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Fixation when N and s Vary: Classic Approaches
Give Elegant New Results
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In this commentary, GENETICS’ Associate Editor Lindi Wahl
examines R. A. Fisher’s 1922 paper “On the dominance ratio”
in light of two modern responses to the question of allele
fixation probabilities. The two articles that Wahl discusses
are published in this month’s GENETICS.

IN 1922, an article entitled “On the dominance ratio” ap-
peared in the Proceedings of the Royal Society of

Edinburgh. The author was R. A. Fisher, a 29-year-old stat-
istician studying crop variation at the Rothamsted Experi-
mental Station in Harpenden, England. The article was
a follow-up to Fisher’s 1918 article on the statistical effects
of Mendelian inheritance, but it is in the 1922 article that
Fisher reveals most clearly his uncanny prescience of the
questions and techniques that would dominate theoretical
population genetics over the next century (Fisher 1918,
1922).

In section 2 of that article, Fisher considers the survival
of rare “mutant genes” and introduces what we now call
a branching process to address this question. The succinct-
ness with which Fisher explains his approach was typical of
the author and does not seem overly concise to today’s
reader. Fisher’s brevity, however, is astounding when we
consider that his 1922 exposition was the first application
of branching processes to any field of science after Galton
and Watson’s development of these techniques to explain
the extinction of English surnames (Watson and Galton
1874). [The underlying mathematics was later rediscov-
ered for application to nuclear chain reactions; this redis-
covery was necessary, according to Fisher, because physicists
considered him “an ignorant country bumpkin” (Gale 1990,
p. 114, citing personal communication with Fisher).]

Similarly, in section 3 of the same article (Fisher 1922),
a half-page derivation is provided for a heat equation, that
is, a constant-coefficient diffusion equation, describing the
time evolution of the gene frequency distribution. This was
the first application of a diffusion process to population ge-
netics, and Fisher, known for his distrust of methods bor-
rowed from other disciplines, derives the approach from first
principles without appealing to parallel work in stochastic
processes (see Feller 1951).

In the decades of work that followed Fisher’s 1922 arti-
cle, branching processes and diffusion approximations be-
came the two classic approaches for estimating fixation
probabilities, that is, the probability that a segregating allele
is ultimately carried by all individuals in a population. Most
notably, eccentric English biologist J. B. S. Haldane, presum-
ably during breaks from his studies of human physiology
through dangerous self-experimentation (Crow 1992), used
branching processes to derive the well-known probability
that a rare, slightly beneficial allele will fix (Haldane 1927).
Later, Motoo Kimura applied the diffusion approach to de-
rive a more general expression for the fixation probability
(Kimura 1955). In the second appendix of his well-known
chapter (Feller 1951), Feller provides a formal “passage”
between the two approaches by recasting the generating
function f(x) as a characteristic function, f(eiz).

How have both of these “rival” approaches remained cur-
rent as the field has advanced over decades? Diffusion
approximations are far more powerful: a diffusion equation
can predict the dynamic frequencies, and eventual fixation,
of beneficial, neutral, or deleterious alleles, starting from
any initial frequency in the population. Yet, the assumptions
underlying diffusion approximations are more difficult to
understand, and the technique nearly always requires a nu-
merical approach (number-crunching by computer) to give
predictive results. In contrast, branching processes are lim-
ited in their applicability: they can be used only to explore
situations in which the mutation of interest is beneficial
and the mutant allele is initially rare. In these limited
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circumstances, however, a branching process is easily formu-
lated and elegant, and can provide compact approximations
such as Haldane’s famous 2s result (Haldane 1927). A
branching process often has the advantage of being the sim-
plest possible model—no more complex than necessary for the
question of interest—but not easily generalizable to other
questions.

It would be difficult to imagine a better illustration of
the strength, and relevance, of these two approaches than
two articles published in this month’s issue (Uecker and
Hermisson 2011; Waxman 2011). Both articles address the
same question about fixation probabilities, that is: How is
fixation affected if both the strength of selection, s, and the
population size, N, vary in time? As described in more detail
by the authors themselves, these two concerns each have
a rich history in the literature. Anecdotally, to quote Feller
on the assumption of constant N, “essential features of the
whole mathematical theory depend on this assumption.
Dropping it will lead us to an entirely new theoretical
model” (Feller 1951, p. 228). Likewise, Fisher himself over-
turned the assumption of constant selective pressures in an
experimental study of Oxfordshire moths, concluding that
“natural populations . . . are affected by selective action vary-
ing from time to time in direction and intensity” (Fisher and
Ford 1947, p. 171).

The two articles published in this issue address simulta-
neous changes in selective pressure and population size, and
their impact on fixation. Both contributions allow for arbitrary
changes in population size; Waxman treats an arbitrary
effective population size, Ne(t), while Uecker and Hermisson
allow for time-varying birth and death rates, b(t) and d(t).
Similarly, the authors of both articles allow the strength of
selection to follow an arbitrary time course s(t). [This is in
contrast with the well-studied scenario in which s is allowed
to fluctuate, but is sampled from an underlying distribution
that does not vary in time (Kimura 1962).] To predict fixation
probabilities, Waxman takes a diffusion approach, while
Uecker and Hermisson chiefly use branching processes.
The strengths and limitations of the articles are a textbook
lesson in applying the two approaches: Waxman has no
restrictions on the sign or size of s, nor on the initial fre-
quency of the allele of interest; Uecker and Hermisson treat
only beneficial mutations that are initially rare.

Waxman’s approach is not entirely unrestricted, however.
An extremely elegant expression for the fixation probability
(equation 4 in Waxman 2011) is provided, assuming that
the product S 5 sðtÞNeðtÞ may vary arbitrarily up to some
time T, but thereafter remains constant. The expression for
the fixation probability ultimately depends on the entire
probability distribution for the allele frequency at this time
T, which must be obtained through simulation or through
the numerical solution of a backward diffusion equation.
Thus, another way to interpret this contribution is that it
provides a simple closed-form expression for the fixation
probability, given the probability distribution of the allele
frequency at an arbitrary time, and constant S thereafter.

In contrast, Uecker and Hermisson have a more re-
strictive focus, but are able to derive both fixation probabil-
ities and passage times, that is, expected times required for
the allele to reach a given frequency. The expression for the
fixation probability provided by these authors depends on
the entire history (t ¼ 0 to N) of both Ne(t) and s(t) (equa-
tion 16b in Uecker and Hermisson 2011). There is no as-
sumption that Ne or s reach asymptotically constant values,
but integrals involving these functions must be obtained,
such that, for most cases of interest, numerical techniques
will ultimately be required as well. In the supporting infor-
mation for their article, Uecker and Hermisson also apply
the classic diffusion approximation to the case of varying
s and N, demonstrating that a Kolmogorov backward equa-
tion holds (with time-varying coefficients), and using
a clever Ansatz to allow for an approximate solution when
the fixation probability is small.

In the decades since Fisher’s early articles were pub-
lished, interest in the fixation process has rarely waned, in
part because fixation underpins larger issues such as molec-
ular evolution, standing genetic variation, and adaptation.
How do the contributions that follow shed light on these
inquiries? To break new ground with arbitrary s(t) and
N(t), the authors use models that are, in other respects,
highly simplified. For example, Uecker and Hermisson use
a haploid model, while Waxman models diploid semidomi-
nance, that is, heterozygote and homozygote advantage of
1 1 s and 1 1 2s, respectively. Thus neither model can treat
arbitrary dominance effects, such as overdominance, which
complicate the fixation process, nor can the models address
more complex scenarios that maintain standing variation,
such as frequency-dependent selection. Nonetheless, the
results of these researchers will immediately allow for better
estimates of adaptation rates and lay the groundwork for
more complex models in the future.

Apart from the textbook clarity in their application of
classic theoretical approaches, the articles highlighted here
are noteworthy for the sheer simplicity of the question that
they address. Although branching processes and diffusion
approximations are not standard training for many, the
research question here is elegant, relevant, and could be
explained by any geneticist: How likely is a new mutation to
spread through the population, if the population size and
the advantage of the mutant are changing in time? One of
the attractions of theoretical population genetics is that
simple, tangible questions such as this are still being asked. I
encourage you to have a look at the following articles and
appreciate for yourself the lucid answers provided by
Waxman and by Uecker and Hermisson.
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