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In this paper we investigate some of the mathematical properties of meiotic recombination. Working
within the framework of a genetic model with n loci, where ˛ alleles are possible at each locus, we
find that the proportion of all possible diploid parental genotypes that can produce a particular haploid
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gamete is exp[−n log(˛2/[2˛ − 1])]. We show that this proportion connects recombination with a fractal
geometry of dimension log(2˛ − 1)/ log(˛). The fractal dimension of a geometric object manifests itself
when it is measured at increasingly smaller length scales. Decreasing the length scale of a geometric
object is found to be directly analogous, in a genetics problem, to specifying a multilocus haplotype at a
larger number of loci, and it is here that the fractal dimension reveals itself.

© 2009 Elsevier Ireland Ltd. All rights reserved.

ractals

. Introduction

The process of meiotic recombination occurs during the pro-
uction of gametes by diploid organisms. It generally results in
ew combinations of genes arising in gametes. Meiotic recombi-
ation allows genes to experience new genetic backgrounds and
ives sexual populations the ability to respond to changing envi-
onments at a significantly faster rate, and with a lower fitness cost,
han asexual populations (Crow, 1994; Waxman and Peck, 1999).
n analogue of meiotic recombination is also a key aspect of some
volutionarily inspired numerical optimisation procedures, namely
enetic algorithms, where novel solutions to computationally com-
lex problems can be rapidly located because of the shuffling of the
genes” in parental bit strings (Goldberg, 1989).

In the present work we investigate some of the mathematical
roperties of recombination that occur within one generation. We
hall omit mutation, on the assumption it occurs at a sufficiently
ow rate that over a single generation it may be neglected.

To carry out this investigation, we could focus on informative
ites within the genome, such as a particular set of SNPs (sin-
le nucleotide polymorphisms) and consider recombination events
etween such sites. Alternatively, we could focus on recombina-

ion between genes. For definiteness, shall couch the analysis we
resent in the language of genes and this gives us the freedom to
evote some space to cases where an arbitrary number of alle-

es exist at a locus, rather than being limited to the maximum

∗ Corresponding author. Tel.: +44 01273 678559.
E-mail address: D.Waxman@sussex.ac.uk (D. Waxman).

303-2647/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2009.08.006
number of 4—for a SNP. For simplicity, we shall neglect intragenic
recombination, so the haploid products of meiosis are chromo-
somes consisting solely of parental genes. The neglect of intragenic
recombination corresponds to omission of a process of relatively
low probability, while for SNPs there is no notion of intragenic
recombination.

We first address the following rather general question.

“What proportion of all possible parental genotypes can give
rise to a specific gamete-type?”

Specifically, this question is concerned with the set of genotypes,
out of all possible parental genotypes, that have a chance of produc-
ing a particular gamete-type. The question does not enquire into
the value of the probability with which a specific gamete-type is
produced by parents of a particular genotype. As a consequence,
the answer does not depend on details of recombination such as
the linkage map, providing crossover can occur between all loci
with a non-zero probability—as we shall henceforth assume. The
question enquires into a fundamental aspect of the nature of the
transmission of genetic information from parents to gametes, and
the degree to which the specification of a particular type of gamete
constrains the genotypes of parents.

2. Answer

The haploid products of meiosis are gametes. Their haploid

genotype (haplotype) specifies the set of alleles present in a
gamete. We consider gametes with n loci, with ˛ alleles possible
at each locus. We can characterise haplotypes by a list, such as
x = (x1, x2, . . . , xn), where the allele at locus i is represented by the
variable xi which can take the values 0, 1, . . . , ˛ − 1. Given n loci

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:D.Waxman@sussex.ac.uk
dx.doi.org/10.1016/j.biosystems.2009.08.006
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D. Waxman, N. Stoletzki

hat all have ˛ alleles, there are a total of ˛n different x’s, i.e., ˛n

ifferent haplotypes.
Consider a diploid individual whose haplotypes of maternal and

aternal origin are x and y, respectively. We write the ordered
enotype of this individual as (x, y). Let f (n, ˛) denote the pro-
ortion of all ordered parental genotypes that can give rise to a
articular gamete-type. It may be verified that f (n, ˛) is indepen-
ent of the particular gamete-type selected. We calculate f (n, ˛) by
llowing x and y to independently range over all ˛n possible hap-
otypes, so (x, y) covers all possible ordered genotypes. We note
hat:

(i) There are a total of ˛n × ˛n = ˛2n different ordered parental
genotypes.

ii) In the absence of mutation, it follows, from a general counting
argument (see Appendix A), that there are a total of (2˛ − 1)n

ordered parental genotypes that have a finite probability of
producing a single gamete-type.

It directly follows from (i) and (ii) that the proportion of all
rdered parental genotypes that can give rise to a particular
amete-type is

(n, ˛) =
(

2˛ − 1
˛2

)n

= exp

[
−n log

(
˛2

2˛ − 1

)]
. (1)

he function f (n, ˛) indicates the way the proportion of parental
enotypes (that can produce a given gamete-type) scales with the
umber of loci, n. As the number of loci increases, the propor-
ion of all such parental genotypes decreases exponentially with
. For example, if there are just 2 alleles at each locus (˛ = 2), then
he relevant proportion of parental genotypes is f (n, 2) = (3/4)n �
xp(−0.28768n).

The answer to the question posed in Section 1 also con-
ains information about the number of gamete-types that different
arental genotypes can produce. It is evident that there is variation

n this number, since the two extreme cases, where parental geno-
ypes that are either homozygotic at all loci or heterozygotic at all
oci, lead to very different numbers of gamete-types that can be pro-
uced (1 or 2n, respectively). If we consider only the mean number
f different types of gamete that a parental genotype can produce,
hich we write as v(n, ˛), then there is a very simple result for this

uantity. Since the proportion of all ordered parental genotypes
hat can give rise to a particular gamete-type, f (n, ˛), also equals the
robability that a randomly picked parental genotype can produce
gamete of a specific type, summing f (n, ˛) over all ˛n differ-

nt gamete-types yields the mean number of gamete-types that a
ingle parental genotype can produce, namely v(n, ˛) = f (n, ˛)˛n,
.e.,

(n, ˛) =
(

2˛ − 1
˛

)n

= 2n
(

1 − 1
2˛

)n

. (2)

he final form for v(n, ˛) in Eq. (2) indicates the degree to which
(n, ˛) is suppressed below the value 2n, which is the number of
amete-types that a parental genotype can produce, when het-
rozygotic at all loci.
More generally, we can calculate the probability that a randomly
icked parental genotype is heterozygotic at just m loci, and hence
an produce 2m different gamete-types. From this probability dis-
ribution it is possible to calculate statistics, other than just the

ean number, that are associated with the number of gamete-
ypes that different parental genotypes can produce. For a randomly
icked parental genotype we find there is a binomially distributed
umber of heterozygotic loci (see Appendix B):
ystems 99 (2010) 42–49 43

Prob(m parental loci are heterozygotic)

=
(

n
m

)
(1 − ˛−1)

m
(˛−1)

n−m
(3)

where

(
n
m

)
denotes a binomial coefficient. This binomial dis-

tribution has parameters n and (1 − ˛−1) and hence the expected
number of heterozygotic loci is n(1 − ˛−1). It may be directly ver-
ified from Eq. (3) that the mean value of 2m does coincide with
the mean number of gamete-types, v(n, ˛), given in Eq. (2). Fur-
thermore, the variance in the number of gamete-types produced is

4n[(1 − 3
4˛ )

n − (1 − 1
2˛ )

2n
].

Beyond the results of Eqs. (1)–(3), we note that there is
additional mathematical structure associated with meiosis that
underlies the question in Section 1. We now establish this addi-
tional structure.

3. Additional Mathematical Structure

The simplest way to see the additional structure is to produce
a plot that indicates whether a given type of gamete can or cannot
be produced by a particular parent.

Previously, we have characterised each haplotype by a list x =
(x1, x2, . . . , xn) where xi indicates the allele at locus i (and xi is an
integer in the range 0 to ˛ − 1). By associating a unique numerical
label with each haplotype, we are able to place the haplotypes in a
definite order. One such ordering scheme is obtained by viewing x
as the n digit representation, in base ˛, of an integer in the range 0
to ˛n − 1. The resulting numerical label, also an integer, is directly
determined from the alleles present at all n loci. As an explicit exam-
ple, consider the case of n = 4 loci where there are ˛ = 2 possible
alleles at each locus. Because ˛ = 2, a particular haplotype, such as
(1, 1, 0, 1), is viewed as the binary representation of an “ordering
label,” here 13 (since 13 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20) and
this number can serve as the unique label of the haplotype. For gen-
eral ˛, the numerical label associated with haplotype x is written
X. It is given by X =∑n

m=1˛n−mxm and runs from 0 to ˛n − 1.
Further aspects to the problem can then be expressed in terms

of a new quantity AX,Y (G) where X, Y are the numerical labels of the
parental haplotypes making up the ordered genotype (x, y) and G
is the numerical label of the gamete-type, g. We require AX,Y (G)
to take the value 1 when a gamete of type g can be produced by
a parent with ordered genotype (x, y), and to take the value 0 if a
gamete of type g cannot be produced by such a parent. We give one
possible mathematical representation of AX,Y (G) in Appendix C.

For a particular G, we view AX,Y (G) as the X, Y element of a matrix,
A(G), of size ˛n × ˛n, which is symmetric: AX,Y (G) = AY,X (G). When
we wish to emphasise that the number of loci specifying a gamete
haplotype is n, we will write A(G) as A(G; n).

Those elements of the matrix A(G) which are non-zero represent
ordered parental genotypes that have a finite probability of giving
rise to a gamete-type with numerical label G.

To illustrate the form of A(G), we consider the case of 2 loci with
2 alleles at each locus (n = 2 and ˛ = 2). There are then 4 possi-
ble haplotypes, which we write as x = (0, 0), (0, 1), (1, 0), (1, 1).
These have the numerical labels X = 0, 1, 2 and 3 associated with
them (i.e., the 4 x’s are the binary representation of these num-
bers). Since there are 4 different haplotypes, there are 4 × 4 = 16
different ordered haplotype pairs i.e., 16 ordered parental geno-

types. For the particular gamete-type, with numerical label G = 0
(corresponding to x = (0, 0)), 9 of the 16 parental genotypes can
give rise to gametes of this type, either by direct transmission of
haplotypes or by recombination. However, those genotypes with
labels (X, Y) = (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) cannot
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4 D. Waxman, N. Stoletzki

roduce gametes with two 0 alleles and hence have zero probabil-
ty of producing G = 0 type gametes. As a consequence, the matrix
(0) has zeros at the elements corresponding to these genotypes
nd is given by

A0,3(0) A1,3(0) A2,3(0) A3,3(0)
A0,2(0) A1,2(0) A2,2(0) A3,2(0)
A0,1(0) A1,1(0) A2,1(0) A3,1(0)
A0,0(0) A1,0(0) A2,0(0) A3,0(0)

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎞
⎟⎠ . (4)

we plot X and Y values along Cartesian axes).
An interesting pattern becomes apparent when we produce a

lot of A(G) that is equivalent to Eq. (4), for an appreciable value of
n. We plot dots only at the coordinate pairs (X/˛n, Y/˛n) where the
atrix elements AX,Y (G) are non-zero. Each such dot represents a
arental genotype (composed of haplotypes with numerical labels
and Y), that has a finite probability of producing a gamete of type
. In Fig. 1 we give such plots for several different cases of interest.

The nested set of triangular “holes” that is present in Fig. 1a and b
r the related structure in (c), are highly suggestive of self-similar

ig. 1. The quantity AX,Y (G) takes the value 0 or 1, depending whether an individual,
robability of producing gametes of type G. For n loci, with ˛ alleles at each locus, the l
oordinate values (X/˛n, Y/˛n) where AX,Y (G) has the value of unity. Each such dot cor
amete-types with numerical label G. In both (a) and (b) we have taken n = 10 and ˛ = 2.
s (2˛ − 1)n/˛2n = exp(−n log[˛2/(2˛ − 1)]) and for (a) and (b) this fraction is 59, 049/1,

hile in (b) we have chosen G = 333. The differences between (a) and (b) illustrate that th
nd G = 0. It is important to ensure that the structure present e.g., in (a) possess a degre
re neglected. To establish this, we have produced (d), where all parameters are identical
an, under free recombination, be produced with probability larger than 1%. The structur
stems 99 (2010) 42–49

fractal structures (Mandelbrot, 1982). Indeed, when the number
of loci, n, tends to infinity, the number of elements of A(G) tends
to infinity and the quantities X/˛n and Y/˛n become continuous
variables running from 0 to 1. Fig. 1a–c then becomes fractals on
the unit square and for general ˛ the fractal dimension is

D(˛) = log(2˛ − 1)
log(˛)

. (5)

For Fig. 1a, where ˛ = 2, the fractal dimension is log(3)/ log(2) �
1.5849. This result may be verified by determining how the filled
area of the square of Fig. 1a changes, when first measured at a given
linear spatial scale, and then measured-again on a smaller linear
spatial scale. Thus to determine the fractal dimension associated
with Fig. 1a, we first pave the figure with 45◦, 45◦, 90◦ triangles, of
a given linear scale, such as the length of the two shorter sides of

the triangle. As a concrete example we take this length to be 1/2 and
the paving of Fig. 1a with triangles of this linear scale is illustrated
in Fig. 2a.

Measuring the filled area of Fig. 1a on this linear spatial scale
means:

composed of haplotypes with numerical labels X and Y, has a zero or non-zero
abels X, Y and G are integers running from 0 to ˛n − 1. We plot dots at the scaled
responds to a parental genotype that has a non-zero probability of giving rise to
The fraction of all parental genotypes that can produce any particular gamete-type
048, 576 � 5.6 × 10−2. In (a) the specified gamete-type has numerical label G = 0,
e pattern obtained depends on the target gamete. For (c) we have used n = 6, ˛ = 4
e of robustness, and hence persists when recombination events of low probability
to those of (a), but dots are only plotted in the figure if the corresponding gametes

e produced is evidently a very similar to that of (a).
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ig. 2. In (a), the unit square, containing Fig. 1a, is paved with 45◦ , 45◦ , 90◦ triang
riangles cover any dots. The area covered by dots at the linear spatial scale of 1/2 i
hose shorter sides have length 1/4. At this linear spatial scale, a total of 9 out of 32

s thus 9/32.

(i) If a given triangle covers any dots, then the entire area of the
triangle counts toward the filled area of Fig. 1a. This is illustrated
in Fig. 2a.

ii) If a triangle covers no dots, then it makes zero contribution to
the filled area of Fig. 1a.

When we then halve the linear scale of the triangles—by taking
he length of the two shorter sides to now be 1/4, we find this halv-
ng does not produce a 4-fold increase in the number of triangles
equired to cover the filled area, but only a 3-fold increase. This
s due to the fact that the set of half-sized triangles that pave the
holes” in Fig. 1a, and cover no dots, make no contribution to the
rea. The paving of Fig. 1a with triangles whose shorter sides are of
ength 1/4 is illustrated in Fig. 2a. Thus the number of half-sized tri-
ngles that cover any dots in Fig. 2b is not a factor of 22 larger than
hose of Fig. 2a (as would follow in a normal, non-fractal, geometry)
ut rather 2D(2), where D(2) is the fractal dimension. Equating 2D(2)

o 3 leads to the result in Eq. (5) for the special case ˛ = 2.
This fractal nature is intimately related to the binomial sampling

roperty of recombination and, indeed, in a mathematical context,
he fractal nature of binomial coefficients and Pascal’s triangle has
een reported elsewhere (Wolfram, 1984), as it has the famous Sier-
inski gasket (Mandelbrot, 1982), and both of these have the fractal
imension given in Eq. (5), when ˛ = 2. It appears there are very
lose mathematical connections with the result of Fig. 1a.

In Fig. 1c, where ˛ = 4, we use an identical procedure to deter-
ine the fractal dimension. That is, we first consider the number

riangles that cover the filled area, when, e.g., their shorter sides
ave length 1/4, and then compare this with the number required
hen their shorter sides have length 1/16. This leads to a fractal
imension of log(7)/ log(4) � 1.4037.

The general result for the fractal dimension, given in Eq. (5) was
nferred from considering figures analogous to Fig. 1a, for a number
f different values of ˛. As we show below, in Section 5, a numerical
etermination of the fractal dimension fully agrees with the result

n Eq. (5).

. Ordering of Haplotypes
We note that the appearance and detailed properties of the
ractal-like structure underlying meiosis (e.g., as in Fig. 1a) depends
n the scheme used to order haplotypes. For the purposes of clas-
ification, we shall refer to the ordering scheme in Section 3, with
hose shorter sides have length 1/2. At this linear spatial scale, a total of 3 out of 8
3/8. In (b), the unit square, containing Fig. 1a, is paved with 45◦ , 45◦ , 90◦ triangles,
triangles cover any dots. The area covered by dots, at the linear spatial scale of 1/4

˛ = 2 as Scheme 1 and describe it as deterministic, for reasons that
will shortly become clear.

4.1. Ordering Scheme 2: distance + deterministic

Consider an scheme of ordering haplotypes, where the numeri-
cal label of a haplotype contains some information about its genetic
distance from a reference haplotype, but which also uses informa-
tion about the particular alleles present at each locus. We consider
such a scheme in the case of ˛ = 2 alleles per locus and let

x = (0, 0, . . . , 0) (6)

be a reference n locus haplotype. Then the n haplotypes
with a single “1” allele, which include (1, 0, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . (0, 0, 0, . . . , 1), are all collected together into a
group that is distance 1 from the reference haplotype. Next, the
n(n − 1)/2 haplotypes with two “1” alleles, such as (1, 1, 0, . . . , 0)
are all collected together into a group that is distance 2 from the
reference haplotype, etc. In general, the number of haplotypes a
distance m from the reference haplotype are given by the binomial

coefficient

(
n
m

)
. An ordering scheme that incorporates both

a measure of genetic distance and some information about the
particular allele residing at each locus, is defined by the following:

(i) Associate the label X = 0 with the reference haplotype, Eq. (6).
(ii) Associate the next n labels (i.e., X = 1, 2, . . . , n) with the hap-

lotypes a distance 1 from the reference haplotype, and place
them in the order following from interpreting each haplo-
type, such as (0, 0, . . . , 0, 1, 0), as the binary representation of
a number.

iii) Associate the next n(n − 1)/2 labels (i.e., X = n + 1, n +
2, . . . , n + n(n − 1)/2) with haplotypes a distance 2 from the
reference haplotype, again placing them in the order following
from interpreting each haplotype as the binary representation
of a number.

(iv) . . ..
In this way we arrive at a scheme of ordering haplotypes that fits
with the intuitive notion that their labels reflect, to some degree, a
real attribute of haplotypes, namely their genetic distance from a
reference haplotype. We term this a distance + deterministic scheme.
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Fig. 3. The matrix A(0), which applies for n = 10 and ˛ = 2, and has elements AX,Y (0),
is determined by using Scheme 2: a distance + deterministic scheme of ordering
haplotypes, where they are grouped together, according to their distance from a
reference haplotype, as measured in allelic changes. However, within a group of
haplotypes that are a given genetic distance from the reference haplotype, the hap-
lotypes are ordered by interpreting them as the binary representation of a number,
a
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Fig. 4. The matrix A(0), which applies for n = 10 and ˛ = 2 and has elements AX,Y (0),
is determined by using Scheme 3, a distance + random scheme of ordering, where
haplotypes are grouped together according to their distance from a reference hap-
lotype, as measured in allelic changes. However, within a group of haplotypes that
are a given genetic distance from the reference haplotype, the haplotypes are ran-

5. Numerical Investigation of the Fractal Character

The fractal dimension of a structure can be determined by inves-
tigating its “box counting dimension” (see e.g., Falconer, 1990). This

Fig. 5. The matrix A(0), with elements AX,Y (0), is obtained by assigning numeri-
cal labels in an arbitrary order to different haplotypes. This is Scheme 4, a random
scheme of ordering. For the case n = 10 and ˛ = 2, the numerical labels used in
Fig. 1a have been randomly permuted. In the figure, we have plotted dots at the

n n
s outlined in the text. In the figure, we have plotted dots at the scaled coordinate
alues X/˛n and Y/˛n where AX,Y (0) has the value of unity. There are the same num-
er of dots as in Fig. 1a and b and there are some similarities of with both Fig. 1a
nd b.

he consequences of such a scheme is plotted in Fig. 3, with the
esulting figure having some definite similarities to Fig. 1.

.2. Ordering Scheme 3: distance + random

An alternative scheme for ordering haplotypes may be con-
tructed that also contains information about the genetic distance
f a haplotype from a reference haplotype, but unlike Scheme 2,
iscards information about the alleles present at each locus. Again
e consider ˛ = 2 alleles per locus, and measure genetic distances

rom the n locus haplotype of Eq. (6). The n haplotypes with a single
1” allele are again all collected together into a group that is distance
from the reference haplotype, and similarly the n(n − 1)/2 hap-

otypes with two “1” alleles, are all collected together into a group
distance 2 from the reference haplotype, etc. An ordering scheme

hat just incorporates a measure of distance and hence contains
oth ordered and random components is defined by the following:

(i) Associate the label X = 0 with the reference haplotype, Eq. (6)
(ii) Associate the next n labels (i.e., X = 1, 2, . . . , n) with the hap-

lotypes a distance 1 from the reference haplotype, and make a
random assignment of the labels 1, 2, . . . , n to the haplotypes
within this group.

iii) Associate the next n(n − 1)/2 labels (i.e., X = n + 1, n +
2, . . . , n + n(n − 1)/2) with haplotypes a distance 2 from the
reference haplotype, again making a random assignment of the
labels with haplotypes within this group,

iv) . . ..

The resultant labelling scheme, which incorporates only genetic
istance, leads to Fig. 4. We term this a distance + random scheme.

.3. Ordering Scheme 4: random
A scheme of ordering that does not reflect any information about
enetic distance can be obtained by randomly permuting the labels
ssociated with haplotypes. Thus if the haplotypes (x, y, z, . . .)
ere, in the original binary scheme (Scheme 1), given the numer-
domly ordered, as outlined in the text. In the figure, we have plotted dots at the
scaled coordinate values X/˛n and Y/˛n where the “distance labelled” AX,Y (0) has
the value of unity. There are the same number of dots as in Fig. 1a and b. Although
some structure is visible, it lacks the connectivity or organisation of a fractal, or
fractal-like object.

ical labels (X, Y, Z, . . .) then under the random scheme proposed
here, the haplotypes (x, y, z, . . .) are given labels that are a random
permutation of the numerical labels (X, Y, Z, . . .). Fig. 5 contains an
example of one such ordering scheme, where the numerical labels
of haplotypes used in Fig. 1a have been randomly permuted. We
term this a random scheme. The resulting figure is significantly
different to Fig. 1a.
scaled coordinate values X/˛ and Y/˛ where AX,Y (0) has the value of unity. While
there are the same number of dots as in Fig. 1a, the dots plotted in this figure are not
clustered together. Indeed, the various dots in Fig. 1a lie in a connected cluster, while
in this figure the dots are approximately uniformly distributed, with an element of
the matrix being non-zero with probability f (n, ˛) = [(2˛ − 1)/˛2]n . For the figures
in question, n = 10 and ˛ = 2, hence f (n, ˛) � 0.06 in each case.
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Table 1
Connects notions associated with recombinant genetics and fractals in the plane.

Recombinant genetics Fractal in the plane

Using alleles at n loci to specify a
gamete

Using a linear scale, L, to measure a
fractal

Determining the proportion of all
parental genotypes that can produce a
given n locus gamete haplotype

Determining the area covered by a
fractal, when the fractal is measured
on a linear scale of L
D. Waxman, N. Stoletzki

s determined from the number of elementary “boxes” of side ε,
amely N(ε), that cover the fractal. If the structure has fractal prop-
rties, possibly only over a range of box sizes, then over this range
e have the relation

(ε) = ε−DBC N(1) (7)

here DBC is the “box counting” dimension. If the relation of Eq. (7)
olds for arbitrarily small ε, the structure is a fractal and the fractal
imension coincides with DBC .

In the case at hand, we consider structures that may have fractal
roperties on small length scales (small ε) but not necessarily indef-

nitely small values. In the figures of this paper, such as Fig. 1, they
ave been plotted so that the smallest length scale (i.e., the closest
eparation of adjacent dots) is ˛−n. In this case we would expect
hat if a fractal-like structure is present, then log(N(ε))/ log(1/ε)
ould approach a constant value (namely DBC ) as ε becomes small,

ut not smaller than ˛−n. We have numerically investigated the
egree to which log(N(ε))/ log(1/ε) does approach a constant as
he length, ε, is allowed to become small, and hence the extent to
hich a fractal-like structure is present. We used Matlab software

o perform this numerical investigation (Moisy, 2008).
In Fig. 6 we present a plot of the quantity

(ε) = log2N(ε) − log2N(1)
log2(1/ε)

(8)

gainst log2(ε). If the relation in Eq. (7) holds for small ε then
(ε) will approach a constant value at large negative values of

og2(ε). We observe, in Fig. 6, that schemes of ordering hap-
otypes with a so-called deterministic component (i.e., schemes
hat take into account the particular alleles present at a locus),
o lead to R(ε) approaching a constant value at large negative

og2(ε). By contrast, other schemes do not lead to R(ε) approach-

ng a constant value at large negative log2(ε). It is plausible that
nly haplotype ordering schemes with a deterministic compo-
ent will expose any fractal-like structures underlying meiotic
ecombination.

ig. 6. In this figure we present results of a numerical investigation of the “box
ounting dimension” of different haplotype labelling schemes. The box counting
imension associated with non-zero values of AX,Y (G) was determined for the four

abelling schemes considered in this work. With ε the length scale associated with an
lementary box, the quantity R(ε) of Eq. (8) was plotted against log2(ε). Only ordering
chemes 1 and 2 lead to R(ε) approaching a constant value for small length scales, i.e.,
arge negative values of log2(ε). We note that the values of R(ε) for these schemes,
t large negative log2(ε), are very close to the values of the fractal dimension D(˛)
f Eq. (5).
Determining the proportion of all
parental genotypes that can produce a
given n + 1 locus gamete haplotype

Determining the area covered by a
fractal, when the fractal is measured
on a linear scale of L/˛

6. Analogy Between Recombinant Genetics and Fractals

A fractal is a geometric object composed of an infinite number of
points. We would, apparently, have a fractal structure in e.g., Fig. 1
if there were an infinite number of points in the figure. However,
this would require an infinite number of loci, which does not hold
in our problem or, indeed, in any problem except idealised, but
useful theoretical models, such as the Fisher–Bulmer infinitesimal
model (Fisher, 1918; Bulmer, 1980). How can the connection be
made between fractal results such as Eq. (7) and a genetics problem
with a finite number of loci, n (< ∞)? We argue that the connection
arises from the scaling property given in Eq. (1).

Let us imagine that we have a population of organisms with
ntotal loci. Given the large number of loci in a gamete, it is assumed
impractical to determine the alleles at all ntotal loci. By determining
the haplotype of a gamete at a smaller number of loci, say n, which
is small compared with ntotal (n � ntotal), we have an incomplete
description, i.e., we work at a lower level of genetic resolution. In
Table 1 we show an analogy between recombinant genetics and
fractals in the plane.

To see how this analogy ties together and employs the fractal
dimension D(˛) of Eq. (5), we adopt the following line of reasoning.

1. We begin by incompletely identifying gamete haplotypes, by
specifying the alleles at just n loci (a haplotype has more than n
loci).

2. For a particular gamete-type, G, the matrix A(G) ≡ A(G; n), asso-
ciated with haplotypes specified at n loci, is of size ˛n by ˛n and
we view it as being composed of ˛n × ˛n small squares, with
each square occupied by one element of the matrix. The squares
are either filled or empty, depending whether the corresponding
element of the matrix is 1 or 0 (we term this a “filling rule”).

3. We regard the matrix A(G; n), for any n, as having a fixed area of
unity. Given the filling rule of the previous point, the proportion
of the area that is filled represents the proportion of all possi-
ble genotypes that can produce gametes of type G. Furthermore,
from this viewpoint, each element of A(G; n) takes up an area of
1/(˛n × ˛n).

4. Increasing the number of loci to specify a haplotype, by going
from n to n + 1, corresponds to using the matrix A(G; n + 1) in
place of the matrix A(G; n). The total number of elements in
the matrix A(G; n + 1), is larger than that of A(G; n) by a fac-
tor of (˛n+1 × ˛n+1)/(˛n × ˛n) = ˛2. This factor is equivalent to
decreasing the area of the square associated with any element
of the matrix A(G; n + 1), relative to that of A(G; n), by a factor
of ˛2. It is also equivalent to decreasing the length of the side of
such squares associated with A(G; n) by a factor of ˛.

5. Additionally, changing n to n + 1 also results in the number of

non-zero elements of the matrix A(G; n + 1) being larger, by a
factor of 2˛ − 1, than the number of non-zero elements of A(G; n)
(see Section 2).

6. It follows that when the number of loci specifying a haplotype is
changed from n to n + 1, the ratio of “the number of non-zero
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elements of A(G; n + 1)” to “the total number of elements of
A(G; n + 1)” differs from the corresponding ratio for A(G; n) by a
factor of (2˛ − 1)/˛2 = ˛D(˛)−2, where D(˛) is the fractal dimen-
sion given in Eq. (5). The quantity ˛D(˛)−2 is precisely the factor
by which the area of a fractal of dimension D(˛) changes when
the length scale, on which the fractal is measured, is decreased by
a factor of ˛ (i.e., when the original length scale of measurement,
say L, is decreased to the length scale L/˛).

. Lastly, the ratio of non-zero elements of A(G; n) to the total num-
ber elements of this matrix is the proportion of all parental
genotypes that can give rise to a particular gamete-type, and
has already been denoted by f (n, ˛). From point (6) it follows
that this proportion obeys the difference equation f (n + 1, ˛) =
˛D(˛)−2f (n, ˛). It may be explicitly verified that the result for
f (n, ˛) can be written f (n, ˛) = ˛(D(˛)−2)n and is a solution of this
difference equation.

We thus see how the intimate relation between the fractal
imension associated with the genetics problem when the num-
er of loci is infinite, and the proportion of n-locus genotypes that
an produce a specific gamete-type.

. Discussion

In this work, we have investigated some of the mathematical
roperties of meiotic recombination. We have determined the pro-
ortion of all parental genotypes which can give rise to a particular
amete-type. This required classifying all parental genotypes into
ne of two categories; those that are capable of giving rise to the
articular gamete-type and those that are not. Plots showing which
arents can produce a certain type of gamete reveal a fractal-like
tructure that underlies meiotic recombination (see Figs. 1 and 3).
ecombination is a well known phenomenon of extremely wide
ccurrence. This work provides a non standard (i.e., fractal) view-
oint of recombination. It is possible this different viewpoint and
he associated scaling behaviour, such as that exhibited in Eq.
1), has implications for subjects where recombination plays an
mportant role, such as evolutionary dynamics, genetics or genetic
lgorithms.

Applications of the results of the present work may be an
ntermediate stage in a calculation. In such a case, additional
nformation, such as recombination fractions, mutation rates
nd a description of a population, may be required. However
he results may also be used to directly address questions of
he “yes–no” type, i.e., questions concerned with whether a
lass of genotypes is present or absent in a population. This is
istinct from questions concerned with actual numbers or frequen-
ies.

For questions of the “yes–no” type, consider a diploid sexual
opulation, where a set of n loci are informative (i.e., variable
cross the population). If the n loci are in linkage equilibrium,
nd sufficiently polymorphic, then in a very large population,
irtually all possible n-locus genotypes will be present in the pop-
lation. If we are in possession of a particular gamete whose
-locus haplotype has been determined, then the result given in
q. (1), applies for the proportion of all distinct genotypes that
re present in the population, that could, in principle, have given
ise to this gamete. Such information restricts the parentage of
he gamete to a subclass of the full population. This informa-
ion gives the knowledge that a major fraction of all genotypes

re excluded from giving rise to the gamete and is especially
ignificant if the gamete is distinguished or significant in some
ay.

We can also consider the situation where n recognition proteins
n an egg have to be matched by proteins in a sperm, in order that
stems 99 (2010) 42–49

the sperm can penetrate the egg membrane and fertilize the egg.
If the matching mechanism restricts the genotype of the sperm to
match the genotype of the egg, at n loci, then only a fraction f (˛, n)
(Eq. (1)) of all male genotypes can provide sperm of a given type and
are “compatible” with the egg (cf. Gavrilets and Waxman, 2002), i.e.,
are capable of fertilizing it. Furthermore, increasing the number of
loci involved in the recognition mechanism by unity: n → n + 1,
results in a reduction in the fraction of “compatible” male geno-
types by a factor of (2˛ − 1)/˛2. Thus specificity of the recognition
mechanism puts constraints on the genotypes that are compatible
with a given egg and the proportion f (˛, n) may be a significant
component of fitness associated with an egg. Implications of modi-
fications to this recognition mechanism, by changing the number of
loci, or alleles possible, can be explicitly seen by the form of f (˛, n)
given in Eq. (1).

Overall, the results obtained in this work indicate a general prop-
erty of the transmission of genes in meiotic recombination, and are
independent of essentially all details of: recombination, the distri-
bution of parental genotypes in a population, and the distribution
of gamete numbers produced. The results thus give an insight into
some general properties of meiotic recombination.
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Appendix A.

In this Appendix we show that a total of (2˛ − 1)n ordered
parental genotypes have a non-zero probability of producing any
particular gamete haplotype.

To establish this result, we first note that a haplotype is deter-
mined by specifying which of the ˛ alleles are present at each of
the n loci. Suppose that at a particular locus, in a specified gamete
haplotype, the particular allele is 0 (identical results follow if 0
is replaced by any other allele, i.e., by 1, 2, . . . , ˛ − 1). The possi-
ble genotypes associated with any locus, including the particular
one of interest, can be written (x, y) where both x and y are able
to independently take the values 0, 1, 2, . . . , ˛ − 1. At the partic-
ular locus of interest, only those genotypes that contain one or
more 0 allele’s can give rise to a 0 allele in a gamete. These geno-
types are (0, 0) and also (0, a), (a, 0) with a = 1, 2, . . . , ˛ − 1. It
follows that there are 1 + 2(˛ − 1), i.e., 2˛ − 1 such genotypes. Gen-
erally, it follows that at any locus, only 2˛ − 1 of the ˛2 genotypes
contain a specific allele, and hence can produce a gamete-type
containing the specific allele at the locus in question. Accord-
ingly, the total number of ordered parental genotypes that have
a non-zero probability of producing a particular gamete-type is
(2˛ − 1)n.

Appendix B.

In this Appendix we derive the probability that a randomly
parental genotypes is ˛2n. For an ordered genotype (x, y), the
number of heterozygotic loci is M(x, y) =∑n

j=1[1 − ı(xj, yj)] where
ı(a, b) is a Kronecker delta (ı(a, b) has the value of unity when a = b
and is zero otherwise). Thus the probability of a randomly picked
parental genotype having m heterozygotic loci is
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Prob(m parental loci are heterozygotic)

= 1
˛2n

∑
x

∑
y

ı(m, M(x, y)) (9)

here the x and y sums separately cover all ˛n haplotypes.

We can write ı(m, M(x, y)) =
∫ 2�

0
d�
2� e−i�mei�M(x,y) and hence

x

∑
y

ı(m, M (x, y)) =
∫ 2�

0

d�

2�
e−i�m

(∑̨
x=0

∑̨
y=0

ei�[1−ı(x,y)]

)n

=
∫ 2�

0

d�

2�
e−i�m[˛ + (˛2 − ˛)ei�]

n

=
(

n
m

)
(˛2 − ˛)

m
˛n−m (10)

here we have used the binomial theorem. Substitution of
q. (10) into Eq. (9) yields the result that
rob(m parental loci are heterozygotic) =
n
m

)
(1 − ˛−1)

m
˛−(n−m).
ppendix C.

In this appendix, we give an explicit mathematical form for
X,Y (G).
ystems 99 (2010) 42–49 49

Let x = (x1, x2, . . . , xn) represent the haplotype with numerical
label X, and similarly y and g represent the haplotypes with numer-
ical label Y and G. Using a Kronecker delta ı(a, b) (ı(a, b) = 1 when
a = b and zero otherwise), we can write

AX,Y (G) =
n∏

m=1

[ı(xm, gm) + ı(ym, gm) − ı(xm, gm)ı(ym, gm)]

where the product is taken over all loci.
It may be verified that AX,Y (G) does have the required properties,

i.e., if a gamete with haplotype g can (cannot) be produced by a
parent with ordered genotype (x, y) then AX,Y (G) equals 1(0).
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