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A mathematical model of mutation and selection in a very large population is given. Each mutation affects Ω differ-

ent phenotypic characters, each of which is subject to stabilising selection. In the limit Ω → ∞, when all other param-

eters are held fixed, each mutation is lethal. Thus at equilibrium, the majority of individuals have the optimal geno-

type. A small proportion of individuals, however, have other genotypes. These are newly arisen mutants who will

not survive to the next generation. In a separate model, we again take the limit Ω → ∞, but in this case we decrease

the standard deviation of mutant effects on each character, so that mutations are generally not lethal. In this case we

find that, at equilibrium, the distribution of genotypes and the distribution of fitnesses have unusual features. In par-

ticular, the marginal distribution of genotypic values of any single character has the form of a single sharp “spike”

(Dirac delta function) corresponding to all individuals having an optimal value of the character. Despite the applica-

bility of this for all characters, there still is variation in fitness over the population and the distribution of fitnesses

consists of a series of sharp “spikes” at particular levels of fitness. This type of distribution arises at equilibrium even

if a wide variety of genotypes are initially present.
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1. Introduction

Any organism can be described by a large number of

phenotypic characters, some of which affect fitness.

When a mutation occurs, it may result in the value of

more than one phenotypic character being changed.

In this case, we say that we have an instance of

pleiotropy. Pleiotropy is, at heart, a property of all of

the alleles connected by mutation: The set of all mu-

tants defines a space of phenotypic effects and the

degree of pleiotropy, Ω, may be thought of as the

minimal dimensionality of this space (G. P. Wagner,

personal communication). Mutations that result in

multiple characters being changed are well known

and are often regarded as ubiquitous (Caspari, 1952;

Bulmer, 1972; Wright, 1977; Lande, 1980; Turelli,

1985; Wagner, 1989; Barton and Turelli, 1989;

Barton, 1990; Keightley and Hill, 1990; Kond-

rashov and Turelli, 1992; Gavrilets and Dejong,

1993; Caballero and Keightley, 1994; Wagner,

1996). Pleiotropy is thus apparently common.

In general, only a very limited number of pheno-

typic measurements are made in any one experiment

and it is not clear how many characters, Ω, are usu-

ally affected by a single mutation. Experimental

work, however, suggests that a single mutation can

often affect multiple characters, even when these

characters are selected in a fairly arbitrary way (San-

tiago et al., 1992; Mackay, 1996). We therefore ex-

pect that mutations that affect many characters are

common and in this paper we study the impact of

high degrees of pleiotropy on the long-term outcome

of evolution.

In (Waxman and Peck, 1998) it was shown that

the number of characters, Ω, affected by each muta-

tion, can have a dramatic effect on the equilibrium

distribution of genotypes. In a model with a continu-

ous range of genotypes, it was proved that a critical

value of Ω, called Ωc, exists. If Ω < Ωc, the distribu-

tion of genotypic values is smooth and any particular

genotype, including the optimal one, constitutes

only an infinitesimal proportion of the population at

equilibrium. If, however, Ω ≥ Ωc, the distribution of
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genotypic values possesses an infinitely high

“spike” of zero width but finite area that is located at

the optimal genotype. Such a distribution is singular,

and corresponds to a non-negligible proportion of

the population having the optimal genotype. The

transition that occurs at Ω = Ωc has been described

as a kind of “crystallisation” that occurs when the

“complexity” (i.e. Ω) is sufficiently high (Wagner,

1998).

At equilibrium, when Ω ≥ Ωc, the non-negligible

proportion of individuals of optimal genotype might

be thought to arise purely from high selection coeffi-

cients against mutants of these individuals. While

selection coefficients increase with Ω (when all

other parameters are held fixed) this is not the origin

of the transition found. The transition originates

from suppression of mutations to the optimal or

near-optimal genotypes (Waxman and Peck, 1998).

Increasing Ω decreases the volume in “genotypic

space” available for such mutations and the transi-

tion typically occurs at Ω = 3 since an extremely

large decrease in this volume occurs in going from

Ω = 2 to Ω = 3. When Ω ≥ Ωc, a consequence of the

suppressed mutations is that non-optimal genotypes

cannot, with any appreciable probability, mutate

back to optimality or its close vicinity. The lineages

descending from these will, over long times, be

eliminated from the population. Thus at equilibrium,

the entire population consists of individuals of the

optimal genotype (which make up the spike in the

distribution) and a cloud of recently mutated indi-

viduals originating from the optimal genotype. The

essentially geometric origin of the transition in Ω (a

volume change) makes it relatively insensitive to the

precise strength of selection. Adjusting the strength

of selection or the variance of mutant effects with Ω,
so a mutation of an optimal genotype individual has,

independently of Ω, the same mean selection coeffi-

cient against it, still typically results in a transition at

Ω = 3.

In the present work we explore further implica-

tions of pleiotropy on evolution. In particular we in-

vestigate what happens when the degree of pleio-

tropy, Ω, is extremely high. This is of intrinsic inter-

est because, as pointed out above, it seems likely

that many real mutations have highly pleiotropic ef-

fects.

1.1. The model

Consider a hypothetical population in which the

number of individuals is sufficiently large that sto-

chastic effects can be ignored. Reproduction is taken

to be asexual and all parents produce offspring dur-

ing the same relatively narrow interval of time and

then die, so generations are discrete.

Our focus in this study is entirely upon the effects

of a high degree of pleiotropy so we consider the

simplest mathematical model incorporating pleio-

tropy. This corresponds to a single haploid locus that

is under selection and has a mutation rate of µ. The

results obtained have more general applications than

just to this simple model. They apply to n-ploid

asexuals with L mutable loci (n and L arbitrary) pro-

vided the distribution of mutant effects at each locus

is of a “translation invariant” type that depends on

differences of parental and offspring effects on the

characters. Furthermore it is necessary to replace the

mutation rate, µ, by the genomic mutation rate U of

the n-ploids and neglect offspring that differ from

their parent by more than a single mutation. This re-

quires U << 1 so terms of order U2 and higher order

can be neglected.

Within the one locus haploid model, every muta-

tion affects Ω different phenotypic characters,

which are numbered 1, 2, …, Ω. Each character can

be measured on a continuous scale, and an individ-

ual’s measurement on the ith character is denoted by

zi where ∞ > zi > – ∞. For simplicity, assume that

these characters are independent of each other in two

different senses:

(i) each character affects fitness multipli-

catively,

(ii) there is no correlation in the magnitudes

or directions of the effects of mutations on the Ω dif-

ferent characters.

To be specific about the effects of mutations on

phenotypes and fitness, we assume that the pheno-

type of a particular offspring on the ith character de-

pends on its genotypic value on that character, xi,

plus a normally distributed environmental noise

component, εi. Thus zi = xi + εi. The distribution of εi

is independent of xi has mean zero, variance Ve and,

for i ≠ j, εi and εj are uncorrelated.

Most fitness-affecting characters are probably

controlled by many codons. It is possible that for

some traits, only a very limited number of genotypic

values are possible, even if many codons control the
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trait, however, we know of no apriori reason for this

to be the case. We thus use the traditional approach

(Crow and Kimura, 1964) of treating genotypic val-

ues, xi, as continuous variables ranging from –∞
to ∞.

The genotypic values of an individual are identi-

cal to that of its parent, unless a new mutation has

occurred during production of the individual. The

rate of such mutations is µ (1 ≥ µ ≥ 0) with every mu-

tation simultaneously affecting all Ω characters.

Mutant effects follow a multidimensional Gaussian

distribution (Lande, 1980). In particular, consider an

individual that undergoes a mutation, and who is

produced by a parent whose genotypic values on the

Ω different characters are x1*, x2*, …, xΩ*, respec-

tively. With dx1, dx2, …, infinitesimal, the probabil-

ity that this individual will have x1 in the interval x1*

+ dx1 > x1 > x1*, and x2 in the interval x2* + dx2 > x2 >

x2*, … is given by [ ( ) ]f x x dxi i i

i

− ∗

=
∏

1

Ω
, where

f x x
m

x x

m
i i

i i( ) exp
( )− = − −
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


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∗
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The parameter m gives, for a single character, the

standard deviation of mutant effects about the paren-

tal value. These assumptions about mutation imply

that the magnitude of changes due to mutation are

uncorrelated among the Ω characters. Furthermore,

mutations are unbiased in the sense that mutations

that tend to increase the value of a particular pheno-

typic character have the same frequency and average

magnitude as mutations that tend to decrease the

value of the trait.

The probability that an individual survives to re-

productive age depends on the individual’s pheno-

type and we assume that each of the Ω characters is

subject to stabilising selection. We adopt a Gaussian

fitness scheme, where the optimal phenotypic value

for each trait, zi, is defined, without loss of general-

ity, to lie at zi = 0. Then the probability of surviving

viability selection for a particular individual with

phenotypic values, z1, z2, …, zΩ is

exp[ / ( )]−
=

∏ z Vi

i

2

1

2
Ω

,

where V > 0. Let w be proportional to the probability

of surviving to reproductive age for an individual

with a particular set of genotypic values x1, x2, …,

xΩ. We obtain w by averaging the probability of sur-

viving viability selection, for that individual, over

all possible environmental effects εi. We scale w, so

its value is unity for an individual with the optimal

genotype, x1 = x2 = … xΩ = 0. With this definition

w x Vi s

i

= −
=

∏ exp[ / ( )]2

1

2
Ω

,

where Vs = V + Ve (Turelli, 1984). The mean value of

w over the population is proportional to the fraction

of offspring that survive viability selection.

The life cycle begins again with the production of

new offspring, with fertility taken to be independent

of genotype. Census is taken immediately after pro-

duction of offspring.

2. Results

A derivation of all results is provided in the Appen-

dix.

2.1. Results for small values of W

The model just described has been extensively stud-

ied for the case where Ω = 1 (Turelli, 1984; Burger,

1986, 1988; Burger and Hofbauer, 1994; Waxman

and Peck, 1998). When Ω = 1 only a single trait is

subject to selection and at equilibrium, x1 has a

smooth, symmetric, and unimodal distribution. Any

single genotype (including the optimal one) consti-

tutes only an infinitesimal fraction of the population.

The peak of the genotypic distribution lies at x1 = 0.

The mean value of w over the population at equilib-

rium, is denoted by w and, when Ω = 1, we always

have w > 1 – µ (see Burger and Hofbauer, 1994;

Wax- man and Peck, 1998). The equilibrium distri-

bution of fitnesses is smooth and finite except at w =

1. Near this point, the fitness distribution behaves as

k/√ (1 – w) with k a positive constant.

Waxman and Peck (1998) have shown that when

Ω = 2 the equilibrium marginal distribution of x1 and

separately that of x2, is smooth, symmetric and

unimodal, just as in the case Ω = 1. Thus for Ω = 2

the optimal genotype (x1 = x2 = 0) constitutes an in-

finitesimal proportion of the population. Further-

more w > −1 µ, as in the case Ω = 1.

For Ω = 3 the equilibrium genotypic distribution

depends on µVs/m
2. If µVs/m

2 << 1 the optimal geno-
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type (x1 = x2 = x3 = 0) comprises a non-infinitesimal

proportion of the population (Waxman and Peck,

1998). In fact, for many possible choices of parame-

ters, the majority of the population has the optimal

genotype. By contrast, any particular non-optimal

genotype is present only as an infinitesimal propor-

tion. Near w = 1, the fitness distribution consists of

an infinite spike (a Dirac delta function) concen-

trated at w = 1 plus a term of the form k/√ (1 – w)

where k is a positive constant. The spike describes

individuals of optimal genotype.

If µVs/m
2 << 1 does not hold, a non-negligible

proportion of optimal genotypes may nevertheless

appear when Ω = 3. Even if this does not happen,

Waxman and Peck (1998) show that, for any choice

of µ, Vs and m, there always exists an Ωc, such that

the optimal genotype will constitute a non-negli-

gible fraction of the population for Ω ≥ Ωc.

2.2. Results for the limit W ® ¥

What happen in the limit Ω → ∞, when a very large

number of independently selected characters are af-

fected by each mutation? The answer is simple. In

this limit, the equilibrium distribution of geno-

typic values is effectively a combination of an infi-

nite spike and an Ω dimensional normal distribution

in a relative proportions of 1 – µ and µ, respectively.

The spike is non-zero only at x1 = x2 = … xΩ = 0. The

normal distribution has a mean of x1 = x2 = … xΩ = 0,

a standard deviation of m each character and vanish-

ing covariances between characters. The equilib-

rium marginal distribution for any given character,

say x1, is given by Φ1(x1) = (1 – µ) δ(x1) + µf (x1)

where δ(x) denotes a Dirac delta function and f (x) is

given in Eq. (1). An example of this equilibrium ge-

notype distribution is shown in Figure 1.

The equilibrium distribution of fitnesses has only

two values of w present in the population at equilib-

rium, namely w = 1 and w = 0. Individuals for which

w = 1 have an optimal genotype (x1 = x2 = … xΩ = 0)

whereas individuals for of w = 0 have one mu-

tation. The distribution is given by Ψ (w) = (1 – µ)

δ (w – 1) + µδ (w). In Figure 2 we illustrate Ψ (w) by

plotting spikes at the locations of the Dirac delta

functions, where the height of the spikes plotted is

given by the logarithm of the weighting factors mul-

tiplying the delta functions, i.e. by log10 ( 1 – µ) and

log10 (µ), respectively.

The reason all mutants have a fitness of w = 0 is

clear. In the limit Ω → ∞, each mutation has a nega-

tive effect on many traits that control fitness. Cumu-

latively, these effects are always fatal (because there

are so many of them). However, this does not neces-
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FIG. 1. The equilibrium distribution of genotypic effects for a

single character, Φ1 (x1), is plotted as a function of genotypic ef-

fect, x1. In this case, we have taken Ω → ∞, so each mutation af-

fects an infinite number of phenotypic characters. For the case

shown, Vs = 20, m = 0.2, and µ = 10–4. Note that a singularity is

present at x1 = 0, indicating that a non-negligible proportion of

the population have the optimal genotype (the proportion of op-

timal genotypes in this case is given by 1 – µ = 0.9999). The

width of the line that rises above x1 = 0 should be infinitesimal,

since it represents a Dirac delta function, but we have broadened

it to facilitate visualisation.

FIG. 2. The equilibrium distribution of relative fitnesses, Ψ(w),

is plotted as a function of w. The parameters used were the same

as in Figure 1. The distribution consists of two Dirac delta func-

tions, located at w = 1 and w = 0. The vertical lines represent

Dirac delta functions. The height of the lines plotted is given by

the logarithm (to base 10) of the proportion of individuals hav-

ing various values of w, i.e. the logarithm of the weighting fac-

tors of the delta functions: log10 (1 – µ) and log10 (µ), respec-

tively. Individuals with values of w other than w = 1 and w = 0

are entirely absent from the population once equilibrium has

been achieved. In this case the proportion of individuals, at equi-

librium, for which w = 1 is equal to 1 – µ = 0.9999 while for all

other individuals, w = 0
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sarily imply that in real population, highly pleio-

tropic mutations will always be devastating. If the

effect of a mutation on each selected trait is suffi-

ciently small, then mutations need not be fatal. With

this in mind, we now study a different case where

mutant offspring generally survive.

2.3. Results for the limit W ® ¥ and m ® 0

We again take Ω → ∞, however, this time, as the

value of Ω increases, we simultaneously decrease m.

In particular, we assume that m = m*/√Ω with m*

constant. Thus as Ω → ∞ the value of m becomes

vanishingly small. As a result, as Ω → ∞, mutations

are not necessarily fatal. At equilibrium, the mar-

ginal distribution of genotypic values of a single

character, say x1, is Φ1 (x1) = δ (x1) corresponding to

all individuals having the optimal value of the char-

acter, x1 = 0. The marginal distribution, Φ1 (x1) is

plotted in Figure 3. (An alternative, but equivalent

limiting procedure would be to hold m fixed, but

weaken the strength of selection, with Ω, by setting

Vs = Vs* × Ω with Vs* constant.)

Despite the simplicity of the result for Φ1 (x1), the

distribution of fitnesses, Ψ (w), under the present as-

sumptions, is not simple. In terms of

∆ = −







 =

∗

exp , ,
m
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B
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2
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p q

q
q

p

=
−









−
=

−

=
∏µ

µ1 1
1 2 3

1

1

∆
∆
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the distribution of fitnesses consists of a sum of

spikes at locations 1, ∆, ∆2, … with different weight-

ing factors.

Ψ( ) ∆w Z B w Z Bp

p

ppp
= − =−

=

∞

=

∞ ∑∑1

00
δ( ), . (3)

The singular distribution is achieved at long times

even if, initially, the distribution of w is non-sin-

gular. In Figure 4 we illustrate this distribution by

plotting spikes at the locations of the Dirac delta

functions in Ψ (w). The height of the spikes plotted

is given by the logarithm of the weighting factors,

i.e. by log10 (Bp/Z). The weighting factors give the

relative equilibrium proportions (or frequencies) of

individuals of different fitness. Thus the frequency

of individuals with w = ∆p (p = 0, 1, 2, …) is given by

Bp/Z. Equation (3) is quite complex, however, a

much simpler result follows when 1 – ∆ >> µ. In this

case the frequency of individuals with w = 1 is

B0/Z = 1 – µ/ (1 – ∆) + O (µ2) while that of individu-

als with w = ∆, is B1/Z = µ/ (1 – ∆) + O (µ2). The fre-

quency of individuals with w = ∆2, ∆3, …, are O (µ2)

or smaller.
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FIG. 3. The equilibrium distribution of genotypic effects for a

single character, Φ1 (x1), plotted as a function of genotypic ef-

fect, x1. In this case, we have taken the limit Ω → ∞ and m → 0

such that Ωm2 is finite (as described in the main text). For the

case shown, Vs = 20, m* = 0.2, and µ = 10–4. The distribution

consists of a Dirac delta function which is located at x1, indicat-

ing that for character number 1 (and similarly for all other char-

acters), no individual has more than an infinitesimal deviation

from the optimal genotypic value. We have broadened the line

rising above x1 = 0 to facilitate visualisation.

FIG. 4. The equilibrium distribution of relative fitnesses, Ψ(w),

is plotted as a function of w. The parameters used are the same as

in Figure 3. The vertical lines represent the locations of Dirac

delta functions. The height of the lines plotted is given by the

logarithm (to base 10) of the proportion of individuals having

various values of w, i.e. the logarithm of the weighting factors of

the delta functions, see Eq. (3). Individuals with values of w

other than those corresponding to spikes are entirely absent

from the population once equilibrium has been achieved.
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3. Discussion

In this study we have focused on the consequences

of pleiotropy when a very large number of independ-

ently selected traits are affected by each mutation.

We considered the consequences of increasing the

number of mutations affected by each character, Ω,

to a very high value. When this is done without alter-

ing any other parameter of the model, all mutations

become fatal, and the equilibrium distribution of

fitnesses takes on a simple form of the sort shown in

Figure 2. This is not difficult to understand, as a

large value of Ω means that each mutation causes a

large number of deleterious phenotypic changes,

and collectively, these changes are fatal when Ω is

sufficiently large.

A different result arises, however, when we in-

crease Ω and simultaneously decrease the standard

deviation of mutant effects, m, in such a way that

most mutations are not fatal. If most mutations are

highly pleiotropic, then this model is more plausible

than the one in which m and Ω are not varied to-

gether, because many mutations are not fatal (Crow,

1979; Peck and Eyre-Walker, 1997; Fry et al.,

1999).

When Ω and m are varied together as described

above, the equilibrium distribution of fitnesses is a

series of sharp spikes, with most genotypes absent,

and only those with certain specific fitnesses pres-

ent. This originates in the law of large numbers

(Brunk, 1975). A realisation of this is contained in

Eq. (14), which states that when Ω → ∞, all sin-

gle-mutant offspring of a parent of fitness w will

have a fitness exactly equal to ∆ × w (where ∆ < 1).

This arises as follows. A single mutation causes

changes in each phenotypic character and the size of

these changes varies from one trait to another. When

Ω is very large the consequences of the trait changes

can be predicted with very little error because large

changes compensate by for small ones, and vice

versa. The net effect of these changes is to cause the

fitness of offspring to be smaller by a fixed factor

than the parents. Variations in the offspring fitness

vanish as Ω → ∞. Thus all offspring of an individual

containing a single (highly pleiotropic) mutation,

will not have a range of fitnesses, but all have the

same fitness. This phenomenon ultimately leads to a

distribution of fitness values consisting of a series of

spikes, as shown in Figure 4.

It is interesting to note that the distribution shown

in Figure 4 arises at equilibrium even when the ini-

tial distribution of fitnesses is smooth, and no partic-

ular genotype has a non-negligible frequency. The

reason is that, when Ω is very large, all individuals

are ultimately descended from an individual of opti-

mal genotype, just as in standard models of “Mul-

ler’s Ratchet” (Haigh, 1978). Only individuals of

optimal genotype have possibility of producing a

long-lasting lineage. All members of such a lineage

will be separated from the optimal genotype by a

number of mutational steps, and each step produces

a particular change in fitness, which is completely

determined because of the law of large numbers.

Thus, as long as the optimal genotype is initially

present, the presence of any other genotype has no

effect on the long-term outcome of evolution.

Another feature of the limit Ω → ∞, when m → 0,

as described above, is the contrast between the dis-

tribution of fitnesses shown in Figure 4 and the

marginal distribution of a single genotypic value,

Φ1(x1), shown in Figure 3. Variation in fitness

amongst members of the population is not appar-

ently accompanied by variation in any single

genotypic character. To understand this, we first

note that each spike in the distribution of fit-

nesses corresponds to a spherical shell of zero thick-

ness in “genotypic space” (where position is speci-

fied by the coordinates x1, x2, …, xΩ). The shell

corresponding to a spike in Ψ (w) at w = ∆p, lies

distance x = ∗pm from the origin where

x = + +x x x1

2

2

2 2... Ω . In Figure 5 we provide an il-

lustration of the multiple shell structure when only 3

genotypic dimensions are shown. How does a singly

spiked marginal distribution arise from the multiple

shells in genotypic space? The existence of shells

and the singly spiked marginal distribution of a sin-

gle character can be viewed as separate aspects of

the Ω → ∞ limit. To distinguish these properties,

imagine a situation where Ω is finite, but for some

reason, the population is distributed, in genotypic

space, over a zero-thickness shell of radius R. The

marginal distribution of x1 from the shell is propor-

tional to (1 – x1
2/R2) (Ω – 3)/2 for x1

2 < R2 and zero oth-

erwise [as follows from Eq. (15)]. Only for Ω > 3 is

the marginal distribution peaked around x1 = 0 and it

approaches a Dirac delta function only in the limit of

very large Ω, when it becomes more an more sharply
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peaked around x1 = 0. In this way we can understand

that, in equilibrium, the high dimensionality of

genotypic space results in every shell making a con-

tribution to Φ1(x1) that is proportional to a spike,

δ(x1). Since Φ1(x1) is the sum of all these contribu-

tions, it is, itself, a spike. Thus variation in the fit-

ness of the population and lack of variation in the

marginal genotypic distributions of single charac-

ters are compatible, if surprising, aspects of highly

pleiotropic problems.

When the number of characters is large but finite,

each of the shells present at equilibrium acquires a

width of order Ω–1. The exception is the zero radius

shell, corresponding to optimal fitness, which re-

mains at zero radius. At finite but large Ω, the mar-

ginal distribution of a single genotypic character be-

comes a single delta function (from the zero radius

shell) superimposed on a smooth symmetric distri-

bution with a peak at the origin of width or order Ω–1

(from shells of non-zero radius).

We conclude by noting that the analysis pre-

sented in the present work deals only with infinite

populations. What happens in populations of finite

size is the subject of ongoing research. Preliminary

numerical evidence indicates that for finite popula-

tions (e.g. with 104 or 105 individuals) there is a

qualitatively different behaviour in cases of Ω = 1

and 2, compared with Ω = 3, in line with the predic-

tions made in (Waxman and Peck, 1998). We plan to

present these results along with other results else-

where.
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APPENDIX

A derivation of results used in the main part of the

paper are given here. We use the convention that

integrals with unspecified limits cover the full range

of all integration variables.

We begin with the lifecycle. Newly produced in-

dividuals undergo viability selection, after which

the mature individuals produce offspring and die

shortly afterward. The offspring produced may con-

tain mutations and with x a vector of genotypic val-

ues: x = (x1, x2, …, xΩ), the distribution of offspring

in generation t (= 0, 1, 2, …), namely Φ (x, t), obeys

Φ( )x, t + =1

=
− + −∫( ) ( ) ( , ) ( ) ( ) ,

( ) ( , )

1 µ µw t M w t d y

w t d

x x x y y y

y y

Φ Φ( )

Φ

Ω

Ω y∫
(4)

where

w x Vi s

i

( ) exp[ / ( )],x = −
=

∏ 2

1

2
Ω

M m x mi

i

( ) ( ) exp[ / ( )]/
x = −−

=
∏ 2 22 1 2 2 2

1

π
Ω

,

and dWx = dx1dx2 … dxΩ. Φ(x, t) is a probability den-

sity describing generation t, and the proportion of

the population with genotypic values in the infinites-

imal volume dWx centered at x is Φ(x, t) dWx.

The intrinsic complexity of the model is associ-

ated with the dimensionality, Ω, of the space of

genotypic values. Any appreciable value of Ω poses

problems in determining Φ(x, t + 1) since Eq. (4) in-

volves Ω dimensional integrals.
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FIG. 5. When Ω → ∞ and m → 0 such that Ωm2 is finite (as de-

scribed in the main text), each spike in the equilibrium distribu-

tion of fitnesses corresponds to a spherically symmetric shell of

zero thickness in genotypic space. We have plotted the first few

shells, when only 3 dimensions of genotypic space are shown.

At the centre of the shells, lies a black sphere, representing the

zero-radius shell that corresponds to optimum fitness. We have

made it of finite radius to facilitate visualization.

Each shell makes a contribution to the marginal distribution of a

single character, e.g. x1, of the form constant × δ(x1) where

δ(x1) denotes a Dirac delta function, so the marginal distribution

itself is simply δ(x1), as illustrated in Figure 3.



Consider the distribution of relative fitnesses of

individuals in the population (henceforth we shall

omit the adjective “relative”). It is clear that great

simplifications occur when we focus on this distri-

bution since fitness is a one-dimensional trait (a sin-

gle number lying in the interval 0 to 1). Thus chang-

ing Ω has no effect on the dimensionality of the

space of fitnesses. By contrast, changing Ω changes

the dimension of the space of genotypic values.

The distribution of fitnesses in generation t is de-

noted by Ψ(w, t) and Ψ(w, t) dw is the proportion of

the population with fitness in the infinitesimal inter-

val w to w + dw. It is defined by Ψ(w, t) =δ(w – w(x))

Φ(x, t) dWx where δ(w) denotes a Dirac delta func-

tion and 1 ≥ w ≥ 0. To find the equation that deter-

mines Ψ (w, t), multiply Eq. (4) by δ(w – w (x)) and

integrate over all x. This yields

Ψ( )w t, + =1

=
− + ∫( ) ( , ) ( , ) ( , )

,

1 1 1 1 1

0

1

µ µw w t F w w w w t dw

w t

Ψ Ψ

w w w t dwt = ∫ Ψ( , )
0

1

. (5)

The function F (w, w1) can be determined using po-

lar coordinates in Ω dimensions, but its explicit

form is quite lengthy and not required in the present

work. What we do require, however, are the mo-

ments of F (w, w1) and these are found most simply

from the equation that in essence defines F (w, w1),

namely F (w, w (y)) = δ∫ (w – w (x)) M (x – y) dWy.

Multiplying this by wr and integrating over w yields

w F w w dw r w V mr

r

r

s( , ) ( / ) , // /

1

2

1

1 2

0

1

1= + =− +∫ ζ ζζΩ . (6)

In what follows, we take ζ >> 1 (Turelli, 1984).

Given a mutation occurs, F(w, w1) dw is the prob-

ability that a parent with fitness w1 will produce an

offspring whose fitness lies in the infinitesimal

range w to w + dw. The behaviour of F(w, w1) de-

pends sensitively on Ω, in particular,

F w w w M d x( , ) ( ) ( )1 = − =∫δ( )x x
Ω

( )
=

− − −ζ ζΩ Ω

Γ Ω

/ /
[ln( )]

( / )

2 1 2 2 1

2

w w
(7)

where Γ(x) denotes Euler’s Gamma function.

At equilibrium, we can write Eq. (5) as

[ ( ) ] ( ) ( , ) ( )w w w F w w w w dw− − = ∫1 1 1 1 1

0

1

µ µΨ Ψ (8)

and w is determined by the condition that Ψ (w) is

non-negative and normalized to unity:

Ψ( )w dw =∫ 1
0

1

.

Equilibrium distribution of fitnesses for W = 1, 2

For Ω = 1 and Ω = 2, F (w, w1) does not vanish any-

where except at w = 0. Thus for w ≠ 0 Eq. (8) yields

[ ( ) ] ( )w w w− − >1 0µ Ψ and because Ψ (w) is non-

negative, it follows that [ ( ) ] .w w− − >1 0µ The

non-vanishing of w w− −(1 µ) for all w allows us to

write Eq. (8) as

Ψ( ) Ψw F w w w w dw w w= − −∫µ µ( , ) ( ) / [ ( ) ]1 1 1 1

0

1

1

and an approximation for Ψ (w) then follows by ap-

plying the “House of Cards” Approximation (King-

man, 1978; Turelli, 1984). It corresponds to

Ψ( )w F w w w≈ − −µ µ( , ) / [ ( ) ]1 1

and applies when the “width” (i.e. variance) of

Ψ(w), which is O(µ), is small compared with the

width, with respect to w1, of F(w, w1), which is of

order ζ–1. Thus the approximation applies for

µζ << 1. We define

α µ= V ms / 2 (9)

then the approximation applies for α << 1. In all that

follows, we assume α << 1. Using Eq. (7) and deter-

mining w using normalization yields

Ψ( )
Ω

w

w

w c w
c

w

c

≈ + −
= =

+

−

−

−

α
πζ ζ

πα

α

ζ

ζ

1

1

1

1

2

1

2

1
1

1

ln( )( / )
, ,

/ ζ
γ α

−
= − − =










−

w
c, exp( ),2

1 2Ω
(10)

where γ = 0.5772 … is Euler’s constant.
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Equilibrium distribution of fitnesses for W = 3

For Ω = 3, F(w, w1) is positive everywhere except

at the isolated points w = 0 and w = 1. Equation (8)

then allows the possibility that w w− −( )1 µ can

vanish at one of these points. For small α, Ψ(w) is

only normalizable if w w− −(1 µ) does indeed van-

ish. Since w w− −(1 µ) cannot become negative

without violating Eq. (8), it must vanish at w = 1,

thus w = −1 µ. Additionally, the vanishing of

w w− −(1 µ) prevents us from directly dividing Eq.

(8) through by this factor, unless we correct for its

vanishing by including, after division, the additional

term Aδ(1 – w) where A is a constant. This yields

Ψ( )
Ψ

w A w

F w w w w dw

w
= − +

− −

∫
δ µ

µ
( )

( , ) ( )

1
1 1

1 1 1

0

1

1

(11)

and A is determined from normalization. Under the

House of Cards approximation,

Ψ( )w w
w w

w
≈ − − +

−

− −

( ) ( )
( / ) ln( )

1 2 1
2

1

1 1

α δ
α ζ π ζ

. (12)

Equilibrium distribution of fitnesses

for W ® ¥ with m fixed

For large, but finite Ω, we can argue, as for the case

Ω = 3, that [ ( ) ]w w− −1 µ must vanish at w = 1 so

w = −1 µ, and Ψ (w) has the form given in Eq. (11).

To determine the solution, we need the limiting be-

haviour of F (w, w1) as Ω → ∞ at fixed m. This is

most simply achieved from the moments, Eq. (6).

When Ω → ∞ at fixed m, w F w w dwr ( , )1

0

1

∫ has the

value of 1 if r = 0, and vanishes if r > 0. This indi-

cates that

Ω→∞
=

m fixed

F w w wlim ( , ) ( )1 δ . (13)

With this form for F (w, w1), and on determining A

from normalization, we obtain

Ψ (w) = (1 – µ) δ (1 – w) + µδ (w).

Equilibrium distribution of fitnesses

for W ® ¥ with m = m*/ÖW

In this case we have ζ = VsΩ/m*2 and, from Eq. (6)

Ω
Ω

∆
→∞

= ∗

=∫
m m

r r rw F w w dw w

/

lim ( , )1 1

0

1

where ∆ = exp (–m*2/(2Vs)). This indicates that

Ω
Ω

∆
→∞

= ∗

= −
m m

F w w w w

/

lim ( , ) ( )1 1δ . (14)

Inserting this into Eq. (11) and solving the resulting

equation yields Eq. (3).

Marginal distribution of a single character

The marginal distribution of a single genotypic char-

acter, say x1, is denoted by Φ1(x1) and is defined by

Φ1 (x1) = Φ∫ (x) dx1dx2…dxW. Provided Eq. (4), at

equilibrium, has a unique non-negative and nor-

malizable solution, as we shall assume, it can be

proved that the solution Φ(x) is radially symmetric.

Thus Φ( ) Φx x≡ ( ) where x = + +x x x1

2

2

2 2... Ω is

the Euclidean length of the vector x. This allows us

to use polar coordinates to write

Φ ΦΩ
Ω

1 1 1

2

1

2 2

0
( ) ( )x S x d= +−

−∞

∫ ρ ρ ρ

with Ω = 2, 3, … and SΩ = 2πΩ/2/Γ(Ω/2) is the sur-

face area of a unit radius sphere in Ω dimensional

space. We can relate Φ( )x to the distribution of

fitnesses Ψ(w), since w is a measure of radial dis-

tance and a short calculation yields

( )

Φ ΘΩ

Ω

Ω

1 1
1 1

2

2

3 2

21( )
( ) ( )

( ( )

/

x
S

S

dw

R w

x

R w
R w= −









 −−

−

x w1

2

0

1

) ( ),Ψ∫

R w V ws( ) ln( )= −2 1 . (15)

Here Θ (x) denotes a Heaviside step function (Θ(x) =

1 for x > 0 and is zero otherwise) and R(w) is the ra-

dial distance in genotypic space from x = 0 to posi-

tions corresponding to fitness w, i.e.

w = exp [–R2(w)/(2Vs)].
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Equation (15) is ambiguous if Ψ(w) contains a

term cδ (1 – w) (c = constant), since R(w) vanishes at

w = 1. Such a term arises from the term cδ (x) in

Φ(x) and the correct contribution to Φ1(x1) is cδ(x1).

This may be obtained by a limiting process, where

we modify the term to read cδ (λ – w) and, after de-

termining its contribution to Φ1(x1), take the limit

λ → 1–.

Marginal distribution of x1

for W = 1, 2 and 3

For Ω = 1 we determine Φ1(x1) directly from the

House of Cards approximation and for Ω = 2, 3 we

apply Eq. (15) to Eqs (10) and (12). This yields the

results in (Waxman and Peck, 1998): namely with

r = x1
2/(2m2) and Γ( )a b u e du

a u

b
, =

− −∞

∫
1

, these are,

for Ω = 1:

2 2

1 1

2π α ρ ρ παm xΦ ( ) exp( ) / ( )≈ − +

for Ω = 2:

2 1 22

1 1 2 2 2π α ρ ρm x c c cΦ Γ( ) exp( ) ( / , ) /≈ + +

where c2 is given in Eq. (10), and for Ω = 3:

2 1 2 02

1 1π α δ ρ α ρm xΦ Γ( ) ( ) ( ) ( , )≈ − + .

Marginal distribution of x1 for W ® ¥
with m fixed

The simplest way to obtain Φ1(x1), when Ω → ∞ at

fixed m is to work with the characteristic function

χ 1 (k) which is defined by χ 1 (k) = exp∫ (ikx1)

Φ1(x1) dx1. Using Eq. (15) and making the change of

variables x1 = R(w) u yields

( )χ1 1

2 3 2

1

1

1( ) ( / ) ( ) exp( ( ) ) ( )
/

k S S dw du u ikR w u w= −−
−

−
∫Ω Ω

Ω Ψ
0

1

∫

≈ −∫ dw k R w wexp[ ( ) / ( )]2 2

0

1

2Ω Ψ( ) (16)

= ∫w w dw
V ks

2

0

1
/

( ) .
ΩΨ

The second equation applies for large Ω, when

(1 – u2) (Ω–3)/2 is accurately approximated by

exp (–Ω u2/2), and the limits of the u integration are

harmlessly extended to ± ∞. The approximations be-

come exact in the limit Ω → ∞. The third equation

follows when R(w) from Eq. (15) is used. We apply

Eq. (16) to the equilibrium from Eq. (5) and obtain

χ µ1

1

0

1

1
2

( ) ( ) ( )
/

k w w dw
V ks= − +






+∫ Ω Ψ

+ ∫∫µ dw dw w F w w w w w
V ks

1 1 1 1

0

1

0

1
2 /

( , ) /
Ω Ψ( ) .

When Ω → ∞ at fixed m, the term

w w dw w
V ks

2 1

0

1
/

( ) .
Ω Ψ+ →∫ Additionally, using Eq.

(6), with r = Vsk
2/Ω, we have

dw dw w F w w w w
V ks

1 1 1 1

0

1

0

1
2 /

( , ) ( )
Ω Ψ =∫∫

= +










−

∫1
2

2

1 1 1

0

1
V k

w w dws a

Ω
Ψ

Ω

ζ

/

( ) (17)

a
V k

V k

s

s

=
+

+
2

21
1

/

/ ( )

Ω
Ωζ

and as Ω → ∞ at fixed m this becomes

exp( / )−m k w2 2 2 thus

Ω→∞
= − + −

m fixed

k m klim ( ) ( ) exp( / )χ µ µ1

2 21 2

and this yields Φ1(x1) = (1 – µ) δ(x1) + µf(x1) with

f(x) given in Eq. (1).

Marginal distribution of x1 for W ® ¥
with m ® m*/ÖW

The steps are essentially identical to the previous

case and differences only occur because m is now

m*/√Ω. The limit of both w w dw
V ks

2 1

0

1
/

( )
Ω Ψ+∫ and

dw dw w F w w w w
V ks

1 1 1 1

0

1

0

1
2 /

( , ) ( )
Ω Ψ∫∫ is w as follows

from Eq. (17) when ζ is replaced by Vs/(m
*2/Ω).

Thus

Ω
Ω

→∞
= ∗

=
m m

k

/

lim ( )χ 1 1

and this yields Φ1 (x1) = δ (x1).
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