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MODULARITY AND THE COST OF COMPLEXITY
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Abstract. In this work we consider the geometrical model of R. A. Fisher, in which individuals are characterized by
a number of phenotypic characters under optimizing selection. Recent work on this model by H. A. Orr has demonstrated
that as the number of characters increases, there is a significant reduction in the rate of adaptation. Orr has dubbed
this a ‘‘cost of complexity.’’ Although there is little evidence as to whether such a cost applies in the natural world,
we suggest that the prediction is surprising, at least naively. With this in mind, we examine the robustness of Orr’s
prediction by modifiying the model in various ways that might reduce or remove the cost. In particular, we explore
the suggestion that modular pleiotropy, in which mutations affect only a subset of the traits, could play an important
role. We conclude that although modifications of the model can mitigate the cost to a limited extent, Orr’s finding is
robust.
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What factors determine the rate of adaptive evolution? Sug-
gested answers to this question have emerged from within
theoretical population genetics (e.g., Maynard Smith 1976;
Barton and Partridge 2000), evolutionary ecology (e.g., Res-
nick and Ghalamber 2001), and evolutionary developmental
biology (e.g., Raff and Raff 2000). In an important recent
paper a new factor has been identified. Orr (2000) investi-
gated a theoretical model of multiple quantitative characters
under optimizing selection. He showed that as the number
of phenotypic characters under selection increases, there is
a dramatic slow-down in the population’s rate of adaptation,
as measured for example by its expected increase in fitness
over time. Orr dubbed this slow-down the ‘‘cost of com-
plexity.’’ Throughout this work, we follow Orr and use the
term ‘‘complexity’’ to correspond to the number of traits
under selection. Thus, with this usage, organisms with a few
traits under selection are less complex than organisms with
a larger number of traits under selection.

Orr’s (2000) paper makes use of the geometrical model
introduced by Fisher (1930, ch. 2) and described fully below.
Fisher’s model has been used elsewhere in a series of key
papers investigating such topics as the genetics of adaptation
(Hartl and Taubes 1998; Orr 1998, 1999), hybridization (Bar-
ton 2001), and drift load (Hartl and Taubes 1996; Peck et al.
1997; Poon and Otto 2000). Furthermore, the basic picture
of selection is familiar from numerous theoretical quantita-
tive genetic studies—the key differences being the rate of
mutations and their distribution of effects (Barton 2001). To
the extent that this much-used model makes a strong predic-
tion, it is important to ask whether the cost of complexity
applies in the natural world. Unfortunately, we have little
evidence to guide us here. Relating Fisher’s model to em-
pirically measurable quantities is problematic (Barton 1998),
and all definitions of phenotypic complexity are contentious
(Bonner 1988; Valentine 2000 and references therein). The
range of studies on contemporary microevolution available
(Hendry and Kinnison 1999; Bone and Farres 2001; Kinnison
and Hendry 2001) does not allow us to begin to ask the
question in a rigorous manner. However, naively, it is sur-
prising that such a substantial cost should be predicted. For

example, in their review of empirical studies of rapid adaptive
evolution in natural populations Resnick and Ghalamber
(2001) note that the majority of their examples involve com-
plex characters and express surprise at this given Orr’s (2000)
finding. Indeed if a substantial cost does exist, then the very
existence of phenotypic complexity in the world seems puz-
zling, particularly given the key role of rapid evolution in
preventing population extinction (e.g., Lynch and Lande
1993).

In this study we further explore Fisher’s model and its
extension by Orr, with particular regard to the cost of com-
plexity. In particular, we make three advances. First, we test
the extent to which the cost is a robust feature of the model;
we do this by varying the original treatment with some al-
ternative, biologically reasonable assumptions. Second, we
examine the claim that the rate of evolution of complex phe-
notypes could be accelerated through some sort of phenotypic
modularity. Finally, we ask if there might be key features of
the natural world absent from Fisher’s model that might scale
in a consistent way with phenotypic complexity. All three of
these advances follow up on suggestions in Orr (2000). We
begin by presenting a general framework for the investiga-
tions.

SINGLE-MUTANT ADAPTIVE WALKS

In this paper, we consider the process of adaptation as
a single-mutant adaptive walk in a population of haploids.
Time is measured in events, where an event is the fixation
or loss of a newly arisen mutation, and we assume that at
any instant there is, at most, one mutation segregating in
the population. This approach, related to the strong-selec-
tion-weak-mutation approximation of Gillespie (1983,
1991), is common to most of the recent work on Fisher’s
model and other unrelated work (e.g., Maynard Smith
1970; Kauffman and Levin 1987; Metz et al. 1996; Orr
2002). We use the approach to remove the influence of
mutation rate, levels of dominance, population size, and
reproductive mode, all of which influence the rate of ad-
aptation, but are not the focus here (Maynard Smith 1976;
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Barton 2001). Results can be easily modified to apply to
diploids when dominance is intermediate and are quali-
tatively unaltered. The mutation arising at time t has a
selection coefficient, st, that is defined in the usual way
for multiplicative models:

9W ts 5 2 1, (1)t Wt

where (Wt) is the fitness of a mutated (nonmutated) in-W9t
dividual. Under these assumptions, it is clear that if a mu-
tation reaches fixation, then the population’s fitness be-
comes Wt11 5 (1 1 st)Wt. The probability that a mutation
with selection coefficient s fixes is denoted by P(s). In a
multiplicative fitness model, it is natural to express the
dynamics in terms of the natural logarithm of fitness. The
expected change in log fitness, from event t to event t 1
1 is then

E [ln W 2 ln W ] [ E [Dln W ]t11 t t

5 E [ln (1 1 s )P(s )] (2)t t

`

[ f (s)ln(1 1 s)P(s) ds. (3)E t
21

Here, ft(s) denotes the probability distribution of selection
coefficients at time t. Note that the expectation, E[ . . . ]
above, is taken over replicate populations, each of which is
identical at time t 5 0, and monomorphic during the majority
of time when no mutation is segregating. However, different
replicate populations will have different evolutionary histo-
ries due to the stochastic appearance, fitness effects, and loss
of new mutations by genetic drift. For completeness we give
details, in Appendix 1, of the full stochastic process under-
lying equations (2) and (3).

Again, following Orr (2000), we restrict ourselves to a
population sufficiently large that only beneficial mutations,
that is, those with s . 0, can reach fixation. In this case
Haldane (1927) showed that when offspring number is Pois-
son-distributed and selection coefficients are small, the fix-
ation probability is given by the approximation

0, s # 0
P(s) . (4)52s, s . 0.

Additionally, small s allows us to use s ø ln(1 1 s), thereby
allowing equation (3) to be written in the useful approximate
form

`

2E [Dln W ] . 2 f (s)[ln(1 1 s)] ds. (5)t E t
0

We now turn to an examination of Fisher’s model.

FISHER’S GEOMETRICAL MODEL

Under Fisher’s model an organism is uniquely character-
ized by the values of n quantitative characters. When a mu-
tation occurs, it generally changes all n traits, thus the model
exhibits universal pleiotropy. We collect the n trait values
and the n changes due to mutation into n-dimensional vectors,
which we denote z(t) and Dz(t):

z(t) 5 [z (t), z (t), . . . , z (t)] and (6)1 2 n

Dz(t) 5 [Dz (t), Dz (t), . . . , Dz (t)]. (7)1 2 n

It is this picture of the phenotypic state of an organism as a
point in an n-dimensional space and a mutation as a vector
of change in that space that makes the model geometrical.

Fitness is determined by the distance of each of the char-
acters from its optimal value. Each trait is taken to be under
independent selection, so its optimal value is a feature of the
environment and does not depend on the state of the other
traits. Without loss of generality, we set the optimal value
of all traits to be zero. We take a Gaussian scheme of selec-
tion, where all traits are subject to the same intensity of
selection. Here, for simplicity and following Orr (2000), we
take this intensity to be one; this has no effect on our con-
clusions concerning the cost of complexity, as shown in Ap-
pendix 4. With these assumptions, the fitness of the popu-
lation prior to mutation, Wt, and the fitness of a mutated
individual, , are given byW9t

1 2W 5 exp 2 \z(t)\ and (8a)t [ ]2

1 29W 5 exp 2 \z(t) 1 Dz(t)\ , (8b)t [ ]2

where double vertical bars denote the Euclidean length of the
vector: \z \ 5 . An explicit form for the2 2 2Ïz 1 z · · · 1 z1 2 n

quantity ln(1 1 st) appearing in equation (2) follows from
equations (1) and (8):

9W 1t 2 2ln(1 1 s ) 5 ln 5 [\z(t)\ 2 \z(t) 1 Dz(t)\ ]t 1 2W 2t

2\Dz(t)\
5 2z(t) · Dz(t) 2

2
2r

5 2\z(t)\r cos u 2 (9)
2

where z(t) · Dz(t) is the scalar (or dot) product of the vectors
z(t) and Dz(t), u is the angle between z(t) and Dz(t) and r 5
\Dz(t)\ is the magnitude of the change associated with a mu-
tation. It is clear from equation (9), that the selection coef-
ficient is a function of the three variables, \z(t)\, u, and r.
Figure 1 shows a graphical representation of Fisher’s model
with these three quantities labeled. It is also clear that the
all-important distribution of selection coefficients, ft(s) of
equation (3), must be derived from the distributions of these
three variables. The first two variables present few problems.
First, it will shortly be evident that only the mean value of
\z(t)\ 2 5 22 ln(Wt) will be necessary for our calculations,
and second, the distribution of the angle, u, can be found
from geometric considerations under the assumption that mu-
tations are equally likely in all ‘‘directions’’ (see Fig. 1 and
Appendix 2 for full details).

We discuss the third variable, r, at greater length, because
it marks our first departure from Orr (2000). This variable is
the overall magnitude of mutational change across all phe-
notypic traits, and we denote its distribution by p(r). Orr
(2000) treats r as fixed parameter, so all mutations have the
same magnitude, but it seems more realistic to allow some
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FIG. 1. A graphical representation of Fisher’s geometrical model
is shown for the case of two traits, n 5 2. In the upper half of the
plot the fitness, W, is plotted as a function of the two trait values
z1 and z2. The fitness landscape is seen to decline smoothly with
distance from the phenotypic optimum, which lies at (z1, z2) 5 (0,
0). In the lower half of the plot, this optimum is represented by a
filled dot. The unfilled dot represents the current state of a popu-
lation and the arrow stemming from this point represents a muta-
tional change, Dz. The labels show the three quantities that appear
in equation (9), namely \z \, the distance of the population from the
optimum; r, the magnitude of the mutational change, and u, the
angle between z and Dz. The two dotted circles demonstrate the
isotropy of the model. As regards fitness, any population lying on
the circle with radius \z \ will have the same fitness as the population
shown. As regards mutation, all points on the circle with radius r
are equally likely to be reached by a single mutation. The dashed
arc shows the proportion of those mutations that are closer to the
optimum than the parental population and are thus beneficial (with
s . 0).

variation, as Orr himself does in a different context (Orr 1998,
1999). The distribution p(r) must simply be specified as part
of the model, and in the absence of much empirical evidence,
different authors have made different choices (see below).
For these reasons we present results that apply to a broad
class of distributions of mutation magnitudes. This class of
distributions will be characterized by two important param-
eters. The first is a single length parameter, denoted r, and
taken to be the mean value of the distribution. The second
is a shape parameter, denoted a, that describes how the dis-
tribution behaves for very small r. We define these parameters
via

E [r] [ r and (10)
(a21)p(r) } r , (11)

for r → 0, where a . 0.
The condition a . 0 ensures the distribution p(r) is nor-

malizable. In Appendix 4, we specify the full class of p(r)
considered in this work, but note that the class includes al-
most all of the distributions considered previously for
Fisher’s model. These distributions include the uniform dis-
tribution (Kimura 1983; Orr 1999) and the exponential dis-
tribution (Orr 1999; Poon and Otto 2000; Barton 2001) for
both of which a 5 1; as well as the more general family of
gamma distributions (see eq. (A3) in Appendix 3) and other

power law distributions (Orr 1999). Our results also apply
to the special case of fixed-magnitude mutations (Orr 2000),
which can be treated as a form of the gamma distribution for
which a → ` (see Appendix 3).

Although we have little evidence to guide us on the exact
form of the distribution of mutation magnitudes, p(r), we do
have empirical measurements of the effects of mutations on
single traits, and, to a lesser extent, of their fitness effects,
both of which are distributions that are related to p(r). Our
choice of p(r) should be consistent with the available data
on these distributions, in particular, the finding that the dis-
tribution of mutation effects on single traits tends to be lep-
tokurtic (e.g., Keightley and Ohnishi 1998; Garcia-Dorado
et al. 1999; Welch and Waxman 2002) and the existence of
a large class mutations with very small fitness effects (e.g.
Kimura 1983; Davies et al. 1999). As set out in Appendix
3, both lines of evidence suggest that a K n might be ap-
propriate but offer little guidance beyond this. As such, we
keep the results in the text general. However, to give an
indication of how p(r) can influence the distribution of se-
lection coefficients, ft(s), Figure 2 shows ft(s) for fixed,
uniformly distributed, and gamma-distributed mutation
lengths.

Figure 2 shows clearly that changing the distribution of
mutation magnitudes, p(r), is not merely a cosmetic change
to the model. Different p(r) values lead to qualitatively dif-
ferent distributions of selection coefficients, ft(s), the dis-
tribution that governs the rate of adaptation; see equation (3).
Figure 2a, shows that with fixed-length mutations, the dis-
tribution ft(s) is maximized for quite large negative selection
coefficients (see Appendix 3). By contrast, Figure 2b shows
that uniformly distributed mutation magnitudes yield a ft(s)
that is singular (with an infinite spike) in the vicinity of s 5
0. Figure 2c shows that for gamma-distributed mutation mag-
nitudes with a large shape parameter (a 5 4), this spike is
lost, but there is, nevertheless, a concentration of very small-
effect mutations. We also note another difference between
fixed and variable magnitude mutations. With fixed magni-
tude mutations (Fig. 2a), adaptation can only continue until
the population lies at a certain distance from the optimum,
until \z(t)\ , r/2. After this, no beneficial mutations can be
generated (see Fig. 1). By contrast, with continuous mag-
nitude mutations (Figs. 2b, 2c), adaptation can continue in-
definitely because arbitrarily small effect mutations can be
produced. As such, only variable-magnitude mutations allow
us to examine the cost of complexity for a population that
is well adapted.

We can now write equation (5), the rate of change of log
fitness, in a form that applies specifically to Fisher’s geo-
metrical model. The derivation is set out in full in Appendix
4, and yields a simple difference equation for E[ln Wt]:

224E [ln W ]r 24E [ln W ]t tE [Dln W ] . 3 F . (12)t 21 2n nr

Here F(·) is function whose exact form is determined by the
distribution of the mutation magnitudes, p(r). However, in
Appendix 4, we show that, for the broad class of p(r) de-
scribed above, F(x) is an increasing function of x. This means
that any decrease of the argument of F in equation (12) will
always decrease the value of F and hence decrease the rate
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FIG. 2. The distribution of selection coefficients, ft(s), is plotted
for three different distributions of overall mutation magnitudes,
p(r). (a) shows ft(s) for fixed-magnitude mutations, where all mu-
tations have magnitude r. (b) shows ft(s)for mutation magnitudes
that are uniformly distributed on the range [0, 2r]. In (c), mutation
magnitudes are gamma distributed (see eq. A3). Each plot shows
four different values of the distance, \z \, of the population from
the optimum, with the population becoming more adapted as the

←

curves become darker. From light to dark, the plots show \z \ 5 2,
1, 0.5, and 0.25. All plots take the same number of traits: n 5 12,
and the same mean magnitude of a mutation: r 5 0.2. In (c) the
shape parameter is taken as a 5 4. In (a, b) it implicitly takes the
values a 5 ` and a 5 1, respectively (see Appendix 3).

of adaptation. When the magnitude of mutations is fixed,
equation (12) is equivalent to Orr’s (2000) equation (7b).
Indeed, examining equation (12) allows us to draw a number
of conclusions that were all noted by Orr (2000) for the case
of fixed-length mutations and are here shown to hold also in
the case of variable length mutations. The conclusions follow
by noting where the quantities ln Wt, r, and n, appear in the
right of equation (12).

First, as mean fitness increases, 2E[ln Wt] decreases, and
this will always decrease the rate of adaptation. Second, be-
cause r appears in the numerator of the first factor of equation
(12), but in the denominator of the argument of F, an inter-
mediate mean length of mutation, balancing these two factors,
will maximize the rate of adaptation. This was the insight of
Kimura (1983), who pointed out that while the very smallest
mutations have the highest probability of being beneficial
(Fisher 1930) they are subject to the weakest selection, and
as such, have little chance fixing. We show in Appendix 4
that the balance will hold for the broad class of p(r).

Third, and most importantly for this paper, the number of
traits, n, appears in the denominator in both factors on the
right side of equation (12), and so increasing n will always
decrease the rate of adaptation. Furthermore, it is clear that
the decrease in the rate of adaptation will generally be greater
than n21 because the first factor alone shows this rate of
decline. This observation, that the higher the value of n, the
slower the rate of adaptation, embodies the cost of complexity
demonstrated by Orr (2000).

Although the minimum cost of complexity follows directly
from examining equation (12) as Orr (2000) pointed out, the
cost can be much greater. To quantify this, we need to ex-
amine the function F(x). In Figure 3 we show the form of
F(x) for the three choices of p(r) used in Figure 2 above. The
first thing to notice is how remarkably similar the three curves
are over this range, despite their very different distributions
of selection coefficients (Fig. 2). Because the gradients dis-
played in the figure are substantial, it is clear that the function
F can affect the cost of complexity. To see this in detail,
consider what happens when the argument to F is very small
or very large: see Appendix 4 for full details. We find

2 22\z\ 2\z\
2(11a /2)F } n , for K 1 and (13)2 21 2nr nr

2 22\z\ 1 2\z\2F . [CV (r) 1 1], for k 1, (14)2 21 2nr 2 nr

where CV(r) is the coefficient of variation (standard deviation
divided by mean) of the distribution of mutation magnitudes,
p(r). These approximations yield interesting insights. Equa-
tion (13) will apply whenever the population is well adapted
or when the distance from the optimum is small compared
with the mean magnitude of a mutation (\z \/r K 1). In this
regime the cost of complexity is substantially more than the
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FIG. 3. The function F(x), appearing in equation (12), is plotted
as a function of x. The three forms of F(x) plotted correspond to
the three different distributions of mutation magnitudes, p(r), as
used in Figure 2 (see Fig. 2 caption). Using these distributions of
mutation magnitudes, F(x) can be found in terms of standard func-
tions. The values of x plotted cover a plausible range of values of
the argument of F (see the discussion in the text), and over this
range, the three distributions of mutation magnitudes yield sur-
prisingly similar curves. For (perhaps implausibly) large arguments
of F, the curves asymptotically approach widely different values
that can be found from eq. (14). The definition of F is given in
equation (A19) and uses equations (A2) and (A16).

minimum cost, which arises from just the first factor on the
right side of equation (12). Combining the contributions from
the two factors on the right side of equation (12), yields a
cost proportional to n21 3 n2(11a/2) 5 n2(21a/2). By contrast,
when the argument to F is large, the function reaches a con-
stant value given by equation (14), that shows no dependence
on n (perhaps less obviously, this quantity will also be in-
dependent of r). In this regime, where the population’s dis-
tance from the optimum is large compared with the mean
magnitude of a mutation, the minimum cost of complexity,
n21, is paid. We note, however, that the convergence to equa-
tion (14) is in general slow and even if mutations are very
small (r2n ; 1 ), to have a \z \ of sufficient magnitude for
this regime to apply implies an enormous genetic load. We
will consider both regimes—small argument, and large ar-
gument—in what follows, but we expect the former to be the
most relevant.

The main conclusion of this section is that the cost of
complexity is robust to the inclusion of variable length mu-
tations. This was not obvious considering that continuously
distributed mutation lengths make qualitative differences to
the distribution of selection coefficients, ft(s) (see Fig. 1).
We now discuss further alterations to the assumptions of the
model.

CONSTANT MEAN MUTATIONAL CHANGE PER TRAIT

The result of equation (12) depends strongly on the as-
sumption that the mean overall magnitude of a mutation, r
5 E[r], remains constant for all levels of complexity, that is,
for all n. This has the consequence that the average mutational

change per trait declines rapidly with n. This follows because
\z(t)\ 2 suffers a mutational change of r2, so the mean square
change in any single trait is E[r2]/n } r2/n for the class of
p(r) considered (also see Orr 1998, 1999). It is not clear that
this decline with n is the most biologically reasonable as-
sumption, and so we examine the alternative assumption: that
the average mutational change per trait remains independent
of n. We achieve this by allowing r to vary with n, such that
the mean square change in any single trait remains constant
across all levels of complexity. With this end, we introduce
an n-independent constant, r* via

r [ r(n) 5 r*Ïn. (15)

With this alternative assumption about mutation we find

24E [ln W(t)]2E [Dln W ] . 24E [ln W(t)]r* 3 F . (16)t 2 25 6n r*

Note that the first factor on the right side of this equation
is now independent of n, and so part of the cost of complexity
has vanished. Indeed when, the argument of F is large and
the approximation of equation (14) applies, no cost applies
at all. However, the inclusion of n22 rather than n21 in the
argument of F makes the attainment of the large argument
regime even less plausible. On the contrary, when the ar-
gument is small, a state that becomes more likely due to the
n22, we have, by extension from equation (13),

2 22\z\ 2\z\
2(21a)F } n , K 1. (17)2 2 2 21 2n r* n r*

So here, when the argument of F is small, the total cost of
complexity is n2(21a). Comparing this with the result for uns-
caled mutation, n2(21a/2), it is clear that the cost can be more
severe with scaled mutation—and significantly more with
high a.

We conclude that holding the mean mutational change per
trait constant as the number of traits increases can lead to a
situation where the rate of adaptation too is independent of
the number of traits, thus removing the cost of complexity.
However, such a situation is unlikely, and under plausible
conditions, when a population is close to its phenotypic op-
timum, the cost is more severe. Again, Orr’s observation is
robust to a change in assumptions.

MODULARITY

Given that the cost of complexity is a robust phenomena,
Orr’s (2000) identification of an important evolutionary ad-
vantage to reducing the number of effectively independent
characters comprising an organism, remains compelling. He
suggests that this might be achieved by developmentally
‘‘bundling’’ characters, and relates this to the notion of
‘‘modularity’’ as present in the work of Wagner and others
(Wagner 1996; Wagner and Altenberg 1996; Baatz and Wag-
ner 1997). Barton and Partridge (2000) make a similar claim,
suggesting that many of the regulatory processes listed by
Kirschner and Gerhart (1998) as facilitating the evolvability
of metazoans, could be modeled as a reduction in the di-
mensionality of Fisher’s model. The notion that features of
the developmental system act to somehow facilitate adaptive
evolution, or to increase ‘‘evolvability,’’ has been a much
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FIG. 4. The interactions between mutations, traits, and fitness, W, are depicted for four variations on Fisher’s geometrical model, each
with six traits, n 5 6. (a) shows the original model without modularity. Pleiotropy is universal in that each mutation affects all traits,
but the mutational change in each trait is independent of the changes to other traits, such that the expected genetic correlation between
any two traits is zero. (b) represents one possible interpretation of modularity. Pleiotropy is still universal, but pairs of traits are subject
to the same mutational effect. This reduces the dimensionality of the phenotypic space in which the population can move from 6 to 3.
However, as the top half of the diagram shows, each trait still alters fitness independently (see text). (c) represents another interpretation
of modularity and the model examined in this paper (e.g., eq. 19). Groups of traits are parceled through a restriction of the pleiotropic
effect of mutations into m 5 3 modules. (d) represents a particular case of fitness interactions among a set of traits, with the phenotypic
state of certain traits altering selection on other traits. This is a characteristic of the evolutionary process absent from Fisher’s model
(see Discussion).

discussed topic within evolutionary developmental biology
(Wagner and Altenberg 1996; Kirschner and Gerhart 1998;
Raff and Raff 2000; Barton and Partridge 2000) and mod-
ularity has been a central concern. Though modularity (like
complexity) is a slippery concept, the key idea is that further
adaptation should not undo adaptation previously achieved,
that a change to one part should not disrupt the whole system
(Barton and Partridge 2000).

We would suggest that this notion is not well captured by
a reduction in the dimensionality of the phenotypic space in
which the population can evolve. The bundling of two char-
acters, in this particular sense, would not mean that a change
in other characters would leave them undisturbed—universal
pleiotropy ensures that they probably would be altered. Rath-
er, it would prevent either of the characters from evolving
independently; a change in one character would imply a

change in a given direction in the other. Figure 4b depicts
this kind of modularity, and Figure 4a shows Fisher’s original
model for comparison. The kind of bundling shown in Figure
4b relates to the notion of genetic correlation, much discussed
in the quantitative genetics literature, and it would be equiv-
alent to setting the genetic correlation of a pair of characters
close to one. Such correlations are normally discussed in the
context of evolutionary constraint, their presence evidence
of reduced rather than enhanced evolvability (Maynard Smith
et al. 1985; for an example in a natural setting see Grant and
Grant 1995). The reason for this is clear: as Figure 4b shows,
each trait still affects fitness independently, and this is a
property of the world not under genetic control. As such, if
an environmental change were to shift the optimal value of
one, but not the other bundled trait or were to shift both in
different directions, or to greatly different extents, then their
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inability to evolve independently would greatly hinder the
population’s ability to respond; only if environmental change
typically shifted the optima of the two traits in a way that
mirrored their genetic correlation would the correlation en-
hance the rate of adaptation. The evolution of genetic cor-
relations is an exciting and largely unexplored field both
theoretically and empirically (see Stephen et al. 2002 and
references therein), and we note that such correlations could
enhance evolvability, but that, at least naively, this seems
unlikely. Either way, Figure 4b could not be modeled by a
simple reduction of n in equation (12).

Despite this, it is clear that modularity can be easily in-
corporated into Fisher’s model, not through a reduction in
the number of traits that comprise an organism, but by a
reduction in the number of traits that a single mutation can
affect; in other words, by a restriction of the degree of plei-
otropy. Such a situation is depicted in Figure 4c. Wagner has
suggested that a key way in which the developmental system
might become modular is through the ‘‘parcellation’’ of the
pleiotropic effects of genes such that the set of genes con-
trolling one group of traits have little or no influence on
another group of traits (Wagner 1996; Wagner and Altenberg
1996). Note that although genetic correlations may indicate
the existence of pleiotropy (although linkage disequilibrium
is another possible explanation), pleiotropy need not imply
genetic correlation. A pair of traits may be pleiotropically
bundled, in the sense that the same set of genes affect both,
and yet the set of alleles present might mean that positive
and negative correlations cancel, resulting in zero genetic
correlation overall (Cheverud 1984; Baatz and Wagner 1997).
Baatz and Wagner call this ‘‘hidden pleiotropy.’’

The Fisher model in its original formulation included uni-
versal pleiotropy. Some authors have considered Fisher’s
model with no pleiotropy in the context of drift load (Peck
et al. 1997; Poon and Otto 2000), but to our knowledge there
have been no considerations of immediate levels of pleiotropy
in this model. Here, we introduce modular pleiotropy, as
depicted in Figure 4c, to determine the extent to which it
might reduce the cost of complexity. We consider the case
where the n traits are divided into a series of m equally sized
modules, each containing n/m traits and labeled 1, 2, . . . , m
(Fig. 4c depicts a case where m 5 3). Thus, \z(t)\ 2 decom-
poses into a sum of m contributions from the m modules

m
2 2\z(t)\ 5 \z (t)\ , (18)O i

i51

where \zi(t)\ is the Euclidean distance of the ith module from
its optimal value. The appropriate generalization of equation
(12) to incorporate modularity is

m 2 2 21 2E [\z (t)\ ]r 2E [\z (t)\ ]i iE [Dln W ] . F . (19)Ot 25 6m n /m r n /mi51

The factor 1/m appears in equation (19) because a mutation
may occur with equal probability in any of the m modules.
Note that when m 5 1 and there is no modularity, the result
reduces to the universally pleiotropic formula given in equa-
tion (12).

All Groups of Traits Equally Maladapted

In the case where all modules of traits are equally distant
from the optimum, we have from equation (18), \zi(t)\ 2 5
\z(t)\ 2/m. Substituting this into equation (19) yields the uni-
versally pleiotropic result of equation (12). Thus, under the
approximations adopted, the rate of adaptation is entirely
independent of the degree of modularity (but see Appendix
2).

When the mean mutational change is held fixed per trait,
the situation is different. We note that any single mutation
affects only one module and hence only changes n/m traits.
Thus, analogous to equation (15), we introduce r* a fixed
constant (independent of n and m ) and set

r 5 r*Ïn /m (20)

and obtain

24E [log W ]r* 4mE [log W ]t tE [Dlog W ] . 2 F 2 . (21)t 2 25 6m n r*

This presents an interesting picture. When the argument of
F is large and the function reaches a constant value, modu-
larity will decrease the rate of adaptation (featuring only in
the first factor of equation 21). When the argument of F is
small, the total cost is found to be ma/2n2(21a). Here, mod-
ularity may help to alleviate the cost, but the extent is rather
small, particularly, when a is small.

So far, this analysis suggests little advantage to modular-
ity—indeed a disadvantage is predicted under certain cir-
cumstances. However, the situation where all traits are equal-
ly maladapted is not the situation where we might expect
modularity to be favored. Modular architectures are thought
to be favored when some traits are maladapted but others are
not; modularity then allows adaptation to take place without
undoing the adaptation achieved elsewhere (Wagner 1996).
With this in mind, we examine the other extreme case, where
a single trait is maladapted and all of the others are at their
optimal values.

A Single Maladapted Trait

In this case all but one of the \zi(t)\ in equation (19) are
zero and the remaining maladapted \zi(t)\ completely deter-
mines fitness. Thus,

24E [log W ]r 4mE [log W ]t tE [Dlog W ] . 2 F 2 . (22)t 25 6n nr

In this case, the degree of modularity appears only in the
second factor on the right-side, and so it can alleviate the
cost of complexity only when the argument of F is not too
large. Significant alleviation, but not elimination, of the cost
takes place when the argument is small. The cost is then
m(11a/2)n2(21a/2) [ (m/n)(11a/2)n21. Note, however, that the
minimum cost, of n21, will always apply.

When the mutation magnitude per trait is held constant, r
5 r* , we haveÏn/m

2 24E [log W ]r* 4m E [log W ]t tE [Dlog W ] . 2 F 2 . (23)t 2 25 6m n r*

The pattern here is the similar to that with all traits mal-
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adapted. Modularity will retard adaptation when the argument
of F is large, and when it is small, the cost is m11an2(21a) [
(m/n)(11a)n21. Again, a minimum cost of n21 will always ap-
ply. Comparing equations (22) and (23) with the cases in
which all traits are equally maladapted, equations (12) and
(21), it is clear that, as expected, a higher level of modularity
will be favored when only a single trait is maladapted, but
it is also clear that the cost of complexity cannot be eliminated
with modular pleiotropy, a minimum cost of n21 always ap-
plies. Furthermore, under some conditions, modularity can
retard the rate of adaptation (although not all of these are
plausible).

Note that the case considered here is very similar to the
mosaic and corridor models of quantitative trait evolution
examined by Wagner and others (Wagner 1988; Zeng 1988;
Baatz and Wagner 1997) in which directional selection on
one trait is affected by stabilizing selection on pleiotropically
linked traits. Our findings are consistent with those of Baatz
and Wagner (1997), who showed that hidden pleiotropic ef-
fects, in absence of genetic correlations, could lead to a re-
duced rate of adaptation.

DISCUSSION

In this paper, we have shown that Orr’s (2000) cost of
complexity is a robust phenomenon. Neither altered assump-
tions about mutation nor phenotypic modularity, in the sense
of parcellated pleiotropy, can remove the cost, although both
can reduce it significantly under some circumstances. Alter-
ing the structure of genetic correlations (the G-matrix in
quantitative genetic parlance) could reduce the cost but under
quite restrictive circumstances; in general we expect such
correlations to act as a constraint. Our results do depend on
the assumption of a single-mutant adaptive walk, which may
be restrictive (Barton 2001). In particular, the restriction that
only one mutation is allowed to segregate in a single time-
step leads to the factor 1/m in equation (19), and this of course
effects all the subsequent results. To address this we have
carried out a number of explicit population simulations in
which multiple mutations can segregate. Initial results sug-
gest that the findings obtained here may be robust at least in
some regions of parameter space, but the question remains
open.

There is, as we have said, little evidence as to whether
phenotypic complexity, in any measurable sense, is associ-
ated with a reduced rate of adaptation in the world. The
robustness of Orr’s finding adds confidence to the assertion
that such a cost is important, but there remains the strong
possibility that the model is in some way inadequate. Fisher’s
model is of course a gross simplification of the way selection
acts on phenotypes. The question is whether it really captures,
in Fisher’s words (1930, ch. 2), ‘‘the statistical requirements
of the situation,’’ or whether it is lacking some essential
features. By ‘‘essential,’’ we mean features that might be
expected to vary systematically with phenotypic complexity.
Phenomena such as balancing selection, hitchhiking, or non-
additive genetics, although important in the world, might not
be expected to so vary, and so have not been considered here.
Discussions related to the following are found in Leigh
(1987) and Orr (2000), and we draw on them both here.

A fundamental assumption of Fisher’s model is that the
optimal value of each trait is independent of the phenotypic
state of all the other traits. This, quite clearly, is likely to be
the exception rather than the rule when it comes to selection
on real phenotypes. The situation in the world might be rep-
resented by Figure 4d, where the state of certain traits pro-
vides part of the selective context for other traits. Such a
notion is central to the literature on modularity, where a
module is often assumed to comprise a functionally integrated
sets of traits (Bonner 1988; Cheverud 1996; Wagner 1996),
rather than an essentially random set, as here (Fig. 4c). The
point is interesting in light of the fact that Fisher spoke of
his model as pertaining to a single complex organ, such as
the vertebrate eye (Fisher 1930; Orr 1999). It is also clear
that fitness interactions between traits need not reflect an
obvious functional or developmental connection. It has been
suggested by many authors, for example, that behavioral
complexity can increase the rate at which new niches are
colonized, altering the selective forces and thus the rate of
evolution, for other, quite distinct traits (West-Eberhard
1987; Bateson 1988; Gittleman et al. 1996 and references
therein; Orr 2000; Resnick and Ghalamber 2001).

A second feature absent from Fisher’s model is closely
related to trait interactions. Fisher’s model posits a single
optimal point in n-dimensional space. Despite the difficulties
in testing this assumption (Whitlock et al. 1995), some lines
of experimental evidence suggest that it may be questionable
and that alternative phenotypic optima may be accessible
from identical initial conditions. For example, Lenski and
Trevisiano (1994) showed that genetically identical popu-
lations of bacteria subject to identical selection regimes
evolved to seemingly optimal states that were phenotypically
as well as genetically distinct. The importance of results such
as these is not clear. The findings could be exceptional or
misleading (with the eventual phenotypic diversity reflecting
chance variation in neutral traits rather than true alternative
phenotypic optima, for example). However, it is clear that
fitness interactions between traits, as depicted in Figure 4d,
could easily lead to such a state of affairs. If this situation
is widespread, then we would need to replace the smooth
single peak in Figure 1 with an alternative fitness landscape.
Such a landscape would be more-or-less rugged, containing
multiple peaks, and ridges of near-neutrality (e.g., Kauffman
and Levin 1987; Whitlock et al. 1995; Gavrilets 1999). In-
deed it is this ruggedness that is often meant by the term
‘‘complexity’’ in discussions of biological evolution (e.g.,
Kauffman and Levin 1987), rather than the dimensionality
of the landscape, as used here.

The related phenomena of trait interactions and rugged or
holely adaptive landscapes would almost certainly affect the
conclusions reached here. If multiple optima are important,
for example, we can surely expect their number and avail-
ability to vary (and possibly increase) with the number of
phenotypic traits under selection. Furthermore, in a rugged
or holey fitness landscape, a population trapped at a local
fitness optimum in n-dimensional space might find that the
addition of extra dimensions enabled further adaptive evo-
lution along those dimensions. This could increase the rate
of evolution for organisms characterized by more phenotypic
dimensions (higher n).
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Multiple optima can be easily incorporated into Fisher’s
geometrical model (e.g., Barton 2001) and into related mul-
tivariate quantitative genetics. However, to answer questions
about the cost of complexity would require knowledge of
how the relevant properties of the fitness surface might vary
with increasing phenotypic complexity. There is no empirical
guidance on this point, and no obvious way to incorporate
such variation mathematically.
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APPENDIX 1

In this appendix, we give details of the full stochastic process
underlying equation (2) of the main text.

Consider a population of identical individuals that all, at time t,
have fitness Wt. A new mutation is assumed to arise and to have
fitness . The value of has a random component but does,W9 W9t t
generally, also depend on the state of the population at time t. The
selection coefficient associated with the mutation, st, is given by st
5 ( /Wt) 2 1. We introduce the probability of fixation, P(s), usingW9t
another independent random variable h(s), which is 1 (0) with prob-
ability P(s) [1 2 P(s)]. One possible representation of h(s) is as
Q[P(s) 2 j], where Q(·) denotes Heaviside’s step function and j
is an independent, uniformly distributed random variable over [0,1].
When h(s) is 1 (0), fixation (loss) of a mutant with selection co-
efficient s occurs.

Loss or fixation of a mutant corresponds to an event, and the
fitness at time t 1 1 is Wt11 5 ( ) [ 3 [Wt 312h(s ) h(s ) 12h(s )t t tW W9 Wt t t
(1 1 st) 5 Wt 3 (1 1 st) . Thus, Dlog Wt [ log Wt11 2 logh(s ) h(s )t t

Wt 5 h(st)log(1 1 st). Taking an expectation of this equation and
explicitly carrying out this expectation with respect to j yields
equation (2).

APPENDIX 2

In this appendix, we discuss the distribution of the variable u,
the angle between z(t) and Dz(t), that appears in equation (9). Fol-
lowing Leigh (1987), we derive the distribution of y [ 2 cosÏn
u (where n is the number of traits) because for large n, y has a
distribution, denoted f (y), that is independent of n. Formally, this
distribution is given by f (y) 5 # d(y 1 cos u) dV/# dV, whereÏn
dV signifies the measure of angular integrals appropriate to a space
of n dimensions and d(·) denotes a Dirac delta function. Here, and
elsewhere in the appendices, integrals with unspecified limits cover
the full range of 2` to `. It can be shown that all except one of
the angular integrations cancel between numerator and denomina-
tor, so that all that remains is f (y) 5 d(y 1 cos u)sinn22u

p# Ïn0
du/ sinn22u du. Evaluating the integrals yieldsp#0

n
G1 2 (n23)/22 2 2y y

f (y) 5 1 2 Q 1 2 , (A1)1 2 1 2n nn 2 1
ÏnpG1 22

where Q(·) denotes Heaviside’s step function and G(·) denotes Eu-
ler’s gamma function.

Note that for n k 3, f (y) becomes the standard normal distri-
bution (Fisher 1930):

21 y
f (y) 5 exp 2 . (A2)1 2!2p 2

Although for most of this paper, including Figures 2 and 3, equation
(A2) will be used, when we examine high levels of modular plei-
otropy (e.g., equation 19), it may not apply, as a module may include
a small number of traits. However, extensive numerical work and
analysis of tractable cases using the exact form, equation (A1) sug-
gest that the Gaussian approximation remains extremely accurate

and that any correction will be in the direction of reducing the rate
of adaptation.

APPENDIX 3
In this appendix, we relate properties of the distribution of mag-

nitudes of mutations, p(r), to the distribution of selection coeffi-
cients, ft(s), and the distribution of mutant effects on a single quan-
titative trait—both of which have been investigated empirically. At
times, we will specialize to the prototypical case of the gamma
distribution, parameterized to agree with definitions of r and a in
the main text equations (10) and (11):

a21
a ar

2ar /rp(r) 5 e . (A3)1 2rG(a) r

This distribution is used in Figure 2c, and in the limit a → `, it
becomes the Dirac delta function d(r 2 r), and so encompasses
mutations of fixed magnitude as shown in Figure 2a. In addition,
of course, the distribution is exponential when a 5 1.

Initially, we focus on the distribution of selection coefficients,
ft(s). As mentioned in the text, the issue is whether the existence
of a large class of neutral or nearly neutral mutations places any
constraints on the form of p(r). We begin, assuming \z(t)\ has a
fixed value z. It then follows from equation (9) that the distribution
of selection coefficients is

22zr cos u2(r /2)f (s) 5 E(d{s 2 [e 2 1]})t

` ` 2zry r
5 dr p(r) dy f (y)d s 2 exp 2 1 1 (A4)E E 1 5 6 22Ïn0 2`

where y and f (y) are as described in Appendix 2. Setting y0 [ y0(r)
5 /zr[ln(1 1 s) 1 r2/2] and using standard properties of a DiracÏn
delta function allows us to write

` `
d(y 2 y )0f (s) 5 dr p(r) dy f (y)t E E zr0 2` (1 1 s)

Ïn
` Ïn

5 dr p(r) f [y (r)] . (A5)E 0 zr(1 1 s)0

It is this function that is plotted in Figure 2, using the Gaussian
form of f (y), equation (A2). To examine the existence of small-
effect mutations, we can characterize the behavior of this distri-
bution in the vicinity of s 5 0. First, we make a small s approxi-
mations: (1 1 s)21 . 1 and ln(1 1 s) . s so

`Ïn Ïns Ïnrdr
f (s) . p(r) f 1 . (A6)t E 1 2z r zr 2z0

Note that ft(s) has the potential to be singular in the vicinity of
s 5 0 because of the factor r21 in the integrand. To investigate this,
we consider the contribution to the integral for r in the range (0,
j), where j is sufficiently small that j K z/ and j K s/z. InÏn Ïn
this range, the limiting form of p(r), given in the text, is also as-
sumed to apply, so p(r) 5 p0ra21, where p0 is a constant. The
contribution from r in the range (0, j) is approximately ( p0/z)Ïn

ra22 f ( s/zr) dr 5 ( /z)ap0zsza21 u2a f (u) du. Thus, inj `# Ïn Ïn #0 Ïn z s z /(zj )
the vicinity of s 5 0, ft(s) is singular for a # 1. In other words,
for small a, a significant proportion of mutations will be neutral,
with s . 0. Specializing to the gamma distribution equation (A3),
we find numerically, that, consistent with the above behavior, ft(s)
contains a finite peak in the vicinity of s 5 0 for a . 1 but that as
a increases, the location of the peak moves to increasingly negative
s. The location of the peak can be found exactly in the limit a →
`, when mutations have fixed magnitude, r. In this case, the modal
value of the distribution is found to be

2 2 2(2z 1 n)r r
mode(s) 5 exp 2 2 1 . 2 , (A7)1 22n 2

where z2 K n, r K 1. So for r not too large, the existence of a
significant class of nearly neutral mutations seems consistent with
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even the most extreme value of a. However, for large r, this will
not be the case.

Let us now consider how the distribution of mutant effects of a
single trait is affected by the precise form of p(r). The key issue
here is whether empirical evidence of leptokurtic distributions plac-
es any constraints on p(r). A leptokurtic distribution has a kurtosis
(fourth central moment divided by the squared variance) in excess
of 3, the value associated with a Gaussian. The distribution of
mutant effects on all n traits is assumed to depend on the mutational
change in trait values, Dz, only as a function of its magnitude, \Dz \.
We write this distribution as M(\Dz \ ) and the distribution of mu-
tational magnitudes is given by p(r) 5 # d(r 2 \Dz \ )M(\Dz \ ) dnDz.
This yields

n21p(r) 5 V r M(r) and (A8a)n

n /22p
V 5 , (A8b)n G(n /2)

where Vn is the surface area of a unit radius sphere in n dimensional
Euclidean space. The distribution of mutant effects on a single trait,
say z1, is given by

2 2 2M (z ) 5 M(Ïz 1 z 1 · · · z ) dz dz · · · dz1 1 E 1 2 n 2 3 n

2 2 2p(Ïz 1 z 1 · · · z )1 1 2 n
5 dz dz · · · dzE 2 3 n2 2 2 (n21)/2V (z 1 z 1 · · · z )n 1 2 n

` 2 2p(Ïz 1 z )V 1n21 n225 z dz, (A9)E 2 2 (n21)/2V (z 1 z )n 10

where in the last expression, we have used spherical polar coor-
dinates in n 2 1 spatial dimensions. The kurtosis of M1(z1) can
easily be found once the change of variable z 5 zz1zu is made:

4 4E [z ] 3n E [r ]1kurt(z ) [ 5 , (A10)1 2 2 2 2(E [z ]) n 1 2 (E [r ])1

where E[rk] 5 rkp(r) dr. For large n the first factor on the right`#0
side is approximately 3, and the properties of moments tells us that
the second factor is greater than or equal to unity. The distribution
is unlikely then to be platykurtic (with a kurtosis less than 3), the
only question is how readily will it become leptokurtic. Specializing
again to the gamma distribution yields

3n (3 1 a)(2 1 a)
kurt(z ) 5 . (A11)1 n 1 2 (1 1 a)a

The second factor is a decreasing function of a, so small a lead
to the largest level of kurtosis. Although kurt(z1) ø 3 only for a ;
n, much smaller values are required for substantial kurtosis. In the
limit of large n, we find that kurt(z1) 5 4 implies a . 12.45 and
kurt(z1) 5 6 implies a . 4.37.

Together, the results of this appendix allow us place surprisingly
little restriction on the distribution of mutant effects. However, both
lines of evidence suggest that, plausibly, a K n should hold.

APPENDIX 4

In this appendix, we provide the mathematical details behind
equation (12) and describe the broad class of p(r) to which this
equation applies.

We begin by writing equation (5) in terms of the distributions
of y 5 2 cos u and r, namely f (y) and p(r) (Appendices 2 andÏn
3) and omit the time argument of \z \ for brevity. Note that we do
not need an explicit expression for ft(s) because it is fully equiv-
alent to take the expectation with respect to the three variables that
appear in equation (9), as long as we ensure that only positive
selection coefficients, s . 0, contribute. We have

2` ` 2\z\ry r
E [Dln W ] 5 2E dr p(r) dy f (y) 2 , (A12)E E 1 2[ ]2Ïn0 Ïnr /(2\z\ )

where the expectation on the right-side now refers only to \z \. The

lower limit of the y integral comes from the requirement that s .
0, and from equation (9), this requires y 5 2 cos u . r /Ïn Ïn
2 \z \ ). We can write equation (A12) as

`2 22\z\ 2\z\2E [Dln W ] 5 E dr r p(r)K , (A13)E 21 2[ ]n nr0

where
2` 1

K(x) 5 dy f (y) y 2 . (A14)E 1 2Ï2x1/Ï2x

Let us note here, that including selection of arbitrary strength,
s, such that W 5 exp(2s/2 \z(t)\ 2) will simply multiply the right-
side of equation (A13) by s. Because s, assuming it is independent
of n, will be absent from the argument of K, its inclusion will have
no effect on any conclusions about costs of complexity. Scaling s
with n would, of course, affect the cost. However, the only plausible
scaling, such that s decreases as n increases, would only make the
cost of complexity more severe.

Note that dK(x)/dx . 0 for any x , ` because

`23/2dK(x) x 1
5 dy f (y) y 2E1 2 1 2dx Ï2 Ï2x1/Ï2x

and this is manifestly nonnegative. Also note that for large x, K(x)
. dy f (y)y2 5 1/2. We assume the distribution of mutation`#0
magnitudes, p(r), depends on a single length scale, r, and without
loss of generality, this length scale can be taken as the mean value
of r:

`

E [r] [ rp(r) dr 5 r. (A15)E
0

The assumption that p(r) depends just on one length scale r means,
without loss of generality, p(r) can be written as

q(r /r)
p(r) 5 (A16)

r

for some function q(x). Because p(r) $ 0, p(r) dr 5 1 and` `# #0 0
rp(r) dr 5 r the function q(x) must obey

q(x) $ 0, (A17a)
`

q(x) dx 5 1, and (A17b)E
0

`

xq(x) dx 5 1. (A17c)E
0

Apart from these constraints, the function q(x) is arbitrary, so a
wide class of distribution functions, depending on shape parameters
(but not other length scales), can be represented in the form of
equation (A16). From the assumption in the text about p(r), equation
(11), it follows that for small u, q(u) . u(a21)q0, where a . 0 (as
is required for normalizability of q[u]) and q0 is a constant. If q(u)
is strictly zero for small u, we take q0 5 0.

Using equations (A16) in (A13) quickly yields

2 2 22\z\ r 2\z\
E [Dln W ] 5 E F , (A18)21 2[ ]n nr

where we have defined
` `x 12 3/2 2F(x) 5 du u q(u)K 5 x du u q(Ïxu)K . (A19)E E2 21 2 1 2u u0 0

Equation (12) only follows from equation (A18) if the variance of
\z \ 2 can be neglected. We have extensive numerical evidence that
this variance always remains small and its neglect does not signif-
icantly influence the dynamical predictions for E[ln W(t)]. We fur-
thermore have analytical results indicating that when r K \z(t)\,
as may hold for a maladapted population, any variance of \z(t)\
decreases with time. Overall, the neglect of the variance of \z(t)\
appears to be a highly accurate approximation.
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Some important properties of F(x) follow immediately from its
above definition equation (A19):

(1) dF(x)/dx 5 duq(u) dK(y)/dyz , and because dK(y)/dy .
`

2#0 y5x/u
0, it immediately follows that dF(x)/dx . 0;

(2) limx→0 F(x)/x 5 0;
(3) limx→` F(x)/x 5 0 when duu2q(u) , `;`#0
(4) for small x, F(x) . x11a/2q0 3 c, where c 5 duua11 K(1/`#0

u2 is a numerical constant, which for a # 3 is O(1); and

(5) for large x, F(x) . duu2q(u)/2, assuming duu2q(u) , `.` `# #0 0
Property 1 shows that F(x) is a monotonically increasing function

of x. Properties 1–3, in conjunction with equation (12) shows that
mutations of intermediate length will always maximize the rate of
adaptation (Kimura 1983; Orr 2000). Properties 4 and 5 are the
source of equations (13) and (14) and similar statements in the text.
To derive the forms in the text requires equation (A16), remem-
bering to use scalings such as equation (15) when appropriate.


