allelic effects in gametes at locus j. In
terms of G c jj0 2≡ ∑def

, Vg jj, ,0
22≡ ∑def α a short cal-

culation yields

w
V

V V

G

V V

s

s g s g

0

0

0
2

02
=

+
− −

+











, ,

exp
( )

( )
.

θ
(D1)

Using the general definition for K(x; u, v) given in
(B1–B5) we have

Φ1 0
1 22 2( ) / ( ) ( ) exp[ / ]x = − −− ∑ ∫w V R d V is sπ λ λ λθ

s
s

× +∫∏ =
dudv i

j

L
exp[ ( )]λ u v

1

× − −[( ) ( )1 µ δ ξx j j

+ −µ ξ χ χf x u vj j j j( )] ( ) ( ). (D2)

All moments of Φ1(x) are contained in the character-

istic function ∫ ∑
e d x

i x
Ljj jη

Φ 1 ( ) .x We find

e d x
i x

Lj jj
η∑ =∫ Φ 1 ( )x

w V Rs0
1 2− ∑/ ( ) ( )π s

s

× − −∫ d V isλ λ λθexp[ / ]2 2

× − + −
=∏ [ exp( / )]1 2

1

2 2

j

L

jmµ µ η

× +∫ dudve e u v
i u v i

j j
j jλ η ξ χ χ( ) ( ) ( ). (D3)

Using the explicit form for ξj (B5), it follows that

dudve e u v
i u v i

j j
j jλ η ξ χ χ( ) ( ) ( )+∫ is independent of the

sign of σj, and we can write

dudve e u v
i u v i

j j
j jλ η ξ χ χ( ) ( ) ( )+∫
= +∫ ∫due u dve v

i u

j

i v

j
j( )

( ) ( )
λ η λχ χ

= + − + +
e

i cj j j j j( ) ( / )
.

2 22 2 2λ η λ λη η α

Using this expression, and the form for w 0 , (D1),
yields, after some calculation,

e d x
i x Lj j j∑ =∫ η Φ 1 ( )x

exp
( )

,

−
−

+







∑i G

V V

j jj

s g

0
2

0

θ η α
+

+
∑( )

( ),

η αjj j

s gV V

2 2

02

× − +
=

− −∏ ( ) .
/ /

j

L m i c
e ej j j j j

1

2 2
1

2 2 2 2

µ µ η η η α
(D4)
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It is now straightforward to calculate moments of

Φ1(x) from this and in particular, we find the results
given in (12), (13) and (14).

APPENDIX E

In this Appendix, we indicate how the selection term

−∫K s L0 Φ Φτ τ

≡ −∫K s d ud vL

L L

0 ( ; , ) ( , ) ( ) ( )x u v u v u vΦ Φτ τ (E1)

which contributes in (26) to Φτ+1, is responsible for
the production of linkage disequilibrium. In particu-

lar we show that if, in generation τ, a population is in
linkage equilibrium, the term − ∫ K s L0 Φ Φτ τ gener-
ates a contribution of –Var(Xk)Var(X1) / Vs to

Ckl(τ +1), the covariance in generation τ + 1, where

Ckl(τ + 1) = Eτ+1 [XkXl] – Eτ+1 [Xk] Eτ+1[Xl]. A popula-
tion that is very close to being in linkage equilib-
rium would also be expected to obtain, from
− ∫ K s L0 Φ Φτ τ , an increment in its covariance in
one generation that is very close to –Var(Xk)Var(Xl)
/ Vs.

To proceed with the derivation, we note that

to determine Ckl(τ + 1) we need to first calculate
Eτ+1[Xk] = ∫ +x d xk

LΦτ 1 ( )x and Eτ+1[XkXl] =

∫ +x x d xk l

LΦτ 1 ( )x . Using (26), these quantities can

be related to quantities in generation τ. Since (26)
takes the form Φ Φ Φτ τ τ+ = − ∫1 0... K s L , the contri-
bution of the term on the right-hand side to Eτ+1 [Xk]
is −∫ x K s d ud vd xk L

L L L

0 ( ; , ) ( , ) ( ) ( )x u v u v u vΦ Φτ τ

and its contribution to Eτ+1 [XkXl] is

−∫ x x K s d ud vd xk l L

L L L

0 ( ; , ) ( , ) ( ) ( )x u v u v u vΦ Φτ τ .

The properties of K0 given in (C2) yield

x K s d ud vd xk L

L L L

0 ( ; , ) ( , ) ( ) ( )x u v u v u vΦ Φτ τ∫
= ∫ u s d ud vk L

L L( , ) ( ) ( )u v u vΦ Φτ τ (E2)

x x K s d ud vd xk l L

L L L

0 ( ; , ) ( , ) ( ) ( )x u v u v u vΦ Φτ τ∫
= − ∫( ) ( , ) ( ) ( )1 r u u s d ud vkl k l L

L L
u v u vΦ Φτ τ

+ ∫r u v s d ud vkl k l L

L L( , ) ( ) ( )u v u vΦ Φτ τ . (E3)

We then use the explicit form of sL, given in (24),
make the assumption of linkage equilibrium, and
write u E X uk k k= +τ τδ[ ] . After some work we find
that

u s d ud vk L

L L( , ) ( ) ( )u v u vΦ Φτ τ∫ =0 (E4)

u u s d ud vk l L

L L( , ) ( ) ( )u v u vΦ Φτ τ∫
= Var Varτ τ( ) ( ) /X X Vk l s (E5)

u v s d ud vk l L

L L( , ) ( ) ( )u v u vΦ Φτ τ∫
= Var Varτ τ( ) ( ) /X X Vk l s . (E6)

We can thus combine the above results and find

that − ∫ K s L0 Φ Φτ τ makes a contribution to Ckl(τ + 1)
of –(1 – rkl) Varτ (Xk) Varτ (Xl) / Vs – rkl Varτ (Xk) Varτ

(Xl) / Vs i.e. – Varτ (Xk) Varτ (Xl) / Vs .

APPENDIX F

In this Appendix we give an example of the methods
needed to establish relations from the equation of

dynamics of Φτ(x), (26). In particular, it is possible
to determine the relation between quantities in gen-

eration τ + 1 and quantities in generation τ.
For example, the mean genotypic value in gener-

ation τ + 1 is Eτ+1[G] and

E G E X Y x d xi ii i

L

iτ τ τ+ + += + =∑ ∫∑1 1 12[ ] [ ( )] ( ) .Φ x (F1)

Using (26), along with (C2) and (C3), yields

E G u d ui

L

iτ τ+ ≈ ∫∑1 2[ ] ( )Φ u

− −∫∑2 u s s d ud vii g g

L L[ ( , ) ] ( ) ( ),u v u vτ τ τΦ Φ

− −∫∑2 u s s d ud vii L L

L L[ ( , ) ] ( ) ( ),u v u vτ τ τΦ Φ . (F2)

Using the properties of sg and sL (23), (24) and using

δτui = ui – Eτ[Xi] yields, after some simplification,

E G u d ui

L

iτ τ+ ≈ ∫∑1 2[ ] ( )Φ u

− −
∫∑2

2
2

( )
( )

,

G

V
u u d u

s

i j

L

i j

τ
τ τ τ

θ δ δ Φ u

− ∫∑1

2
2

V
u u u d u

s

i j k

L

i j k
δ δ δτ τ τ τΦ ( )

, ,
u (F3)

and this last result can be written as

E G E G G V VG sτ τ τ θ τ+ ≈ − −1 [ ] [ ] ( ) / ( ) /

−E G Vsτ τδ[( ) ] / ( ).3 2 (F4)
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