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a b s t r a c t

A result is derived, in the form of a sum, for the time-dependent probability of fixation of an unlinked

neutral locus. The result captures many of the key features of the probability of fixation in a highly

compact form. For ‘small’ times (tt4Ne) a single term of the sum accurately determines the time-

dependent probability of fixation. This is in contrast to the well-known result of Kimura, which requires

the contribution of many terms in a different sum, for ‘small’ times. Going beyond small times, an

approximation is derived for the time-dependent probability of fixation which applies for all times

when the initial relative allele frequency is small.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fixation of an allele in a finite population is a random process.
It is characterised by the probability that the allele has fixed by a
given time: this is the time-dependent probability of fixation. In
the present work we investigate this quantity for an unlinked
neutral locus. The standard result for the time-dependent prob-
ability of fixation for this case originates with Kimura (1955a),
who analysed a Wright–Fisher model (Fisher, 1930; Wright,
1931) under the diffusion approximation.

The diffusion approximation is an approach which was intro-
duced into population genetics by Fisher (1922) and Wright
(1945) and then substantially developed by Kimura (1955a).
Under a diffusion approximation the relative frequency of an
allele is treated as continuous random quantity. The diffusion
approximation derives its name from the diffusion equation that
governs the distribution of the relative frequency. The diffusion
approximation of the Wright–Fisher model leads to an explicit
form for the time-dependent probability of fixation that has good
accuracy (see e.g., Fig. 1 of McKane and Waxman, 2007). However,
the diffusion result is a sum of an infinite number of terms (see
Eq. (2), below) and this has a complexity that precludes much
insight into its behaviour or mathematical form. Furthermore, its
determination can require a significant amount of numerical
calculation.
ll rights reserved.
Despite the fundamental importance of Kimura’s result for the
time-dependent probability of fixation, it is very hard to find
many direct applications of it in the literature. In part this may be
due to the absence of approximations that summarise its essential
aspects in a simple formula for all values of the time. Approxima-
tions do, however, exist for times that are relatively long (of the
order of the effective population size or larger) and have been
employed by Charlesworth et al. (2005) in the detection of shared
and ancestral polymorphisms; this work thus constitutes a rare
application of Kimura’s result.

In the present work we reanalyse the formula for the time-
dependent probability of fixation and obtain results which
capture some of the key features of this quantity in a compact
form. These results generally give insights into the dynamics of
random genetic drift associated with fixation. They constitute a
concrete mathematical handle of the phenomenon which can be
approximated to provide explicit formulae. The results also
lead to a substantial simplification in the computation of the
time-dependent probability of fixation for the case of small and
intermediate times.
2. Background

Before we consider details of previous results and the results
of the present work, it is useful to introduce a scaled time, t,
which simplifies many expressions. It is defined in terms of the
actual time, t, via

t¼ t=ð4NeÞ ð1Þ
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where Ne is the effective population size. The quantity t measures
time in units of 4Ne generations and henceforth shall simply be
referred to as the ‘time’.

The general problem under consideration involves a single
locus of a randomly mating diploid population with two alleles,
denoted A and a. Given that at time t¼ 0 the relative frequency of
the A allele is p, the probability that the A allele has fixed by time
t (i.e., the time-dependent probability of fixation) is written as
Pfixðt; pÞ. For an unlinked locus that is selectively neutral, and in
the absence of mutations, the time-dependent probability of
fixation was calculated by Kimura (1955b) under the diffusion
approximation, with the result.

Pfixðt; pÞ ¼ p 1�
X1
n ¼ 0

2ð1�pÞð2nþ3Þ

ðnþ1Þðnþ2Þ
ð�1ÞnCð3=2Þ

n ð1�2pÞe�ðnþ1Þðnþ2Þt

" #
:

ð2Þ

Here Cð3=2Þ
n ðyÞ denotes a Gegenbauer polynomial in the variable y

of order 3/2 and degree n (Abramowitz and Stegun, 1965).
The time-dependent probability of loss of the A allele, namely

Plossðt; pÞ, can be obtained from the result of Eq. (2) with the
replacement p-1�p. This follows since (i) when the A allele
starts at a relative frequency of p, the a allele starts at a relative
frequency of 1�p, (ii) loss of the A allele is equivalent to fixation
of the a allele, and (iii) under selective neutrality, the two alleles
are interchangeable, and hence Plossðt; pÞ ¼ Pfixðt;1�pÞ. Because of
this relation we need consider only the fixation probability.

The expression derived by Kimura for the fixation probability
can be approximated by including a finite number of terms in the
sum in Eq. (2), but this may require substantial computation. In
the presence of selection, techniques have been developed to deal
with this (Wang and Ranala, 2004). Generally, the number of
terms required in the sum in Eq. (2) depends primarily on the
value of the time, t, since the time-dependent exponentials in
Eq. (2), namely e�ðnþ1Þðnþ2Þt, only become small for ðnþ1Þ
ðnþ2Þtb1. For large n this relation suggests that the number of
terms that should be included in the sum is of the order of t�1=2

and this need not be small if t is small. For example in a
population of 10,000 individuals, to accurately approximate the
fixation probability after 2000 generations can in some cases
require at least 20 terms in the sum.1 Furthermore, the detailed
way of the expression for Pfixðt; pÞ in Eq. (2) varies with time is not
apparent from Kimura’s result, except where the time-dependent
exponentials in Eq. (2) become small, i.e., at moderately large
values of t. In this case Pfixðt; pÞ ¼ p½1�3ð1�pÞe�2tþOðe�6tÞ�.

For values of t that are moderately small (tt1) Kimura’s
result can be evaluated numerically. However, no explicit math-
ematical form, beyond that of the sum in Eq. (2), has so far been
given for the probability of fixation for this range of t, which
corresponds to an appreciable set of actual times, ranging from
0 to of the order of 4Ne generations.
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Fig. 1. With p the initial relative frequency and t the scaled time, t¼ t=ð4NeÞ, this

figure illustrates a ‘small p’ approximation to the time-dependent probability of

fixation of Eq. (5). The approximation arises from including just the small p form of

the n¼0 term in Eq. (3). The approximation is plotted against time, t (solid line).

In the same figure the full diffusion result (obtained by including 100 terms in the

sum in Eq. (2)) is also plotted (broken line). The value of p adopted for the figure is
3. Results

Let us now consider the main result of the present work. This
is a formula for the time-dependent probability of fixation,
Pfixðt; pÞ, that takes a very different form to Kimura’s result,
Eq. (2). This new formula provides a substantial amount of
1 We set p¼0.4 for an indication (but not a systematic analysis) of the number

of terms required in Kimura’s sum for Pfixðt; pÞ, Eq. (2). Including 10 terms in the

sum yields a negative value of Pfixðt; pÞ, while 18 terms yields a 12% error

compared with the converged value of the sum (arising from 100 terms).

However, including 20 or 21 terms yields � 1% error. We note that 20,

numerically, corresponds to 5t�1=2, i.e., is consistent with the estimate that

Oðt�1=2Þ terms are required in the sum.
information about the probability of fixation as a function of
time, especially for small t. The formula presented here is, like
Eq. (2), a sum and in Appendix A it is shown that we can write

Pfixðt; pÞ ¼ 4p�1=2et=4t�3=2
X1
n ¼ 0

ð�1ÞnAnðt; pÞ: ð3Þ

Before we give the general form for the Anðt; pÞ which appear in
Eq. (3), we shall present results for a case of practical interest,
namely for small initial relative frequencies (p51). For this case,
all Anðt; pÞ are, to leading order in p, directly proportional to p. In
particular (see Appendix A),

Anðt; pÞCpðp2=4Þð2nþ1Þe�½ð2nþ1Þp�2=ð4tÞ ð4Þ

with corrections of order p2. Thus for small p we have A0ðt;pÞC
pðp2=4Þe�p

2=ð4tÞ and keeping just this leading term in the sum in
Eq. (3) leads to the explicit approximation

Pfixðt; pÞCpp3=2et=4t�3=2e�p
2=ð4tÞ: ð5Þ

In Fig. 1 we plot the approximation in Eq. (5) for p¼0.1 for a range
of t and for comparison also plot the full diffusion result given in
Eq. (2).

From Fig. 1 we conclude that for small p, Eq. (5) constitutes an
explicit approximation of Eq. (2) that (i) is qualitatively correct
over a range of t, (ii) has small absolute errors, and (iii) when the
probability of fixation is appreciable compared with these errors,
the approximation is quantitatively correct.

An important feature of the form of Pfixðt; pÞ given in Eq. (3) is
that the smaller the value of t, the smaller the number of terms
that need to be included in the sum for good accuracy (this is
precisely the opposite behaviour to Kimura’s result in Eq. (2)). To
illustrate this for the case of small p, we note that A1ðt; pÞ=
A0ðt; pÞC3e�2p2=t and for all t less than 2 (i.e., for all to8Ne)
this ratio is less than 0.02%. Thus, for this range of times, the
inclusion of A1ðt; pÞ in the sum in Eq. (3) makes a tiny correction
p¼0.1 and for the range of t adopted for the figure (0rtr3) the difference

between the results of Eqs. (2) and (5) is less than 6�10�3. Smaller values of p

lead to yet closer agreement. For example, for p¼0.01 and the same range of t, the

difference is less than 6�10�5.

Furthermore, for p¼0.1 and 0rtr3 (the values adopted for the figure), it is not

possible to visually distinguish between the full diffusion result, Eq. (2), and the

approximation derived from Eq. (3) where only the full zeroth order term (not its

small p approximation) is included in the sum; the results differ by less than

5�10�4.
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Fig. 2. In this figure the small p approximation to Pfixðt; pÞ, given by Eq. (5), is

compared with the result of keeping just the leading two terms of the diffusion

sum when quadratic dependence on p is omitted, namely Eq. (6). The initial

frequency used in the figure was p¼0.1. Over the range 1rtr2 the approxima-

tions of Eqs. (5) and (6) differ by less than 1.4�10�3, while over the range

2rtr3 the two approximations differ by less than 5�10�4.

Table 1
To illustrate how many terms are required in Eq. (3) to accurately determine the

time-dependent probability of fixation, we have calculated the value of Pfixðt; pÞ,
from Eqs. (3) and (8), when t¼ t=ð4NeÞ ¼ 2 and the sum has been truncated to m

terms (the leading term in the sum is A0 and the highest term is Am�1). When

t¼ 2, the quantity 4p�1=2et=4t�3=2, which appears in Eq. (3), has the value

c¼1.315y and the first three entries of the column headed p¼0.2 are the values

of Pfixðt; pÞ when it is successively approximated by c�A0, c � ðA0�A1Þ and

c � ðA0�A1þA2Þ, with the An’s numerically evaluated from Eq. (8) at t¼ 2 and

p¼0.2. The final entry in the column headed p¼0.2 is the full diffusion result that

is calculated from Eq. (2). The other columns in the table follow from similar

considerations.

p¼0.2 p¼0.4 p¼0.6 p¼0.8

m¼1 0.191259 0.386966 0.587181 0.792055

m¼2 0.191211 0.386814 0.586811 0.791206

m¼3 0.191211 0.386814 0.586811 0.791206

Diffusion result 0.191211 0.386814 0.586811 0.791206
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to the leading (n¼0) term. It follows that for such ‘small’ t, the
contribution of just A0ðt; pÞ that was used in Eq. (5) is an
approximation that encapsulates an extremely large number of
terms of the sum in Eq. (2). More generally, we note that Anðt; pÞ=
A0ðt;pÞC ð2nþ1Þe�nðnþ1Þp2=t and this ratio rapidly decreases with
n, even for moderate t. For example, for t¼ 5 the ratios with
n¼ 1, 2 or 3 are approximately f6� 10�2,4� 10�5,4� 10�10

g.
Given the level of agreement of the full diffusion approxima-

tion, Eq. (2), and the small p approximation of Eq. (5) (see Fig. 1)
we investigate a further approximation in Fig. 2, where the
sum representing the diffusion approximation (Eq. (2)) is trun-
cated to the leading two terms: Pfixðt; pÞCp½1�3ð1�pÞe�2t�

(cf. Charlesworth et al., 2005) however since we are working in
a small p approximation, where only the leading p dependence is
kept, it is consistent to omit the quadratic p dependence in this
expression. Hence we use

Pfixðt; pÞCpð1�3e�2tÞ: ð6Þ

From Fig. 2 it is apparent that for 2rtr3 there is substantial
agreement between the approximation of the present work in
Eq. (5) and the result derived from Kimura’s analysis, Eq. (6).
Additionally, for tZ2 and p¼0.1 the approximation of Eq. (6) is
very close to the full diffusion result of Eq. (2): the difference is
less than 10�3.

We note that the approximation of Pfixðt; pÞ in Eq. (5) has the
feature that it equals p at the time t¼ pC3:14 and, furthermore,
beyond this value of t the approximation exceeds p, which is
the largest value that Pfixðt; pÞ can take. Including higher terms in
the sum of Eq. (3) beyond just the n¼0 term pushes this and
related features to larger values of t (see Appendix B), however, a
simple way to proceed is to use Eq. (5) for to2 and Eq. (6) for
tZ2. At t¼ 2 this approximation of Eq. (6) differs from the result
of Eq. (5) by less than 0.02%. As a result, a small p approximation
that works for all t is

Pfixðt; pÞC
pp3=2et=4t�3=2e�p

2=ð4tÞ, 0rto2,

pð1�3e�2tÞ, tZ2:

(
ð7Þ

It is worth noting that the dominant factor in Eq. (7), for small
t, is e�p

2=ð4tÞ which decreases in the vicinity of t¼ 0 extremely
rapidly. It is primarily this factor alone which leads to Pfixðt; pÞ
having a very flat curve in the vicinity of t¼ 0 (see Fig. 1).

A more sophisticated approximation in the ‘small’ t range,
to2, could be obtained for general p by using the full result for
the Anðt; pÞ, and not a small p approximation, and possibly taking
more of the Anðt; pÞ into account. In Appendix A it is shown that
the Anðt; pÞ can generally be written for all p and t as

Anðt; pÞ ¼
Z arcsin

ffiffi
p
p
ð Þ

�arcsin
ffiffi
p
p
ð Þ

e�ðxþnpþp=2Þ2=tðxþnpþp=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�sin2

ðxÞ

q
dx: ð8Þ

While this expression appears complex, it is a well-behaved
integral that can be straightforwardly evaluated, numerically.
Thus, if required, we can obtain essentially exact numerical
results for the time-dependent probability of fixation by numeri-
cally evaluating a number of the Anðt; pÞ and using them in Eq. (3).
In Table 1 we illustrate how the truncated approximation,
Pfixðt; pÞC4p�1=2et=4t�3=2

Pm�1
n ¼ 0ð�1ÞnAnðt; pÞ, approaches its true

value, when the full form of the Anðt; pÞ (Eq. (8)) is used, and the
number of terms in the sum, m, is increased. We have taken a
time of t¼ 2 (corresponding to an actual time of t¼8Ne) in the
calculation of Table 1. Smaller values of t lead to an even more
rapid convergence than that shown in Table 1.

It is apparent from Table 1 that the leading term in the sum in
Eq. (3), using the numerically calculated value of A0ðt; pÞ, is
sufficient to determine the full fixation probability to high
accuracy for all p, for time t¼ 2 (and, indeed, for all smaller
times).

In addition to Eq. (3) providing an approximation for Pfixðt; pÞ, a
closely related quantity is the distribution of the random time to
fixation, Tfix, given that fixation ultimately occurs. The probability
that Tfix is smaller than t is given by ProbðTfixotÞ ¼ Pfixðt; pÞ=p

thus Eq. (3) can also provide analytical approximations to
ProbðTfixotÞ and related quantities and such as the probability
density of Tfix.
4. Summary

In this work, the time-dependent probability of fixation,
Pfixðt; pÞ, has been derived in the form of a sum. This takes a
different form to the result of Kimura, and only a single term of
the sum is required, in the regime of ‘small’ times (tt4Ne), to
approximate the time-dependent probability of fixation. This
result has been combined with an approximation of Kimura’s
result to yield an approximation for Pfixðt; pÞ that holds for small
initial relative allele frequencies but all times.
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Appendix A. Proving equivalence with Kimura’s result

In this appendix we shall prove that the form for the time-
dependent probability of fixation of the present work, Eqs. (3) and
(8), is equivalent to Kimura’s result, Eq. (2). Proceeding in this
direction, i.e., from the result of this work to Kimura’s result
yields a much shorter calculation than proceeding in the opposite
direction (which was the way the calculation was originally
carried out).

We begin with Eqs. (3) and (8) which can be combined as a
sum from �1 to 1 as

Pfixðt; pÞ ¼
2et=4t�3=2ffiffiffiffi

p
p

X1
n ¼ �1

ð�1Þn
Z arcsin

ffiffi
p
p
ð Þ

�arcsin
ffiffi
p
p
ð Þ

e�½xþðnþ1=2Þp�2=t

� ½xþðnþ1=2Þp�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�sin2

ðxÞ

q
dx: ð9Þ

A key part of the proof involves transforming a sum appearing
within Eq. (9), into a different sum, using the Poisson summation
method (Apostal, 1979). The result is given in Eq. (11), below. To
establish Eq. (11), we note that the sum appearing in Eq. (9),
namely

P1
n ¼ �1ð�1Þn½xþðnþ1=2Þp�e�½xþðnþ1=2Þp�2=t, can be writ-

ten as

X1
n ¼ �1

ð�1Þn½xþðnþ1=2Þp�e�½xþðnþ1=2Þp�2=t

¼

Z 1
�1

f ðyÞ
X1

n ¼ �1

ð�1Þndðy�nÞ dy ð10Þ

where f ðyÞ ¼ ½xþðyþ1=2Þp�e�½xþðyþ1=2Þp�2=t and dðyÞ is a Dirac delta
function. We then note that

P1
n ¼ �1ð�1Þndðy�nÞ is a function of y

that is periodic, with period 2, and accordingly can be written as a
Fourier series. We find

P1
n ¼ �1ð�1Þndðy�nÞ ¼

P1
m ¼ �1 eið2mþ1Þpy

and using this result in Eq. (10) yields, on evaluating the integral
over y,

X1
n ¼ �1

ð�1Þn½xþðnþ1=2Þp�e�½xþðnþ1=2Þp�2=t

¼
t3=2e�t=4

2
ffiffiffiffi
p
p

X1
m ¼ �1

ð�1Þmð2mþ1Þe�mðmþ1Þt�ið2mþ1Þx: ð11Þ

This result is exact identity, and using it in Eq. (9) yields

Pfixðt; pÞ ¼
1

p
X1

m ¼ �1

ð�1Þmð2mþ1Þe�mðmþ1Þt
Z arcsinð

ffiffi
p
p
Þ

�arcsinð
ffiffi
p
p
Þ

�e�ið2mþ1Þx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�sin2

ðxÞ

q
dx

¼
X1

m ¼ 0

ð�1Þmð2mþ1Þe�mðmþ1ÞtIm ð12Þ

where

Im ¼
4

p

Z arcsin
ffiffi
p
p
ð Þ

0
cos½ð2mþ1Þx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�sin2

ðxÞ

q
dx: ð13Þ

In Eq. (12) we have simplified the integral and used the fact that
the part of the sum from m¼�1 to �1 duplicates the part from
m¼0 to 1.
It may be verified that

I0 ¼ p: ð14Þ

To determine the Im for m40 we use Eq. (22.10.11)
of Abramowitz and Stegun (1965) for the following representa-
tion of a Gegenbauer polynomial in the variable cosy of order n

and degree a:

CðaÞn ðcosyÞ ¼
21�aGðnþ2aÞ

n!½GðaÞ�2
ðsinyÞ1�2a

Z y

0

cos½ðnþaÞf�
ðcosf�cosyÞ1�a

df: ð15Þ

Here GðxÞ denotes Euler’s gamma function. Taking a¼ 3=2,
p¼ sin2

ðy=2Þ and n¼m�1 in Eq. (15) yields

Cð3=2Þ
m�1 ð1�2pÞ ¼

2�1=2Gðmþ2Þ

ðm�1Þ!½Gð3=2Þ�2
ðsinyÞ�2

Z y

0

cos½ðmþ1=2Þf�
ðcosf�cosyÞ�1=2

df

¼
4mðmþ1Þ

21=2p
1

1�ð1�2pÞ2

Z 2arcsin
ffiffi
p
p

0

cos½ðmþ1=2Þf�
ðcosf�1þ2pÞ�1=2

df ð16Þ

and on setting f¼ 2x gives

Cð3=2Þ
m�1 ð1�2pÞ ¼

2mðmþ1Þ

ppð1�pÞ

Z arcsin
ffiffi
p
p

0
cos½ð2mþ1Þx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�sin2x

q
dx:

ð17Þ

Comparing this result with Eq. (13) leads to

Im ¼
2pð1�pÞCð3=2Þ

m�1 ð1�2pÞ

mðmþ1Þ
, m¼ 1,2,3, . . . : ð18Þ

Using Eqs. (14) and (18) in Eq. (12) yields Kimura’s result, Eq. (2),
hence we have shown that Eqs. (3) and (8) are fully equivalent to
Eq. (2).

To derive the leading term in a small p approximation of
Anðt; pÞ we change variable in Eq. (8) from x to y¼ x=

ffiffiffi
p
p

. This
yields

Anðt; pÞ ¼ p

Z arcsin
ffiffi
p
p
ð Þ=

ffiffi
p
p

�arcsin
ffiffi
p
p
ð Þ=

ffiffi
p
p

e�½
ffiffi
p
p

yþðnþ1=2Þp�2=t

½
ffiffiffi
p
p

yþðnþ1=2Þp�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p�1sin2

ð
ffiffiffi
p
p

q
yÞ dy: ð19Þ

Expanding all quantities within the integral leads to Anðt; pÞ ¼
p
R 1
�1 e�½ðnþ1=2Þp�2=tðnþ1=2Þp

ffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

p
dyþOðp2Þ. The remaining inte-

gral has the value p=2 hence for small p we obtain the approx-
imate form of Anðt; pÞ given in Eq. (4).
Appendix B. Dependence of Pfixðt; pÞ on t when the sum
is truncated

In this appendix we investigate the form of Pfixðt;pÞ given in
Eq. (3), when it is approximated by truncating the sum at a finite
number of m terms, in which case

Pfixðt; pÞC4p�1=2et=4t�3=2
Xm�1

n ¼ 0

ð�1ÞnAnðt; pÞ: ð20Þ

When m is odd, this is numerically found to lead to an approx-
imation for Pfixðt; pÞ which achieves the value of p (which is the
maximum value that Pfixðt; pÞ can take) at a finite value of t.
Beyond this value of t, the approximation overshoots p. By
contrast, taking m even leads to an approximation for Pfixðt; pÞ
which achieves a maximum value (less than p) at a finite value of
t, with the approximation decreasing beyond this value of t. It
follows that keeping m terms in the sum, the value of the scaled
time t where one of these two behaviours occurs (Pfixðt; pÞ either
equalling p or achieving its maximum value) corresponds to the
largest value of t where the approximation can be sensibly
applied. Writing this largest value as tmax, we have determined



Table 2
Truncating the sum in Eq. (3) at m terms leads to the approximation of the time-

dependent fixation probability of Eq. (20). This approximation works up to a

limited value of the time t, which we denote tmax, and which we have estimated

from the small p results of Eq. (4). There appears to be a simple linear relationship

between tmax and m, namely tmax C2:12mþ1:02 that we have verified to very

reasonably hold for m ranging from 1 to 20.

No. of terms in the sum, m 1 2 3 4 5 6 7 8

tmax 3.1 5.3 7.4 9.5 11.7 13.7 15.9 18.0
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its values for different numbers of terms in the sum, m, using the
small p approximation given in Eq. (4). The results are sum-
marised in Table 2.

The value of t adopted for Table 1 (in the main text) is t¼ 2
and is smaller than any of the tmax’s appearing in Table 2. The
rapid convergence of the truncated sum of Eq. (20), as demon-
strated in Table 1, provides evidence that for values of t less than
tmax the truncated sum provides a very good approximation to
the fixation probability given in Eq. (2).

There is a straightforward measure of the error in the approx-
imation of Eq. (20) precisely at the ‘maximum time’ tmax, namely
the difference between the full diffusion result for Pfixðt; pÞ, when
evaluated at t¼ tmax and the value of the approximation of
Eq. (20), when also evaluated at t¼ tmax. This measure of the
error depends on the initial frequency, p, and we have adopted
the value p¼0.1 and employed the small p approximation for the
Anðt; pÞ. We then find that when m¼ 1, 2 or 3 the absolute values
of the differences are approximately f5� 10�4,8� 10�6,8� 10�8

g

and hence very small compared with Pfixðtmax; pÞ which is very
close to p.
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