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Abstract

Fisher’s geometrical model of evolutionary adaptation has recently been used in a variety of contexts of interest to evolutionary

biologists. The renewed interest in this model strongly motivates generalizations that make it a more realistic description of evolutionary

adaptation. Previously, the distribution of mutant effects has, for analytical tractability, rather than biological realism, been taken as

spherically symmetric. Here we substantially extend Fisher’s model, by allowing a wider class of mutational distributions that

incorporate mutational bias and more general deviations from spherical symmetry such as correlations between mutant effects. We also

incorporate work on generalized fitness landscapes, thereby reducing the number of artificial assumptions underlying the model. The

generalized model exhibits a substantially increased flexibility and a far richer underlying geometry. We find that the distribution

characterizing selection coefficients of new mutations is expressed in terms of a number of geometrical invariants associated with

mutation, selection and the parental phenotype.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Fisher’s geometrical model; Evolutionary adaptation; Quantitative traits; Mutation; Stabilizing selection
1. Introduction

In his famous book The Genetical Theory of Natural

Selection, Fisher outlined a view of evolutionary adapta-
tion in terms of intuitive, geometrical considerations
(Fisher, 1930). An organism was described as having n

quantitative traits (i.e. n characters with effectively
continuous variation). Examples of nine such characters
that have been investigated in Drosophila melanogaster are
viability, fecundity, hatchability, development time, long-
evity, mating speed, phototaxis, body length and abdom-
inal bristle number (Keightley and Ohnishi, 1998).

Fisher viewed the quantitative characters of an organism
as the Cartesian coordinates in an n-dimensional ‘‘space of
characters,’’ and a particular organism, with its particular
set of n characters, was then geometrically represented as a
point in this space. In the original formulation of Fisher,
the level of adaptation of an organism was determined
e front matter r 2006 Elsevier Ltd. All rights reserved.
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from its distance from a fixed point in the n-dimensional
character space: the closer an organism is to this fixed
point, the higher is its fitness. This fixed point was thus
implicitly taken as a fitness optimum and since only the
distance from this point is of significance, surfaces of
constant fitness are hyperspheres surrounding the opti-
mum, i.e. circles, if there are only n ¼ 2 characters (see
Fig. 1), spheres when there are n ¼ 3 characters, . . . : The
intention of Fisher was not obviously to provide a realistic
model of adaptation, but rather to illustrate how adapta-
tion is determined by a number of different features of an
organism acting in concert.
In Fisher’s geometric description, the change in char-

acters associated with a mutation corresponds to a mutant
offspring lying at a different position (in the character
space), compared with that of its parent (we are assuming
an asexual population). Such a change is beneficial—or
adaptive—if it results in an increase in some measure of the
organism’s viability/reproductive success, i.e. its fitness.
A mutation is adaptive if an individual carrying a newly
arisen mutation is closer to the location of the fitness
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Fig. 1. An illustration of Fisher’s geometrical model is shown for the case

of two traits z1 and z2, when fitness and mutation are spherically

symmetric. The fitness optimum lies at ðz1; z2Þ ¼ ð0; 0Þ and is represented

by a filled dot. The unfilled dot represents the state of a parent and the

arrow stemming from this point represents a mutational change, r. The

quantity kzk is the distance of the parental phenotype from the optimum.

All points on the solid circle, with radius kzk, correspond to the same

value of fitness. All points on the small circle with radius r are equally

likely to be reached by a single mutation. The dashed arc shows the

proportion of those mutations that are closer to the optimum than the

parental henotype and are thus beneficial.
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optimum than that of its parent—see Fig. 1. The
mutational changes considered by Fisher were taken to
have the simplest distribution, namely that of being equally
likely to occur in all directions in the character space
(spherically symmetric).

Fisher’s considerations amount to an explicit model of
evolutionary adaptation, with analytical or quantitative
results derivable for results such as the proportion of
beneficial mutations.

Quite recently, there has been renewed interest in this
model because, despite being highly simplistic, there is the
implicit belief that certain features it exhibits may be robust
to modifications of the underlying assumptions and hence
allow its conclusions to have wider applicability. The recent
work, which uses Fisher’s model in its original form,
includes investigation of the size of mutations contributing
to adaptation (Orr, 1998, 1999; Hartl and Taubes, 1998;
Burch and Chao, 1999), topics such as drift load (Hartl and
Taubes, 1996; Peck et al., 1997; Poon and Otto, 2000),
hybridization (Barton, 2001) and evolutionary rates (Orr,
2000; Welch and Waxman, 2003). Generalizations of
Fisher’s model have also been considered (Rice, 1990;
Whitlock et al., 2003; Waxman and Welch, 2005).

The renewed interest in this model strongly motivates
generalizations that make it a more realistic description of
evolutionary adaptation. Here we make some progress in
this direction, by not only incorporating recent work on
generalized fitness functions of a stabilizing form (Waxman
and Welch, 2005) but, more importantly, by incorporating
a wider class of distributions of mutational effects, beyond
the spherically symmetric ones that have been considered
to date. Thus, with the ultimate aim of setting out a
somewhat more general framework for Fisher’s geome-
trical model, we consider distributions of mutant effect that
incorporate mutational bias and allow correlations be-
tween the mutational changes on different traits. In the
framework presented, the distribution of mutant effects has
surfaces of constant probability density that are ellipses or
their higher dimensional analogues (ellipsoids) and the
distribution has a functional form that includes a normal
distribution as a special case. The present work therefore
reduces some of the artificial assumptions about mutation
that have been present in Fisher’s geometrical model to
date, and provides a useful tool for subsequent work
employing the model.
The generalized model, outlined above, exhibits a

substantially increased flexibility and a far richer under-
lying geometry. The present work concentrates on a
fundamental quantity; a distribution characterizing new
mutations and exposes the way the richer geometry
manifests itself in quantities of interest associated with
such mutations.

2. Model

Consider a population of asexual organisms that are
subject to selection and mutation on the values of n

quantitative characters, z1; z2; . . . ; zn, which make up the
relevant phenotype of an individual. Each of the different
characters continuously ranges from �1 to 1 and we
neglect any environmental component of the characters. It
is convenient to collect all n characters into the column
vector z ¼ ðz1; z2; . . . ; znÞ

T where the superscript T denotes
the transpose of a matrix.

2.1. Mutation

The change in characters, due to mutation, is given by n

random numbers r ¼ ðr1; r2; . . . ; rnÞ
T. The mutant offspring

of an organism with phenotype z has phenotype zþ r.
Generally, all n characters are changed by a mutation,
indicating that in this model mutation exhibits a high level
of pleiotropy.
The distribution (or probability density) of mutant

effects is written as f ðrÞ, and the probability of mutational
changes on the n traits lying in the infinitesimal range r to
rþ dr is f ðrÞdr1 dr2 . . . drn � f ðrÞdnr.
In contrast to previous work on this subject, we shall

not make the analytically simplest choice for the distribu-
tion of mutant effects. That is, we shall not assume that
mutations are equally likely to occur in all directions in
the n-dimensional phenotypic space, by assuming f ðrÞ
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is a spherically symmetric function (depends only on

krk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ � � � þ r2n

q
). Rather, we shall consider a

class of mutation distributions that include spherically
symmetric distributions as a special case, but are more
general than these, and hence incorporate important
statistical aspects of mutation. Specifically, we consider
distributions of mutant effects that only depend on
mutational changes, r, in the quadratic combination

ðr� bÞTC�1ðr� bÞ. That is,

f ðrÞ ¼ function of A; A ¼ ðr� bÞTC�1ðr� bÞ, (1)

where b is a fixed column vector and C is a real n� n

symmetric positive definite matrix. For mutational dis-
tributions of the form just described, the variance–covar-
iance matrix of mutational changes can be shown to be
proportional to the matrix C and we shall make an
appropriate choice of scaling of the distribution, so that
variance–covariance matrix exactly coincides with C. This
choice of scaling puts a single condition on the dependence
of f ðrÞ on A, but beyond this and the requirement of
normalization, the possible dependence on A is general (see
Appendix A for details).

Note that positive definiteness of C results in this matrix
having positive diagonal elements—corresponding to the
variances of mutational changes on different characters.
Positive definiteness of C does not, however, require its off-
diagonal elements to be positive, so covariances of either
sign (or zero) can be accommodated in the above frame-
work.

The above class of mutation distributions has the
following properties:

(i) Surfaces of constant probability density are ellipses
when n ¼ 2 and higher dimensional analogues of an ellipse
when n42 (i.e., n-dimensional ellipsoids). This follows
directly from the set of r values that correspond to A ¼

constant, and which, in appropriately translated and
rotated coordinates (r�), can be written as the simplest re-
presentation of an n-dimensional ellipsoid:

Pn
i¼1 m�2i r�2i ¼

constant, where m2
i are the eigenvalues of C. Thus, the class

of mutation distributions considered here go beyond the
spherically symmetric ones previously considered and only
coincide with the previously studied distributions in the
special case where b vanishes and C is proportional to the
n� n identity matrix.

(ii) The mean mutational change of the n traits is b, i.e.Z
rf ðrÞdnr ¼ b (2)

(see Appendix B) where here and elsewhere, all integrals
with unspecified limits cover the full, �1 to1, range of all
integration variables. The ith trait experiences mutations
that are not symmetrically distributed around the parental
trait value, zi, but are symmetrically distributed around the
trait value zi þ bi. Such a mutation scheme can be said to
exhibit mutational bias and this has been observed in
quantitative traits (Santiago et al., 1992; Mackay, 1996;
Keightley and Ohnishi, 1998) and investigated theoretically
(Waxman and Peck, 2003, 2004).
(iii) The variance–covariance matrix of mutational

changes, C, is, in general, non-diagonal, in which case the
mutational changes on different traits are correlated.
(iv) Apart from some restrictions of the dependence of

the distribution of mutant effects, f ðrÞ, upon A, which
arise from normalization and the scaling requirement
(mentioned above), the functional dependence on A is
otherwise unspecified. It follows that, generally, mutational
changes on different traits will not be statistically
independent, and will not, by any linear transformation,
be convertible to statistically independent changes (unlike
mutational changes that are multivariate normal, which is
a special case of the mutational distributions considered
here).
2.2. Selection

Selection is taken to be stabilizing, with the characters
defined in such a way that the optimum of the fitness
function lies at the coordinate origin, z ¼ 0 � ð0; 0; . . . ; 0ÞT.
In Fisher’s original formulation (Fisher, 1930), the fitness
landscape was implicitly taken to be spherically symmetric,
which means that fitness depends only on the Euclidean

distance, kzk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22 þ � � � þ z2n

q
, of a phenotype from

the origin. To combine the zi in this way means that they
must, of course, all be measured in the same units.
In the work of Waxman and Welch (2005) and the

present work, we adopt a more general fitness function of
the form motivated by Haldane (Waxman and Welch,
2005; Haldane, 1932), namely

wðzÞ ¼ expð�zTSzÞ, (3)

where S is a real symmetric n� n matrix. Such a form for
wðzÞ can be derived from the Taylor series of lnðwðzÞÞ, by
expanding to quadratic deviations in z, from a fitness
optimum (Waxman and Welch, 2005).
If selection is stabilizing, as we assume, then fitness

decreases as z moves away from the fitness maximum ðz ¼
0Þ in all directions in the n-dimensional character space.
This follows only if S is a positive definite matrix. It also
follows that surfaces of constant fitness are generally n-
dimensional ellipsoids (higher-dimensional analogues of an
ellipse): such surfaces are the set of z values satisfying
zTSz ¼ constant, and this last equation can, in an
appropriately rotated set of coordinates ðz�Þ, be written
as the simplest representation of an n-dimensional ellip-
soid:

Pn
i¼1 siz

�2
i ¼ constant, where the si are the eigenva-

lues of S.
In Fig. 2 we give an example, for n ¼ 3, of a surface of

constant fitness, where a particular parental phenotype lies
(large ellipsoid). The same figure contains some of the
possible mutational changes of the parental phenotype
(partially visible small ellipsoid).
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Fig. 2. This figure applies for the case of n ¼ 3 characters. The large

ellipsoid represents a surface of constant fitness that contains a parental

phenotype, z. Surfaces of yet higher fitness lie inside the large ellipsoid

illustrated. The small, partially visible ellipsoid represents equiprobable

mutational changes of the parental phenotype. The parts of the small

ellipsoid visible represent non-adaptive mutations, since they correspond

to mutant phenotypes that have lower fitness than the parental phenotype.

The geometry of the problem is complex, since the fitness and mutational

ellipsoids can be at arbitrary orientations and locations, relative to one

another.

-1 -0.5 0 0.5
0

1

2

3

4

5

6

s

D
is

tr
ib

ut
io

n 
of

 fi
tn

es
s 

ef
fe

ct
s

approx
exact

Fig. 3. The exact distribution of fitness effects is plotted, as a function of

selection coefficient, s, for the original formulation of Fisher’s geometrical

model (solid curve). Also plotted is the corresponding distribution that

follows from the normal approximation of the distribution of Q, that the

current work is based upon (broken curve). For the case plotted, the

number of characters is n ¼ 12 and the size of mutations is r ¼ 2kzk,

where no mutations are beneficial. A very reasonable qualitative

agreement of the two distributions is obtained over a wide range of s

and increased agreement follows for larger values of n.
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3. Results/methods

In the present work we determine a distribution
characterizing the selection coefficients of new mutations.
This distribution is derived for mutations characterized by
Eq. (1). Any notions about the size of mutations that
contribute to the distribution characterizing selection
coefficients (however size is defined) need not be addressed
since all mutations can make a contribution, irrespective of
any of their attributes.

To proceed, we note that a random mutational change r
of parental phenotype z results in an offspring with a
selection coefficient of

s ¼ wðzþ rÞ=wðzÞ � 1. (4)

In the work of Waxman and Welch (2005), it was found
advantageous to deal not with the selection coefficients
directly, but rather with a variable Q that is closely related
to selection coefficients and defined by

Q ¼ lnð1þ sÞ � ln½wðzþ rÞ=wðzÞ�. (5)

In Eq. (5), the parental phenotype, z, is a fixed parameter
but Q is a random variable because it depends on the
random mutational change r. Knowledge of the distribu-
tion of Q is, of course, equivalent to knowledge of the
distribution of s, however, the advantage in dealing with Q

is that its distribution has a simpler form than that of s. In
particular, it was shown that when the distribution of
mutant effects is spherically symmetric, and nb1, the
distribution of Q for mutations with a fixed size (i.e. having
a fixed value of krk) is well approximated by a normal
distribution (Waxman and Welch, 2005).

The normal approximation for the distribution of Q is a
particularly convenient way of proceeding, since the entire
distribution is determined from just two parameters: the
mean and the variance of Q. Furthermore, it leads to
qualitatively good predictions for properties of direct
biological interest. Consider, for example, selection coeffi-
cients of new mutations in the simplest case of Fisher’s
geometrical model—the original formulation—where there
is no variation of the size of mutations and surfaces of
constant fitness are spherically symmetric (Fisher, 1930).
Approximate normality of Q means that this variable has a
distribution that is (approximately) symmetric about its
mean value. The distribution of selection coefficients
(commonly termed the distribution of fitness effects) is
not symmetric in s, yet is well captured by the normal
approximation for Q. Indeed, when Q has the distribution
cðqÞ, the distribution of selection coefficients is ð1þ sÞ�1

cðlnð1þ sÞÞ and this is not generally symmetric in s. We can
calculate the exact distribution of selection coefficients (for
the original formulation of Fisher’s geometrical model) and
compare it with the distribution following from the normal
approximation for Q. Taking the ‘‘worst case’’ of mutations
of size r ¼ 2kzk, where no mutations are beneficial, and the
relatively small n value, say n ¼ 12, we obtain Fig. 3,
indicating a very reasonable qualitative agreement of the
two distributions over a wide range of s. The agreement
increases with increasing n, and the relatively small value of
n was only adopted to provide a figure with discernible
differences between the two distributions. We note that for
the case plotted, where r ¼ 2kzk (and no mutations are
beneficial), the proportion of beneficial mutations predicted
by the normal approximation adopted in the present work

is erfc
ffiffiffiffiffiffiffiffi
n=2

p� �
=2� expð�n=2Þ=

ffiffiffiffiffiffiffiffi
2pn
p

and this is 510�5 for

nX20, indicating that there are some, but really rather few
beneficial mutations predicted. In the less extreme case
r ¼ kzk=2, we obtain a proportion of beneficial mutations,
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following from the normal approximation for Q, that
differs from the exact result (of approximately 0:1372) by
less than 4%, when nX20.

Going beyond the original formulation of Fisher’s
geometrical model, we find the distribution of Q that
besides incorporating non-spherically symmetric fitness
functions (Waxman and Welch, 2005) also incorporates
the wide class of mutation distributions that are not
spherically symmetric—as outlined in Eq. (1). This
involves, however, an extra level of averaging compared
with the results of Waxman and Welch (2005) because here
all mutations, without restriction, contribute to the
distribution of Q. As a consequence of this, the probability
density of Q, which we write as cðqÞ, takes the approximate
form of an average of a Gaussian distribution (see
Appendix B for details)

cðqÞ ¼
Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pvðRÞ

s
exp �

ðq� mðRÞÞ2

2vðRÞ

� �
F ðRÞdR. (6)

Here F ðRÞ is a non-negative function associated with the
distribution of mutations, i.e. associated with the function
f ðrÞ of Eq. (1) and is arbitrary, apart from two conditions:Z 1
0

F ðRÞdR ¼ 1, (7)

1

n

Z 1
0

R2F ðRÞdR ¼ 1. (8)

The first of these two conditions, Eq. (7), ensures normal-
ization of f ðrÞ while the second, Eq. (8), is a ‘‘scaling’’
requirement that ensures C coincides precisely with the
variance–covariance matrix of mutational changes on
different traits. If, for example, the distribution of mutant
effects is the multivariate Gaussian f ðrÞ / expð�ðr�
bÞTC�1ðr� bÞ=2Þ then F ðRÞ / Rn�1 expð�R2=2Þ. If we wish
to specialize to spherically symmetric mutations with fixed
magnitude r (cf. Fisher, 1930), then we need to take F ðRÞ ¼

dðR�
ffiffiffi
n
p
Þ and C ¼ r2I=n, where dð�Þ denotes a Dirac delta

function and I is the n by n identity matrix. Other forms of
F ðRÞ are, of course, possible. Indeed, if eF ðrÞ is any non-
negative function satisfying

R1
0
eF ðRÞdR ¼ a andR1

0 R2 eF ðRÞdR ¼ b, then F ðRÞ ¼ l eF ðlRÞ=a with l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðnaÞ

p
satisfies Eqs. (7) and (8) and hence is an

acceptable function with which to characterize mutations.
The quantities mðRÞ and vðRÞ appearing in Eq. (6) are

given by

mðRÞ ¼ � 2zTSbþ bTSbþ
R2

n
TrðCSÞ

� �
, (9)

vðRÞ ¼
4R2

n
ðzþ bÞTSCSðzþ bÞ

þ
2R4

nðnþ 2Þ
TrðCSCSÞ �

½TrðCSÞ�2

n

� �
. ð10Þ
For the class of mutation distributions considered here,
there is no guarantee that the R2 term in Eq. (10) is larger
than the R4 term (cf. Waxman and Welch, 2005).
With the results of Eqs. (6), (9) and (10), we can provide

results for any quantity that involves an average over
selection coefficients of new mutations. For example, the
fraction of all mutations that are beneficial, Pben, is simply
the probability that Q40, i.e. the area under cðqÞ where
q40, and can be written as Pben ¼

R1
0 cðqÞdq. Similarly,

the fraction of all mutations that are both beneficial and fix
in the population, Pfix (cf. Kimura, 1983) is Pfix ¼R1
0 Pðeq � 1ÞcðqÞdq where PðsÞ is the fixation probability
of mutations with selection coefficient s. As a last example,
the rate of change of log fitness in a single-mutant adaptive
walk, which figures prominently in the ‘‘cost of complex-
ity’’ (Orr, 1998), can be written as the expectation of lnð1þ
sÞPðsÞ (see Eq. (2) of Welch and Waxman, 2003). The
expectation for the rate of change of log fitness can again
be written in terms of cðqÞ as E½D lnw� ¼

R1
�1

qPðeq � 1Þ
cðqÞdq. With the introduction of

rðRÞ ¼ �mðRÞ=
ffiffiffiffiffiffiffiffiffi
vðRÞ

p
(11)

we obtain, using Eq. (6), and the substitution t ¼

ðq� mðRÞÞ=
ffiffiffiffiffiffiffiffiffi
vðRÞ

p
,

Pben ’

Z 1
0

Z 1
rðRÞ

expð�t2=2Þffiffiffiffiffiffi
2p
p dt

� �
F ðRÞdR,

Pfix ’

Z 1
0

Z 1
rðRÞ

Pðe
ffiffiffiffiffiffiffi
vðRÞ
p

ðt�rðRÞÞ � 1Þ

�
�
expð�t2=2Þffiffiffiffiffiffi

2p
p dt

�
F ðRÞdR,

E½D lnw� ’

Z 1
0

ffiffiffiffiffiffiffiffiffi
vðRÞ

p Z 1
rðRÞ
ðt� rðRÞÞPðe

ffiffiffiffiffiffiffi
vðRÞ
p

ðt�rðRÞÞ � 1Þ

�
�
expð�t2=2Þffiffiffiffiffiffi

2p
p dt

�
F ðRÞdR.

Simpler results emerge in the last two results if the
important q contributing to the integral are 51 in which
case we can make the additional approximations
Pðeq � 1Þ ’ PðqÞ ’ 2q.

3.1. Additional approximation

The Gaussian approximation of Eq. (6), supplemented
by Eqs. (9) and (10), indicates a somewhat complicated
result for the distribution of Q. To obtain significantly
simpler, and more readily interpretable results, we shall
make some additional approximations, beyond large n,
that are based on additional plausible assumptions.
We note that the functions mðRÞ and vðRÞ appearing in

Eqs. (9) and (10) are not rapidly changing functions of R.
Additionally, the scaling relation of Eq. (8) indicates that
the mean value of R2 equals n:

R1
0 R2F ðRÞdR ¼ n. This

makes it plausible that the typical value of R is close to
ffiffiffi
n
p

.
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In particular, if for all positive k, the mean value Rk is close
to nk=2 in the senseZ 1
0

RkF ðRÞdR ¼ nk=2 � ð1þOðn�1ÞÞ, (12)

then this implies, amongst other things, that the variance of
R is Oðn0Þ, which is much smaller than the mean value of R,
which is Oðn1=2Þ. It may be verified that the multivariate
Gaussian form of f ðrÞ considered previously, which
corresponds to F ðRÞ / Rn�1 expð�R2=2Þ, yields

R1
0 RkF

ðRÞdR ¼ 2k=2Gððnþ kÞ=2Þ=Gðn=2Þ, where Gð�Þ is Euler’s
gamma function (Abramowitz and Stegun, 1970) and this
last result has precisely the property of Eq. (12) when nb1.
Thus the set of functions satisfying Eq. (12) includes
reasonable forms for F ð�Þ.

We shall proceed, assuming Eq. (12) applies, and make
the additional approximations of (i) neglecting deviations
of all powers of R from their mean value (by replacing any
power of R by its expected value) and (ii) discarding terms
of relative order n�1. For example, the term R4=ðnðnþ 2ÞÞ,
which appears in vðRÞ, is replaced by its expected valueR1
0

R4F ðRÞdR=ðnðnþ 2ÞÞ ¼ n2 � ð1þOðn�1ÞÞ=ðnðnþ 2ÞÞ.
This simplifies to 1þOðn�1Þ and is then approximated by
unity. This approximation scheme leads to Eq. (6) reducing
to the simple, explicitly normal form

cðqÞ ’

ffiffiffiffiffiffiffiffi
1

2pv

r
exp �

ðq� mÞ2

2v

� �
, (13)

where

m ¼ �ð2zTSbþ bTSbþ TrðCSÞÞ, (14)
-2 0 2
0

1500

q × 103

ψ
(q

)

Fig. 4. In this figure, we plot the approximation of cðqÞ given in Eq. (13)

against q (solid curve). In the same figure a histogram is plotted that

illustrates the results of numerical simulation. For n ¼ 10 characters, the

matrices C and S and the vectors z and b were independently generated at

random and for the figure presented, kzk=r ’ 2. Holding C, S, z and b

fixed, we generated 105 different mutational changes and hence 105

different values of Q. The value of m following from Eq. (14) is �4:6579�
10�4 while the mean value of Q resulting from the simulations is

�4:6577� 10�4. The value of v following from Eq. (15) is 8:8443� 10�8

while the variance of Q resulting from the simulations is 8:8850� 10�8.
v ¼ 4ðzþ bÞTSCSðzþ bÞ þ 2 TrðCSCSÞ �
½TrðCSÞ�2

n

� �
.

(15)

An example of the effectiveness of this approximation for
the distribution cðqÞ is given in Fig. 4.
The same approximation leads (with the substitution

t ¼ ðq� mÞ=
ffiffiffi
v
p

) to

Pben ’

Z 1
r

expð�t2=2Þffiffiffiffiffiffi
2p
p dt, (16)

Pfix ’

Z 1
r

Pðe
ffiffi
v
p
ðt�rÞ � 1Þ

expð�t2=2Þffiffiffiffiffiffi
2p
p dt, (17)

E½D lnw� ’
ffiffiffi
v
p
Z 1
r
ðt� rÞPðe

ffiffi
v
p
ðt�rÞ � 1Þ

�
expð�t2=2Þffiffiffiffiffiffi

2p
p dt, ð18Þ

where r is given by

r ¼ �m=
ffiffiffi
v
p

. (19)

We can interpret the value of r as a dimensionless measure
of the typical size of a mutation that naturally emerges
from the model under consideration (cf. Fisher, 1930; Orr,
1998), but there is no guarantee that it is a positive quantity
(see later).

3.2. Compatible mutation and selection

The expressions for m, v and r above can be thought of as
consisting of geometrical invariants formed from z, b, S
and C that encapsulate key aspects of the geometry of the
problem. These invariant quantities are unchanged by
replacements which represent a rotation of coordinate axes.
Such replacements can be written as z! z� ¼ Oz,
b! b� ¼ Ob, S! S� ¼ OSOT and C! C� ¼ OCOT

where O is a real n� n orthogonal matrix (which has the
property OT

¼ O�1).
A particularly simple case occurs when mutation and

selection are compatible in the sense that a choice for the
orthogonal matrix O can be found where the above forms
for S� and C� are both diagonal matrices (i.e. both have
vanishing elements off the main diagonal). Generally, this
is possible only when SC ¼ CS (Strang, 1988). Assuming
this condition holds, and that the diagonal elements of S�

and C� are si and m2
i , respectively, for i ¼ 1; 2; . . . ; n, it

then follows that the fitness function of Eq. (3) takes the
form wðzÞ ¼ expð�n�1

Pn
i¼1 siz

�2
i Þ. The distribution of

mutant effects is a function only of A (Eq. (1)), and setting
r� ¼ Or, we haveA ¼

Pn
i¼1 m�2i ðr

�
i � b�i Þ

2.
Since the relation between z and z� means we can write

z�i ¼ Oi1z1 þOi2z2 þ � � � the interpretation we can give to
z�i is as a set of ‘‘composite’’ traits that independently affect
fitness and are linear combinations of the original traits.
For the special case of compatible mutation and selection,
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the quantities m and v take the forms

m ¼ �
Xn

i¼1

sið2b�i z�i þ b�2i þm2
i Þ,

v ¼
Xn

i¼1

4s2i m2
i ðz
�
i þ b�i Þ

2
þ 2 sim

2
i �

1

n

Xn

j¼1

sjm
2
j

 !2
24 35

and r ¼ �m=
ffiffiffi
v
p

. From these results we can infer that r
need not be positive when mutation is biased (ba0). For
example, in the special case where z� ¼ �b�, the numerator
of r, i.e. �m, is

Pn
i¼1 siðm

2
i � b�2i Þ and this will be

guaranteed negative if b�2i 4m2
i for all i.

4. Discussion

In this work we have presented further theoretical
developments of Fisher’s geometrical model of evolution-
ary adaptation. In particular, we have extended Fisher’s
model to incorporate a distribution of mutant effects that
includes (i) correlations between mutational effects on
different traits, (ii) mutational biases on different traits and
(iii) a class of distributions of mutant effects that have the
property that surfaces of constant probability density are
ellipsoids. This includes a multivariate Gaussian as a
special case, but covers more general distributions.

The above was made in the context of fitness functions
that were not spherically symmetric.

Making additional assumptions about moments of the
distribution of mutant effects and exploiting the large
number of traits, n, allowed us to obtain a simple Gaussian
form for the distribution of the random variable
Q � lnð1þ sÞ, where s is the selection coefficient of a new
mutation. Simulations based on a multivariate Gaussian
form for the distribution of mutant effects suggest a very
reasonable accuracy of the approximation even for values
of n as small as n ¼ 10 (see Fig. 4).

Out of the analysis, the quantity r ¼ �m=
ffiffiffi
v
p

naturally
arose (where m and v are given in Eqs. (14) and (15)). Such
a ratio has, for mutations that are spherically symmetric,
been interpreted as a dimensionless measure of size of a
mutation (Waxman and Welch, 2005). In the presence of
mutational bias, the defect with this interpretation was that
the quantity r may be negative. Exact calculations (not
presented) indicate that negative r can arise simply from
mutational bias ðba0Þ, in the absence of correlations
between mutational effects on different traits. A negative
value of r has very significant implications, since, e.g. by
Eq. (16), this implies that the proportion of beneficial
mutations can be 40:5 if it occurs; this follows since we
can write Eq. (16) as Pben ¼

1
2
erfcðr=

ffiffiffi
2
p
Þ where erfcð�Þ is

the complementary error function (Abramowitz and Ste-
gun, 1970) and 1

2
erfcðr=

ffiffiffi
2
p
Þ40:5 for ro0. Thus under

some circumstances mutational bias may not be a trivial
aspect of the problem.

The analysis also leads to explicit result for the
distribution of Q that involved a number of different
geometrically invariant quantities, indicating the way the
differently ‘‘orientated’’ matrices representing selection ðSÞ
and mutation ðCÞ and the various vectors in the problem
describing phenotype and mutational bias (z and b)
combine together. It is one of the jobs of theory to focus
attention on the important quantities underlying a model,
and without the detailed calculations presented here, it
would be very hard to predict the combinations of
geometrically invariant quantities that are actually present
in the final results.
Overall, we view the results obtained here as a step

towards a more complete theory of evolutionary adapta-
tion, based on Fisher’s geometrical model. Given that
Fisher’s model has begun to be applied in a variety of
contexts of interest to evolutionary biologists (Orr, 1998,
1999, 2000; Hartl and Taubes, 1996, 1998, Burch and
Chao, 1999; Peck et al., 1997; Poon and Otto, 2000;
Barton, 2001; Welch and Waxman, 2003; Rice, 1990;
Whitlock et al., 2003; Waxman and Welch, 2005), it would
be interesting to investigate the extent to which empirical
data can be used to determine or constrain the values of the
quantities appearing in, e.g., Eqs. (15) and (16).
After submission of the original version of this paper, I

became aware of some very recent work that has taken
some interesting steps in this direction. In this work, which
addressed the implications of general trends in the
distribution of fitness effects, an unbiased Gaussian
distribution of mutant effects was adopted. Furthermore,
mathematical approximations were made, including a key
one of averaging over the various matrices, assuming they
were random. One key biological assumption was also
made, that gene number of an organism has an appreciable
positive correlation with the number of quantitative traits,
n (Martin and Lenormand, submitted for publication).
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Appendix A

In this work we have assumed that the distribution of
mutant effects, f ðrÞ, depends on r in only a specific
combination A ¼ ðr� bÞTC�1ðr� bÞ, with C a positive
definite matrix. In this appendix, we establish that when
only a single requirement on the A dependence of f ðrÞ is
made (beyond that of normalization), the matrix C is the
variance–covariance matrix of mutational changes.
To proceed, we introduce a non-negative function F ðRÞ

that satisfies just two conditions:Z 1
0

F ðRÞdR ¼ 1, (A.1)
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1

n

Z 1
0

R2F ðRÞdR ¼ 1, (A.2)

but is otherwise arbitrary. With hindsight, we write the
distribution of mutant effects in terms of the somewhat
arbitrary function F ð�Þ as

f ðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DetðCÞ
p F ð

ffiffiffiffi
A
p
Þ

NnAðn�1Þ=2
, (A.3)

where Det ð. . .Þ denotes the determinant of a matrix, Nn ¼

2pn=2=Gðn=2Þ is the surface area of a unit radius sphere in n

dimensions and Gð�Þ denotes Euler’s Gamma function
(Abramowitz and Stegun, 1970).

With all integrals with unspecified limits covering the
full, �1 to 1, range of all integration variables, normal-
ization of f ðrÞ, i.e.

R
f ðrÞdnr ¼ 1, automatically follows

from Eq. (A.1) when the following change of variables
from r to R is made: R ¼ C�1=2ðr� bÞ. The same change
of variables in

R
rf ðrÞdnr yields a mean mutational

change of b.
The variance–covariance matrix can then be written asR
ðr� bÞðr� bÞTf ðrÞdnr and with the same change of vari-

ables becomes C1=2
ð
R
RRTðF ðkRkÞ=NnkRk

n�1ÞdnRÞC1=2.
By symmetry, the bracketed quantity has the value I� k
where I is the n� n identity matrix and k equals
n�1

R 1
0 R2F ðRÞdR, which equals unity by Eq. (A.2). Hence,

when F ð�Þ is subject to Eq. (A.2), the variance–covariance
matrix is C1=2

� I� C1=2
� C. The imposition of Eq. (A.2)

on F ð�Þ is thus sufficient to give C the unique identification
as the variance–covariance matrix of mutational changes.
Appendix B

In this appendix we present arguments for probability
density of Q, namely cðqÞ, having the approximate
weighted Gaussian form given in Eq. (6).

For the purposes of this appendix, we shall initially write
the distribution of mutant effects as Gððr� bÞTC�1ðr� bÞÞ

for some non-negative function Gð�Þ that leads to an f ðrÞ

that is normalized:
R

f ðrÞdnr ¼ 1.
Using the fitness function of Eq. (3), the quantity Q of

Eq. (5) takes the form Q ¼ �2zTSr� rTSr. The probability
density of Q is given by cðqÞ ¼ E½dðq�QÞ� where dð�Þ
denotes a Dirac delta function and the expectation E½. . .� is
taken over all mutations, i.e.

cðqÞ ¼
Z

dðqþ 2zTSrþ rTSrÞGððr� bÞTC�1ðr� bÞÞdnr.

We simplify this result by expressing it in terms of a
linearly transformed mutational change, R, defined by
R ¼ C�1=2ðr� bÞ. This leads to

cðqÞ ¼
Z

dðqþ Dþ aTRþ RTMRÞGðkRk2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðCÞ

p
dnR,

(B.1)
where Detð. . .Þ denotes the determinant of a matrix and

D ¼ 2zTSbþ bTSbþ
kRk2

n
TrðC1=2SC1=2

Þ, (B.2)

a ¼ 2C1=2Sðzþ bÞ, (B.3)

M ¼ C1=2SC1=2
�

I

n
TrðC1=2SC1=2

Þ. (B.4)

The integral in Eq. (B.1) can be written as

cðqÞ ¼
Z 1
0

fðqÞF ðRÞdR, (B.5)

where

fðqÞ ¼ hdðqþ Dþ aTRþ RTMRÞi, (B.6)

and the angular bracket, h. . .i, denotes isotropic averaging
over all directions of R with its magnitude fixed at R and
the function F ðRÞ / Rn�1GðR2Þ coincides with the function
F ðRÞ of Appendix A. In particular, it is defined so thatR1
0 F ðRÞdR ¼ 1.
We shall concentrate, here, on the function fðqÞ and

establish an approximate Gaussian dependence upon q.
Since we shall go further than the work of Waxman and
Welch (2005), we give independent and slightly extended
arguments for the reason for this dependence.
We note that fðqÞ is the probability density for the

random variable

Y ¼ �ðDþ aTRþ RTMRÞ, (B.7)

where the direction of R is random, but its magnitude is
fixed at R. We can write Y ¼ �D�

Pn
i¼1 aiRi �

Pn
i;j¼1

MijRiRj and as such, it is a sum of random variables which
are not all independent, since

Pn
i¼1 R2

i has the fixed value of
R2. If, despite this non-independence a central limit sort of
behaviour is operating, so that the distribution of Y is near
normal, then

hdðq� Y Þi ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pvðRÞ

s
exp �

ðq� mðRÞÞ2

2vðRÞ

� �
, (B.8)

where mðRÞ and vðRÞ are the mean and the variance of Y

and are obtained by averaging over all directions of R

when kRk is held fixed at R.
We use results for spherical averages, such as E½Ri� ¼ 0

and E½RiRj� ¼ R2dij=n, etc., where dij is a Kronecker
delta that equals 1 when i ¼ j and is zero otherwise, and
obtain

mðRÞ ¼ hY i ¼ �D ¼ � 2zTSbþ bTSbþ
R2

n
TrðCSÞ

� �
.
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Similarly,

vðRÞ ¼ hY 2i � hY i2 ¼ hðaTRÞ2i þ hðRTMRÞ2i

¼
R2

n
aTaþ

2R4

nðnþ 2Þ
TrðM2Þ

¼
4R2

n
ðzþ bÞTSCSðzþ bÞ

þ
2R4

nðnþ 2Þ
TrðCSCSÞ �

½TrðCSÞ�2

n

� �
.

Defining mj ¼ hðY � mðRÞÞji, we note that approximate
normality also implies m23=½vðRÞ�

3
51 and m4=½vðRÞ�

2 � 351,
and these inequalities should hold for a range of R. Exact
analytical expressions for the ratios m23=½vðRÞ�

3 and
m4=½vðRÞ�

2 (results not shown) are expressible in terms of
a single vector, a ¼ 2C1=2Sðzþ bÞ, and a single matrix,
M ¼ C1=2SC1=2

� ðI=nÞTrðC1=2SC1=2
Þ. These expressions

allow investigation of m23=½vðRÞ�
3 and m4=½vðRÞ�

2 � 3,and in
the absence of detailed information about S and C, we
have carried out this investigation using randomly gener-
ated values of a and M. We took elements of a to be
independent and identically distributed standard normal
random variables (i.e. with mean zero and variance unity).
Furthermore, to determine M we set C1=2SC1=2

¼ ATA

where A is an n� n matrix whose elements are also
independent and identically distributed standard normal
random variables. Writing C1=2SC1=2 in terms of the matrix
A, in the form shown, is consistent with the positive
definiteness of C1=2SC1=2. We find, for n ¼ 50 (100) and
R in the range ð0;

ffiffiffi
n
p
Þ, that typically m23=½vðRÞ�

3 and
m4=½vðRÞ�

2 � 3 are t0:2(0:1). It is thus plausible that large
enough n leads to an approximately normal distribution of
q, Eq. (B.6), and hence to Eq. (6) of the main body of this
paper.
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