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Abstract

The forward diffusion equation for gene frequency dynamics is solved subject to the condition that the total probability is conserved

at all times. This can lead to solutions developing singular spikes (Dirac delta functions) at the gene frequencies 0 and 1. When such

spikes appear in solutions they signal gene loss or gene fixation, with the ‘‘weight’’ associated with the spikes corresponding to the

probability of loss or fixation. The forward diffusion equation is thus solved for all gene frequencies, namely the absorbing frequencies of

0 and 1 along with the continuous range of gene frequencies on the interval ð0; 1Þ that excludes the frequencies of 0 and 1. Previously, the

probabilities of the absorbing frequencies of 0 and 1 were found by appeal to the backward diffusion equation, while those in the

continuous range ð0; 1Þ were found from the forward diffusion equation. Our unified approach does not require two separate equations

for a complete dynamical treatment of all gene frequencies within a diffusion approximation framework. For cases involving mutation,

migration and selection, it is shown that a property of the deterministic part of gene frequency dynamics determines when fixation and

loss can occur. It is also shown how solution of the forward equation, at long times, leads to the standard result for the fixation

probability.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work, we focus on genetic drift—the process that
occurs when there is random variation in the number of
offspring contributed by each adult member of a finite
population. At one locus in the population, the number of
copies of a particular gene randomly varies from genera-
tion to generation, and undergoes a kind of random walk.
The outcome is that the genetic composition of the
population fluctuates over time.

Genetic drift is an evolutionary force that has the
tendency to decrease the variation in a population and can
influence the effectiveness of mutation and selection. One
of the key mathematical approaches to deal with genetic
drift is the diffusion approximation. This was introduced
into population genetics by Fisher (1922), Wright (1945),
and substantially extended and developed by Kimura
e front matter r 2007 Elsevier Ltd. All rights reserved.
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(1955a). Under this approximation, the proportion of
individuals of a particular genetic type is treated as a
continuous random variable whose distribution obeys
a diffusion equation. This approach has been used to
derive results that lie at the very heart of population
genetics (Crow and Kimura, 1970).
Here, we aim to readdress issues that were apparently

dealt with more than 50 years ago (Kimura, 1955b) and
have become part of the textbook knowledge of the subject.
Our aim is to provide a conceptually simple and consistent
approach to solve the diffusion equation. This involves
reexamining the mathematical conditions required of the
solutions, as well as their nature and interpretation.
2. Basics

Consider a single genetic locus in a population of N

diploid individuals. Let us focus on one allele, denoted as
A, at a given locus. The ratio of the total number of copies
of allele A in the population, to the total number of all
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alleles at the locus (2N), is termed the gene frequency and
this can only take the discrete values 0=ð2NÞ; 1=ð2NÞ; . . . ;
2N=ð2NÞ. The diffusion approximation approximates the
gene frequency as a continuous variable, x, that lies in the
range 0 to 1. It is a commonly held view that the forward

diffusion equation has doubtful validity when x lies within
a distance 1=ð2NÞ of the values x ¼ 0 and x ¼ 1 (see, e.g.,
Gale, 1990, Chapter 10). This is exemplified by the exact
solution of the diffusion equation obtained by Kimura
(1955b), for the case of a randomly mating population,
where the only evolutionary force is genetic drift. The
solution is taken to hold only on the interior of the possible
range of x but not at the boundary values of x, i.e., not at
x ¼ 0 and x ¼ 1. Thus, while such a solution is informative
about some quantities of interest, such as the level of
heterozygosity in the population (Crow and Kimura,
1970), it suffers from a lack of completeness, in the sense
that it does not directly say anything about the two gene
frequencies of greatest interest. These are the frequencies
corresponding to where either all copies of allele A are lost
from the population (the frequency x ¼ 0) or where all
individuals carry two copies of allele A—corresponding to
fixation (the frequency x ¼ 1). More generally, solutions of
the forward diffusion equation suffer from a related
problem, namely, in the absence of mutations that take
the population away from at least one of the frequencies
x ¼ 0 or x ¼ 1 (or both), there is a loss of probability from
the region where the forward diffusion equation is taken
to apply—i.e., all x excluding the boundary values x ¼ 0
and x ¼ 1. However, the same diffusion approximation,
when applied in the presence of two-way mutation (i.e.,
mutations that go both from and to allele A) yields a
distribution that applies for the full range of x, and
preserves probability for all times.

The possible phenomena that can occur at the bound-
aries x ¼ 0 and x ¼ 1 have been previously investigated
and classified (Feller, 1952), and from these, mathematical
boundary conditions on solutions to the diffusion equation
have been inferred (Feller, 1954; Voronka and Keller, 1975;
Maruyama, 1977; Ewens, 1979; Gardiner, 2004). Here we
take an alternative approach. Our fundamental guiding
principle is that the probability of the gene frequency lying
in the full range 0pxp1 (i.e., all x including the boundary
frequencies x ¼ 0 and x ¼ 1) should, at all times, be unity.
We consistently take this viewpoint for all problems,
irrespective of the pattern of mutation, selection and
migration. For situations where there is no mutation, the
only way for the total probability to be conserved is for
probability to accumulate at the boundaries. As a
consequence, the approach we adopt can lead to solutions
to the forward diffusion equation that do not have the
property of being smooth and well behaved. Rather, the
approach can lead to solutions that possess singularities—
sharp spikes (Dirac delta functions) that, when present, lie
at one or other or both boundaries. The probability
associated with these singularities, combined with the
probability associated with the interior range of x, lead
to a net probability of unity. As we show, it is completely
natural to associate the probabilities associated with the
spikes at the boundaries, when they exist in the solution,
with the probabilities of gene loss ðx ¼ 0Þ and gene fixation
ðx ¼ 1Þ. Given the correctness of this association, the
approach we are proposing yields a consistent and unified
description of all gene frequencies, i.e., the absorbing
frequencies of 0 and 1 along with the continuous range of
gene frequencies on the interval ð0; 1Þ that excludes the
frequencies of 0 and 1. This is in contrast to all previous
approaches, where the probabilities of the absorbing
frequencies of 0 and 1 were found by appeal to the
backward diffusion equation, while those in the continuous
range ð0; 1Þ were found from solving the forward diffusion
equation.

3. Conservation of probability

Let f ðx; tÞ denote the probability density of the gene
frequency at time t. The interpretation of f ðx; tÞ is that in a
very large number of replicates of a population, that all
have the same initial distribution, the fraction of such
replicates where the gene frequency lies in the range a to b,
at time t, is

R b

a
f ðx; tÞdx.

Generally, we can write the forward diffusion equation
as

qf ðx; tÞ

qt
þ

qjðx; tÞ

qx
¼ 0, (1)

where the quantity jðx; tÞ is the probability current
density—a quantity that characterises the flow of prob-
ability density. The form that jðx; tÞ takes for a diploid
population of N randomly mating individuals is

jðx; tÞ ¼MðxÞf ðx; tÞ �
1

4N

q
qx
½xð1� xÞf ðx; tÞ�, (2)

where MðxÞ represents the deterministic part of gene
frequency dynamics and is typically taken as a polynomial
in x whose coefficients depend on mutation rates, migra-
tion rates and selection coefficients; Crow and Kimura
(1970) use the notation Mdx for this quantity.
The principle that probability is conserved means that

for all times, the total probability does not change, thus

d

dt

Z 1

0

f ðx; tÞdx ¼ 0. (3)

Integrating Eq. (1) over all x, and using conservation of
probability, Eq. (3), yields jð1; tÞ � jð0; tÞ ¼ 0. Given the
absence of any dynamical mechanism that connects the
probability current densities at x ¼ 0 and x ¼ 1, we take
the boundary conditions to be the zero current conditions:

jð0; tÞ ¼ 0,

jð1; tÞ ¼ 0. (4)

These correspond to there being zero probability current
density precisely at the boundaries, x ¼ 0 and x ¼ 1, and
so no probability can flow outside the region x ¼ 0 to x ¼ 1
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and hence be lost. Such boundary conditions were only
adopted for problems with two-way mutation by Crow and
Kimura (1956).

We shall solve the diffusion equation, Eq. (1), subject to
the conditions of Eq. (4). Once such conditions are
imposed, the distribution f ðx; tÞ remains normalised for
all times, in the sense that if we start at time t ¼ 0 with a
probability distribution obeying

R 1
0 f ðx; 0Þdx ¼ 1, then it

automatically follows that
R 1
0 f ðx; tÞdx ¼ 1 holds for all

times. There is thus no loss of probability in this approach.

4. Pure drift

We first analyse the apparently simplest case, where the
only evolutionary force acting on a randomly mating
diploid population is genetic drift. For this case, the
probability current density is given by Eq. (2) with
MðxÞ ¼ 0:

jðx; tÞ ¼ �
1

4N

q
qx
½xð1� xÞf ðx; tÞ� (5)

and the forward diffusion equation reads

qf ðx; tÞ

qt
¼

1

4N

q2

qx2
½xð1� xÞf ðx; tÞ� (6)

(Crow and Kimura, 1970). We solve this equation, subject
to the condition that all replicate populations initially have
the gene frequency of p, so f ðx; 0Þ corresponds to an initial
distribution where only the single frequency p is present.

Solving Eq. (6), subject to Eq. (4) with the form for jðx; tÞ
given by Eq. (5) then leads, inescapably, to the solution
containing spikes (Dirac delta functions) at the boundaries,
after some time. The simplest way to see this is to look at a
stationary solution of Eq. (6), i.e., a solution of the form
f ðx; tÞ ¼ f ðxÞ. For such a solution, we integrate Eq. (5)
from x ¼ 0 to an arbitrary x. Invoking Eq. (4) leads to
xð1� xÞf ðxÞ ¼ A (a constant).

For the set of well-behaved (i.e., non-singular) functions,
we note that if xð1� xÞf ðxÞ ¼ A, then the solution for the
distribution f ðxÞ is the obvious one: f ðxÞ ¼ A=½xð1� xÞ�.
However, in the theory of probability, it is allowable for
distributions to contain functions that diverge (i.e., are
singular) as long as they are non-negative and integrable.
The singular function that is of relevance here is the Dirac
delta function dðx� aÞ. This is a zero-width, unit area
spike, that is located at x ¼ a and has infinite height (and
hence is singular). Such functions naturally occur. For
example, if, on repeated measurement of a continuous
random variable, the single value p is always obtained, then
the probability density describing this is simply dðx� pÞ,
with all of the ‘‘mass’’ or ‘‘weight’’ of the distribution
located solely at x ¼ p.

Returning to the equation for the stationary solution for
the distribution f ðxÞ, namely xð1� xÞf ðxÞ ¼ A, we proceed
to solve it by dividing through by xð1� xÞ. This yields
f ðxÞ ¼ A=½xð1� xÞ� þ BdðxÞ þ Cdð1� xÞ where B and C

are constants that multiply Dirac delta functions located at
x ¼ 0 and x ¼ 1. The Dirac delta functions, with un-
determined constants multiplying them, are present since
xdðxÞ and ð1� xÞdð1� xÞ are identically zero (Dirac, 1958)
and so must, in all generality, be included in the solution
for the probability density f ðxÞ. The condition that f ðxÞ ¼

A=½xð1� xÞ� þ BdðxÞ þ Cdð1� xÞ is normalisable (has a
finite integral) requires A ¼ 0 (since

R 1
0 1=½xð1� xÞ�dx ¼

1) and hence a stationary solution for f ðxÞ consists
solely of singular solutions, namely the Dirac delta
functions at x ¼ 0 and x ¼ 1. Imposing the condition of
normalisation,

R 1
0 f ðxÞdx ¼ 1, on this solution yields

Bþ C ¼ 1. If, furthermore, we impose the condition that
the mean gene frequency, at any time, coincides with its
initial value, p, since drift has no systematic direction to it
(as theory can verify; see Crow and Kimura, 1970), then we
arrive at B ¼ 1� p and C ¼ p and the stationary solution
for the distribution is f ðxÞ ¼ ð1� pÞdðxÞ þ pdð1� xÞ.
The coefficients of the delta functions are precisely the
probabilities of loss or fixation of the allele A. The presence
of delta functions in the solution of the forward diffusion
equation is essential, in this case, if total probability is to
add to unity. This example shows it is also entirely natural
to associate the coefficients of dðxÞ and dð1� xÞ with the
probability that allele A is lost or fixed.
We note that a direct numerical approach to solving

the diffusion equation, Eq. (6), will inevitably run into
problems, when Eq. (4) is imposed, since no standard
numerical procedure can handle singularities of the delta
function type, that arise in the solution.

5. Solution of the pure drift equation

Given the above arguments, the diffusion equation,
Eq. (6), has solutions that:
(i)
 consist, on the interior of the range of x, i.e., for
0oxo1, of a function of x that is integrable;
(ii)
 generally contains singularities (Dirac delta functions)
at the boundaries of the range of x, namely x ¼ 0 and
x ¼ 1 and
(iii)
 at time t ¼ 0, has the form dðx� pÞ, corresponding to
an initial distribution with a single gene frequency of p

being present.
The solution thus has the form (see Appendix A for
mathematical details)

f ðx; tÞ ¼ P0ðtÞdðxÞ þP1ðtÞdð1� xÞ þ f K ðx; tÞ. (7)

The quantities P0ðtÞ andP1ðtÞ are the probabilities that the
gene frequency has achieved the values 0 and 1, respec-
tively, by time t. They vanish at time t ¼ 0; they also
depend on p and N, however, we do not explicitly exhibit
this dependence. The function f K ðx; tÞ has the property
f K ðx; 0Þ ¼ dðx� pÞ and hence incorporates the condition
that the only gene frequency that is initially present is p.
In Appendix A we determine the exact solution of Eq. (6)

and show that the function f K ðx; tÞ can be directly
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identified with Kimura’s solution of the problem of pure
drift (Kimura, 1955b) and for completeness, this function is
reproduced in Eq. (A.7) of Appendix A. The function
f K ðx; tÞ corresponds to the solution of the diffusion
equation, Eq. (6), that is normalisable and does not posses
any delta function singularities at x ¼ 0 and x ¼ 1.

The functions P0ðtÞ and P1ðtÞ are shown in Appendix A
to be given by

P0ðtÞ ¼
1

4N

Z t

0

f K ð0; sÞds,

P1ðtÞ ¼
1

4N

Z t

0

f K ð1; sÞds. (8)

We note that usually ð4NÞ�1
R t

0 f K ð1; sÞds is identified with
the fixation probability from considerations of the flow of
probability density into x ¼ 1 (Crow and Kimura, 1970).
Here, such an identification is an automatic result of a
calculational scheme where probability conservation is
enforced, and in this scheme P0ðtÞ and P1ðtÞ are the
coefficients of Dirac delta functions at the boundaries, in
the full solution of the problem.

In Fig. 1, the probabilities P0ðtÞ and P1ðtÞ are plotted
against time. In the same figure, plots are given of the exact
probabilities of the gene frequency taking the value of 0
and 1, as follows from an exact Markov chain treatment of
a Wright–Fisher model (Fisher, 1930; Wright, 1931). For
even very small population sizes, such as the value N ¼ 10,
that was used in the figure, there are very small differences
between the diffusion results for the weights of the delta
functions, P0ðtÞ and P1ðtÞ, and the exact results for the
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Fig. 1. The functions P0ðtÞ and P1ðtÞ, are plotted against time. These

functions are identified as the probability of loss and fixation, by time t, as

follows from the diffusion analysis presented in this work. For the figure

we used an initial gene frequency of p ¼ 0:7 and a population size of

N ¼ 10. The exact probabilities of the gene frequency taking the value of 0

and 1, as follows from an exact Markov chain treatment of a Wright–

Fisher model (Fisher, 1930; Wright, 1931) are also given in the figure.

There is remarkably good agreement between the diffusion approximation

for the probability of the gene frequency lying at the boundaries and the

exact results for gene loss and gene fixation.
probabilities of loss and fixation. For larger population
sizes there is an even smaller discrepancy between exact
results and those from diffusion analysis, with very close
agreement for N ¼ 100.

6. General case

For a randomly mating population, that is subject to
mutation, selection and migration, the function MðxÞ (that
occurs in the equation for the probability current density,
Eq. (2)) is generally non-zero and the forward diffusion
equation for this case takes the form

qf ðx; tÞ

qt
¼ �

q
qx
½MðxÞf ðx; tÞ� þ

1

4N

q2

qx2
½xð1� xÞf ðx; tÞ�.

(9)

We look for a solution of this equation, subject to the
boundary conditions of Eq. (4), with only the single
gene frequency of p present at time t ¼ 0. The form of the
solution is taken to be that given in Eq. (7) with the
functions P0ðtÞ, P1ðtÞ and f K ðx; tÞ to be determined. In
Appendix B we show that for Eq. (7) to be a solution
requires the following: (1) that f K ðx; tÞ obeys Eq. (9), (2)
that f K ðx; tÞ corresponds to the single gene frequency p

being initially present (i.e., f K ðx; 0Þ ¼ dðx� pÞ), (3) that
f K ðx; tÞ is subject to the conditions implicitly adopted by
earlier workers, namely, that the function is normalisable
and does not contain any delta function singularities at the
boundaries, and (4) for all t we have

Mð0ÞP0ðtÞ ¼ 0,

Mð1ÞP1ðtÞ ¼ 0. (10)

The two conditions in Eq. (10) yield four separate cases
that govern the presence of Dirac delta functions in the
solution for f ðx; tÞ. With jK ðx; tÞ ¼MðxÞf K ðx; tÞ �
ð4NÞ�1q½xð1� xÞf K ðx; tÞ�=qx we have:
(i)
 Mð0Þa0, Mð1Þa0, leading to P0ðtÞ ¼ 0 ¼ jK ð0; tÞ and
P1ðtÞ ¼ 0 ¼ jK ð1; tÞ;
(ii)
 Mð0Þ ¼ 0, Mð1Þa0, leading to P1ðtÞ ¼ 0 ¼ jK ð1; tÞ
and P0ðtÞ obeying dP0ðtÞ=dt ¼ �jK ð0; tÞ;
(iii)
 Mð0Þa0, Mð1Þ ¼ 0, leading to P0ðtÞ ¼ 0 ¼ jK ð0; tÞ
and P1ðtÞ obeying dP1ðtÞ=dt ¼ jK ð1; tÞ and
(iv)
 Mð0Þ ¼ 0, Mð1Þ ¼ 0, leading to P0ðtÞ and P1ðtÞ

obeying dP0ðtÞ=dt ¼ �jK ð0; tÞ and dP1ðtÞ=dt ¼

jK ð1; tÞ.
Case (i) corresponds to the deterministic part of gene
frequency dynamics (i.e., MðxÞ) being able to move gene
frequencies away from the boundary values x ¼ 0 and
x ¼ 1, so neither loss nor fixation occurs. The outcome is
that the distribution f ðx; tÞ does not develop Dirac delta
functions at the boundaries. In cases (ii) and (iii) the
vanishing of MðxÞ at one boundary, as a result of vanishing
deterministic dynamics there, allows gene frequencies to
reach the boundary and for Dirac delta functions to
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against x.
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become established, over time, at that boundary. Case (iv),
which includes the pure drift problem analysed above, as a
special case, corresponds to a vanishing of deterministic
dynamics at both boundaries. The result is that gene
frequencies can reach both boundaries and both gene loss
and fixation occur over time, as signalled by two delta
functions that develop in f ðx; tÞ at the boundaries.

7. Continuity of solutions

The conventional approach to solve the forward diffu-
sion equation imposes different boundary conditions in
different cases, depending on the nature of mutation (see,
e.g., Crow and Kimura, 1956). In the present work we have
consistently imposed the same type of boundary condi-
tions, Eq. (4), and hence do not have different cases. We
have not, however, discussed how the approach presented
here allows a solution to transcend what are, in the
conventional approach, different cases. To consider this
aspect, we have investigated a time-dependent solution of
the diffusion equation that is normalised for all times and
which does not, for the pattern of mutation adopted, ever
develop delta functions at boundary values of x. The issue
is how such a solution behaves when the character of
mutation is altered, such that, e.g., the loss of allele A can
occur with non-zero probability. To this end, consider the
situation where the only evolutionary processes occurring
are mutation and drift. Mutations are taken go in both
directions, i.e., both from and to the allele A, with
probabilities of u and v. In this case, the function MðxÞ

takes the form MðxÞ ¼ vð1� xÞ � ux (see, e.g., Ewens,
1979). If, at time t ¼ 0 only the gene frequency p occurs,
the form of the solution which conserves probability at all
times (because probability current density vanishes at
both boundaries) is known (see Crow and Kimura, 1970,
Eqs. (8.5.8) and (8.5.9)). Given such a solution, it is
possible to change the pattern of mutation, by allowing (at
fixed time) first u and then v to tend to zero. In doing so,
the solution develops into one that has delta function
singularities at the boundaries. Exact calculations (not
given here) directly show that such a solution coincides
with the singular solution of the pure drift case, given
above. Thus, for example, the original solution of Crow
and Kimura, which has no singularity at x ¼ 0, becomes a
solution with a delta function, at x ¼ 0, whose weight
coincides precisely with the form for P0ðtÞ that was found
in the pure drift case.

We note that the analogue of the delta function that
occurs, at, e.g., x ¼ 0, in the resulting solution, when the
scaled mutation rate, V ¼ 4Nv, is small but non-zero, is the
function

DðxÞ ¼ VxV�1. (11)

This is a normalised probability density over 0pxp1, i.e.,R 1
0 DðxÞdx ¼ 1. Its shape is very dependent on the value of

V. If Vo1 then DðxÞ decreases as x is increased from x ¼ 0.
For V�1 this is a relatively slow decrease, but when V51
the function has a rapid decrease—see Fig. 2. Furthermore,
for V51 the mean and variance of DðxÞ are both of order
V. It is only as V ! 0 that the function DðxÞ formally
approaches a Dirac delta function, dðxÞ (see Barton, 1989,
Eq. (1.2.15)) and for small, but finite V, the function DðxÞ
represents the distribution of replicate populations where
allele A is ‘‘nearly lost.’’
We infer from this example that there are not multiple

types of boundary condition, depending on the nature of
mutation, or more generally, depending on the form of the
function associated with the deterministic aspect of
frequency dynamics, MðxÞ. Rather, there is a single type
of boundary condition, Eq. (4), and on modification of
MðxÞ, time-dependent solutions of the diffusion equation
can be freely converted between solutions of apparently
different types, i.e., converted between solutions that yield
fixation and/or loss and those that do not exhibit this
property. Thus, the boundary condition of Eq. (4) covers
all such cases.
We note that previously, the probabilities of the exact

discrete terminal class frequencies (x ¼ 0 and x ¼ 1) have
been associated with the probability, calculated from
diffusion analysis, of the frequency falling into the ranges
0oxo1=ð2NÞ and 1� 1=ð2NÞoxo1 (Gale, 1990, pp.
281–284). We note, however, that in the absence of
mutation, the exact solution of the diffusion equation
leads to Dirac delta functions at x ¼ 0 and x ¼ 1. This
corresponds to the range of the terminal classes being
infinitesimal (the width of the delta functions) under the
continuous frequency diffusion approximation. We also
note that when mutation is finite, the function that
becomes the delta function, at x ¼ 0, is given in Eq. (11)
with V ¼ 4Nv. Since this function has a mean and variance
of order V, it follows that when

ffiffiffiffi
V
p

51=ð2NÞ we again find
that not all of the interval 0oxo1=ð2NÞ, of the continuous



ARTICLE IN PRESS
A.J. McKane, D. Waxman / Journal of Theoretical Biology 247 (2007) 849–858854
x diffusion problem, contributes significantly to the
probability of being in the terminal class; only a fractionffiffiffiffi

V
p

=ð2NÞ contributes.
Generally, we note that under a continuous frequency

diffusion approximation, there are no discrete frequency
classes and we infer that detailed questions concerning
particular discrete frequency classes may not be reliably
answerable under such an approximation. In particular,
precisely determining the range of x corresponding to a
given discrete frequency class along with the associated
probability, may not be unambiguously determined.
Fortunately, many questions for which diffusion analysis
is used are associated with averages of smooth functions of
x, and these are well captured by the approximation.

8. Discussion

In this work, we have considered the diffusion approx-
imation of population genetics to gene frequency dynamics.
We note that doubt has persisted about validity of the
solutions of the forward diffusion equation when gene
frequencies are a distance �1=ð2NÞ from the boundaries
x ¼ 0 and x ¼ 1 (see, e.g., Gale, 1990, Chapter 10). An
analysis of the phenomena at the boundaries x ¼ 0 and x ¼

1 was performed originally by Feller (1952). However,
solutions of the forward diffusion equation containing
singularities, i.e., Dirac delta functions (Dirac, 1958; Light-
hill, 1958) at the boundaries were not considered then or in
the ensuing literature on the subject. In the present work we
have analysed the diffusion equation under a single type
of boundary condition, Eq. (4), that follows from the
requirement that probability be conserved at all times, and
consequently applies, independent of whether mutation is
present or absent from the equation. Consistently, taking
this approach can lead to singularities (Dirac delta
functions) in the solution at the boundaries, that may be
identified as the distributions characterising loss or fixation
of allele A. The weights of the Dirac delta functions
correspond to remarkably accurate approximations for the
probabilities of loss and fixation (see Fig. 1). Thus, the
diffusion approach contains essentially complete informa-
tion about the full range of gene frequencies in a more
consistent manner than has been previously recognised.

The present work has implicitly emphasised that the
forward diffusion equation provides a complete dynamical
description of all gene frequencies. In the literature there is
often recourse to the backward diffusion equation to derive
some important results. Of these, one of the most
important is probably the long time fixation probability,
which is written P1ð1Þ, in the notation of the present
work. It is interesting and instructive to see how such a
result is obtained from the solution to the forward
diffusion equation. To derive P1ð1Þ we assume that the
solution to the forward diffusion equation has the form
f ðx; tÞ ¼

P1
n¼0 fnðxÞcnðpÞe

�lnt, i.e., a spectral sum, where
fnðxÞ and cnðpÞ are, respectively, eigenfunctions of the
forward and backward diffusion operators that are
associated with eigenvalue ln (see Appendix C for further
details). At long times, the only part of the solution that
persists is associated with vanishing eigenvalues, ln ¼ 0,
hence f ðx;1Þ ¼

P0
n fnðxÞcnðpÞ, where the prime on the

sum indicates that it only includes eigenfunctions asso-
ciated with vanishing eigenvalues. The eigenfunctions
associated with zero eigenvalue can be straightforwardly
found (see Appendix C) with the result that the fnðxÞ are
singular (contain Dirac delta functions), while the cnðpÞ are
not. The fnðxÞ are necessarily singular, since a solution of
the form f ðx; tÞ ¼

P1
n¼0 fnðxÞcnðpÞe

�lnt has to be compa-
tible with the singular solutions of Eq. (9). The coefficient
of dð1� xÞ in f ðx;1Þ has the interpretation as the long
term fixation probability, P1ð1Þ, and we find the standard

result P1ð1Þ ¼
R p

0
e�HðqÞ dq=

R 1
0
e�HðqÞ dq where HðqÞ ¼

4N
R q

0 MðyÞ=½yð1� yÞ�dy.
In summary, we have presented a unified and consistent

approach to solving the forward diffusion equation. We
believe this has cleared away some of the ambiguities in the
literature concerning the nature of the boundary conditions
that need to be imposed on solutions of the forward
diffusion equation. We have demonstrated that the
solutions may contain singular parts, involving Dirac delta
functions, that ensure conservation of probability and
which are informative about gene fixation and loss. We
have given a simple classification scheme of the boundaries
(in terms of the function MðxÞ) that straightforwardly
determines when fixation and loss can be expected to occur
and shown how standard results, that previously have been
derived from the backward diffusion equation, are
contained in the solution of the forward diffusion equation.
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Appendix A

In this appendix, we give mathematical details of the
solution of the diffusion equation for the pure drift case,
Eq. (6). The basic message will be that explicit calculations
lead to Dirac delta functions developing at the boundaries
x ¼ 0 and x ¼ 1. These delta functions ensure that
probability is conserved for all times.
To correctly capture the singular (delta function) parts of

any solutions, we solve the diffusion equation via the
technique of Fourier transformation, since the Fourier
transform of a Dirac delta function is non-singular. The
Fourier transformed equation turns out to be simpler to
solve than the original equation, since it does not involve
hypergeometric functions.
Let us begin by introducing the quantity t ¼ t=ð2NÞ,

which measures time in units of 2N generations, so that the
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factor of 2N is absent from most parts of this appendix. We
shall solve for the characteristic function cðk; tÞ, which is
the Fourier transform of the probability distribution
function f ðx; tÞ: cðk; tÞ ¼

R 1
0 e

ikxf ðx; tÞdx. Using Eq. (6),
and the boundary condition, Eq. (4), we find, on
integrating twice by parts, that cðk; tÞ satisfies

q
qt

cðk; tÞ ¼ �
k2

2

q2

qk2
� i

q
qk

� �
cðk; tÞ. (A.1)

The boundary terms, i.e., limx!0;1 xð1� xÞf ðx; tÞ, vanish
because f ðx; tÞ is normalisable for all t, hence it cannot
contain sufficiently strong power law divergences at the
boundaries.

The characteristic function satisfies the usual conditions
cð0; tÞ ¼ 1 and jcðk; tÞjp1 for all k and t, and if the initial
condition is that we begin with the single frequency, x ¼ p,
then f ðx; 0Þ ¼ dðx� pÞ and so cðk; 0Þ ¼ eikp.

Assuming a separable form, cðk; tÞ ¼ fðkÞe�lt, for the
solution of Eq. (A.1) yields ½d2=dk2

� id=dk � 2l=k2
�

fðkÞ ¼ 0. Solutions of this equation may be written
down in terms of the Bessel functions J and Y (Abramo-
witz and Stegun, 1965): fðkÞ ¼ Aeik=2

ffiffiffiffiffiffiffiffi
k=2

p
J ffiffiffiffiffiffiffiffi

1þ8l
p

=2ðk=2Þ þ
Beik=2

ffiffiffiffiffiffiffiffi
k=2

p
Y ffiffiffiffiffiffiffiffi

1þ8l
p

=2ðk=2Þ where A and B are constants.
Given that fðkÞ is, up to factors, the k dependent part of a
characteristic function where all moments exist (since x

only ranges over a finite interval), it must contain only
integer powers of k, hence

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8l
p

=2 ¼ nþ 1
2

with
n ¼ 0; 1; 2; . . ., i.e., l only takes the discrete values
ln ¼ nðnþ 1Þ=2, n ¼ 0; 1; 2; . . .. In the analogous calcula-
tion for f ðx; tÞ, this condition comes about because of
boundary conditions on a hypergeometric function.

The full solution of Eq. (A.1) is the linear
combination cðk; tÞ ¼

P1
n¼0 e

ik=2e�lnt
ffiffiffiffiffiffiffiffi
k=2

p
½AnJnþ1=2ðk=2Þ

þBnY nþ1=2ðk=2Þ�. Since cðk; tÞ is a characteristic function,
it is bounded (jcðk; tÞjp1), which requires Bn ¼ 0 for nX1.
It also satisfies cð0; tÞ ¼ 1, which requires B0 ¼ �

ffiffiffiffiffiffiffiffi
p=2

p
.

Therefore,

cðk; tÞ ¼ eik=2 cos
k

2

� �
þ
X1
n¼0

eik=2
ffiffiffiffiffiffiffiffi
k=2

p
AnJnþ1=2ðk=2Þe

�lnt.

(A.2)

We determine A0 by differentiating (A.2) with respect
to k and then set both k and t equal to zero: ip ¼
qcðk; tÞ=qkjk¼0;t¼0 ¼ i=2 þ A0d½

ffiffiffiffiffiffiffiffi
k=2

p
J1=2ðk=2Þ�=dkjk¼0 ¼

i=2þ A0=
ffiffiffiffiffiffi
2p
p

. Thus, A0 ¼
ffiffiffiffiffiffi
2p
p

ið2p� 1Þ=2. The remaining
unknown An could also be obtained by using the initial
condition cðk; 0Þ ¼ eikp, since the solution in Eq. (A.2) can
be expressed in terms of spherical Bessel functions
jnðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2kÞ

p
Jnþ1=2ðkÞ, which form an orthogonal set.

However, it is simpler to first transform back to x

dependent functions and then determine the An.
We note that the probability density, f ðx; tÞ, was defined

on the interval 0pxp1, and given boundary conditions
and initial data appropriate to this interval. However,
solving the diffusion equation via Fourier transformation,
for the function cðk; tÞ and then taking the inverse Fourier
transform of cðk; tÞ has the effect of artificially

extending the range of x to �1oxo1. The boundary
conditions and initial data ensure no probability
density ever starts outside 0pxp1, nor can ever get
outside this range. An automatic consequence is that the
solution for f ðx; tÞ is zero outside the interval 0pxp1, as
the calculations shown below. This is indicated, in the
solution, by the presence of the Heaviside step function,
yðxÞ, which has the value of unity for x40, and vanishes
otherwise.
Proceeding, the inverse Fourier transformation of

Eq. (A.2) yields

f ðx; tÞ ¼

Z 1
�1

e�ikxcðk; tÞ
dk

2p

¼
1

2
½dð1� xÞ þ dðxÞ� þ i

d

dx

X1
n¼0

Ane
�lnt

�

Z 1
�1

e�irð2x�1Þr�1=2Jnþ1=2ðrÞ
dr

2p
. ðA:3Þ

The integral appearing above may be evaluated in
terms of Legendre polynomials PnðxÞ (Abramowitz and
Stegun, 1965)

R1
�1

e�iwrr�1=2Jnþ1=2ðrÞdr ¼ ð�iÞn
ffiffiffiffiffiffi
2p
p

PnðwÞ

yð1� w2Þ. Noting that the derivative of the Heaviside step
function, yðxÞ, is the Dirac delta function, dðxÞ, we find, on
carrying out the differentiation in Eq. (A.3), that

f ðx; tÞ ¼
1

2
½dð1� xÞ þ dðxÞ�

þ
X1
n¼0

inþ1Anffiffiffiffiffiffi
2p
p e�lnt½dðxÞ � ð�1Þndð1� xÞ�

þ
X1
n¼1

inþ1Anffiffiffiffiffiffi
2p
p e�lntyðxÞyð1� xÞ

d

dx

�Pnð1� 2xÞ, ðA:4Þ

with nX1 in the last sum since P0ðxÞ ¼ 1. The expression
for f ðx; tÞ may be simplified by introducing the Gegenbauer

polynomial (Abramowitz and Stegun, 1965) C
ð3=2Þ
n�1 ðyÞ ¼

ðd=dyÞPnðyÞ, for n40 and setting an ¼ �2ðiÞ
nþ1An=

ffiffiffiffiffiffi
2p
p

.
This implies a0 ¼ ð2p� 1Þ and gives the result

f ðx; tÞ ¼ ½pdð1� xÞ þ ð1� pÞdðxÞ�

�
1

2

X1
n¼0

anþ1e
�lnþ1t½dðxÞ þ ð�1Þndð1� xÞ�

þ
X1
n¼0

anþ1e
�lnþ1tCð3=2Þn ð1� 2xÞyðxÞyð1� xÞ. ðA:5Þ

The constants anþ1 may be determined by using the initial
condition f ðx; 0Þ ¼ dðx� pÞ together with the orthogon-
ality of the Gegenbauer polynomials:

R 1
0 xð1� xÞCð3=2Þm

ð1� 2xÞCð3=2Þn ð1� 2xÞdx ¼ ðn þ 1Þðn þ 2Þdnm=½4ð2n þ 3Þ�.
Multiplying f ðx; 0Þ, as given by Eq. (A.5), by xð1� xÞ

Cð3=2Þm ð1� 2xÞ eliminates the contributions from the delta
functions at x ¼ 0 and 1, and on integrating between x ¼ 0
and x ¼ 1 yields pð1� pÞCð3=2Þm ð1� 2pÞ ¼ ðmþ 1Þðmþ 2Þ
amþ1=½4ð2mþ 3Þ�, for mX0. Substituting this back into
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Eq. (A.5) gives

f ðx; tÞ ¼ dðxÞð1� pÞ

� 1�
X1
n¼0

2pð2nþ 3Þ

ðnþ 1Þðnþ 2Þ
Cð3=2Þn ð1� 2pÞe�lnþ1t

" #

þ dð1� xÞp 1�
X1
n¼0

2ð1� pÞð2nþ 3Þ

ðnþ 1Þðnþ 2Þ
ð�1Þn

"

�Cð3=2Þn ð1� 2pÞe�lnþ1t

#

þ yðxÞyð1� xÞpð1� pÞ
X1
n¼0

4ð2nþ 3Þ

ðnþ 1Þðnþ 2Þ

�Cð3=2Þn ð1� 2pÞCð3=2Þn ð1� 2xÞe�lnþ1t. ðA:6Þ

The last term in Eq. (A.6) coincides with the result of
Kimura (1955b) obtained by solving the diffusion equation
(6) directly. To see this we use the relation between the
hypergeometric function and the Gegenbauer polynomials
(Abramowitz and Stegun, 1965): F ð�n; nþ 3; 2; xÞ ¼
½2=ðnþ 1Þðnþ 2Þ�Cð3=2Þn ð1� 2xÞ. Then, omitting the Heavi-
side functions, yðxÞyð1� xÞ, which are irrelevant for x

confined to the range 0 to 1, this third term reads

f K ðx; tÞ ¼ pð1� pÞ
X1
n¼0

ð2nþ 3Þðnþ 1Þðnþ 2Þ

�F ð�n; nþ 3; 2; pÞF ð�n; nþ 3; 2; xÞe�lnþ1t

ðA:7Þ

which is equivalent to the result found by Kimura (1955b).
To prove the results of Eq. (8) in the main text, first

consider

Z t

0

f K ð0; sÞds ¼ 2Npð1� pÞ
X1
n¼0

4ð2nþ 3Þ

ðnþ 1Þðnþ 2Þ

�
Cð3=2Þn ð1� 2pÞCð3=2Þn ð1Þ

lnþ1

�½1� e�lnþ1t=ð2NÞ�. ðA:8Þ

We note that Cð3=2Þn ð1Þ=lnþ1 ¼ 1 since Cð3=2Þn ð1Þ ¼
ðnþ 1Þðnþ 2Þ=2. The t independent sum may be carried
out by using the generating function for Gegenbauer
polynomials, which is given by (Abramowitz and Stegun,
1965)

X1
n¼0

Cð3=2Þn ðyÞzn ¼
1

ð1� 2yzþ z2Þ3=2
. (A.9)

From this we can deduce that

X1
n¼0

1

nþ 1
þ

1

nþ 2

� �
Cð3=2Þn ðyÞ ¼

Z 1

0

1þ z

ð1� 2yzþ z2Þ3=2
dz

¼
1

1� y
. ðA:10Þ
Therefore, Eq. (A.8) becomesZ t

0

f K ð0; sÞds ¼ 4Nð1� pÞ � 2Npð1� pÞ
X1
n¼0

4ð2nþ 3Þ

ðnþ 1Þðnþ 2Þ

� Cð3=2Þn ð1� 2pÞe�lnþ1t=ð2NÞ ðA:11Þ

which is 4N times the coefficient of dðxÞ in Eq. (A.6), as
required. The analogous result at the x ¼ 1 boundary can
be proved in a similar fashion. The only difference is
that the term Cð3=2Þn ð1Þ in Eq. (A.8) is replaced by
Cð3=2Þn ð�1Þ ¼ ð�1ÞnCð3=2Þn ð1Þ. The extra factor of ð�1Þn is
equivalent to replacing y by �y in Eqs. (A.9) and (A.10).
This allows us to show that

R t

0 f K ð1; sÞds is 4N times the
coefficient of dð1� xÞ in Eq. (A.6).
Appendix B

In this appendix we consider solutions of the general
diffusion equation, Eq. (9), that incorporates mutation,
selection and migration. We note that the solution, f ðx; tÞ,
is defined on the interval 0pxp1. However, noting that
the method adopted for solving the diffusion equation in
Appendix A (Fourier transformation, followed some steps
later, by inverse Fourier transformation) has the effect of
artificially extending the range of x to �1oxo1,
we adopt this extended range of x here. Given that no
probability density ever starts outside the interval 0pxp1,
nor can ever get outside this range, we look for a solution
of the form

f ðx; tÞ ¼ P0ðtÞdðxÞ þP1ðtÞdð1� xÞ þDðxÞf K ðx; tÞ. (B.1)

Here the function f K ðx; tÞ is normalisable over 0oxo1 and
does not contain singularities at x ¼ 0 and 1. The function
DðxÞ ¼ yðxÞyð1� xÞ has the value unity for 0oxo1 and is
zero outside this range. The presence of the function DðxÞ

in Eq. (B.1) ensures the solution vanishes outside the
interval 0pxp1. Note that a property of DðxÞ is that its
derivative is dðxÞ � dð1� xÞ.
In the main text, we omit DðxÞ from the solutions, since

for 0oxo1 the function DðxÞ has the value of unity.
We proceed by deriving equations that determine the

functions P0ðtÞ, P1ðtÞ and f K ðx; tÞ that appear in Eq. (B.1),
sometimes using a prime, 0, or an overdot, �, on a function
to denote differentiation with respect to x or t.
The diffusion equation takes the form given in Eq. (9).

Substituting the solution of the form Eq. (B.1) into

Eq. (9) leads to a left-hand side of f
�

K ðx; tÞ þP
�

0ðtÞdðxÞþ

P
�

1ðtÞdð1� xÞ.
The right-hand side of the diffusion equation obtains

a contribution from the pure drift term of 4Nð Þ
�1

q=qx½ðq=qx½xð1� xÞ f K ðx; tÞ�ÞDðxÞ þ xð1 � xÞf K ðx; tÞdðxÞ�
dð1� xÞ�. The second term in this expression is identically
zero given limx!0;1 xð1� xÞf K ðx; tÞ ¼ 0, since f K ðx; tÞ
cannot contain sufficiently strong power law divergences
at the boundaries that would prevent it being normalisable.
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Carrying out the second differentiation yields
ð4NÞ�1ðq2=qx2½xð1�xÞf K ðx; tÞ�ÞDðxÞþð4NÞ�1ðq=qx½xð1� xÞ

f K ðx; tÞ�Þ½dðxÞ � dð1� xÞ�. The right-hand side of the
diffusion equation also obtains a contribution from the
term in the diffusion equation involving M of �ðq=qx

½MðxÞf K ðx; tÞ�ÞDðxÞ�MðxÞf K ðx; tÞ½dðxÞ�dð1� xÞ� � ½Mð0Þ
P0d

0
ðxÞ þMð1ÞP1d

0
ð1� xÞ�.

The result of substituting Eq. (7) into Eq. (9) can be
written

f
�

K ðx; tÞDðxÞ þP
�

0ðtÞdðxÞ þP
�

1ðtÞdð1� xÞ

¼ �j0K ðx; tÞDðxÞ � ½jK ð0; tÞdðxÞ � jK ð1; tÞdð1� xÞ�

� ½Mð0ÞP0ðtÞd
0
ðxÞ �Mð1ÞP1ðtÞd

0
ð1� xÞ�, ðB:2Þ

where jK ðx; tÞ is the probability current density of Eq. (2)
with f K ðx; tÞ used in place of f ðx; tÞ.

A comparison of the terms in Eq. (B.2) indicates that

generally f K ðx; tÞ obeys f
�

K ðx; tÞ ¼ �j0K ðx; tÞ which is of

identical form to the general diffusion equation, Eq. (9).
Furthermore, to avoid unbalanced derivatives of delta
functions, it is necessary that Mð0ÞP0ðtÞ ¼ 0 and
Mð1ÞP1ðtÞ ¼ 0. These are conditions that determine
whether delta functions can be present in the solution.
When Mð0Þa0 we require P0ðtÞ ¼ 0 and jK ð0; tÞ ¼ 0 but

when Mð0Þ ¼ 0 we have P
�

0ðtÞ ¼ �jK ð0; tÞ. Similarly, when
Mð1Þa0 we require P1ðtÞ ¼ 0 and jK ð1; tÞ ¼ 0, but when

Mð1Þ ¼ 0 we have P
�

1ðtÞ ¼ jK ð1; tÞ.
Appendix C

In this appendix, we derive an expression for the fixation
probability at long times, from solution of the forward
diffusion equation, Eq. (9). The long time fixation
probability is usually derived only from the backward
diffusion equation.

The analysis presented in this appendix is restricted to
the case Mð0Þ ¼ 0 ¼Mð1Þ, so that both gene fixation and
gene loss can occur.

We begin by assuming, without proof, a solution to Eq.
(9) in the form

f ðx; tÞ ¼
X1
n¼0

fnðxÞcnðpÞe
�lnt, (C.1)

i.e., a spectral sum where the functions fnðxÞ and cnðpÞ

obey

d

dx
½MðxÞfnðxÞ� �

1

4N

d2

dx2
½xð1� xÞfnðxÞ� ¼ lnfnðxÞ,

(C.2)

�MðpÞ
d

dp
cnðpÞ �

pð1� pÞ

4N

d2

dp2
cnðpÞ ¼ lncnðpÞ (C.3)

and so are eigenfunctions of forward and backward
diffusion operators and are both associated with eigenvalue
ln. We make the further assumption that the smallest value
of the ln is zero.
For Eq. (C.1) to be a solution of the general diffusion

equation, Eq. (9), the fnðxÞ must inherit the properties of
f ðx; tÞ of having vanishing probability current at x ¼ 0 and
1, i.e., limx!0;1 ðMðxÞfnðxÞ � ð4NÞ�1d½xð1� xÞfnðxÞ�=dxÞ

¼ 0 and also having the normalisability property
limx!0;1 xð1� xÞfnðxÞ ¼ 0. The required condition on the
cnðpÞ is simply that they remain bounded.
For large times, we arrive at f ðxÞ � f ðx;1Þ ¼P0
n fnðxÞcnðpÞ where the prime on the sum indicates that

it only includes eigenfunctions associated with vanishing
eigenvalues. Since this long time solution consists solely
of eigenfunctions of the forward equation associated
with vanishing eigenvalues, we have d½MðxÞf ðxÞ�=dx�

ð4NÞ�1d2½xð1� xÞf ðxÞ�=dx2 ¼ 0. Integrating this equation
from x ¼ 0 to an arbitrary x and noting that the
probability current density vanishes at x ¼ 0 yields
MðxÞf ðxÞ � ð4NÞ�1d½xð1� xÞf ðxÞ�=dx ¼ 0. To solve this
equation, we introduce the function gðxÞ ¼ xð1� xÞf ðxÞ,
which obeys dgðxÞ=dx ¼ 4NMðxÞgðxÞ=½xð1� xÞ�. This
equation has the solution gðxÞ ¼ A expðHðxÞÞ where A is
independent of x and

HðxÞ ¼ 4N

Z x

0

MðyÞ

yð1� yÞ
dy. (C.4)

It follows that xð1� xÞf ðxÞ ¼ A expðHðxÞÞ and as discussed
in Section 4, the solution for f ðxÞ consists of the regular
part A expðHðxÞÞ=½xð1� xÞ� and a singular part involving
Dirac delta functions, i.e., f ðxÞ ¼ A expðHðxÞÞ=½xð1� xÞ� þ

BdðxÞ þ Cdð1� xÞ where B and C are independent of x. We
note that because Hð0Þ and Hð1Þ are finite, normalisation
of the solution requires A ¼ 0 and B ¼ 1� C hence f ðxÞ

has the form

f ðxÞ ¼ ð1� CÞdðxÞ þ Cdð1� xÞ. (C.5)

The coefficient C in this equation is generally a function of
p: C ¼ CðpÞ and as a function of p it must be associated
with vanishing eigenvalues of Eq. (C.3). Thus, it must obey
�MðpÞdCðpÞ=dp� ð4NÞ�1pð1� pÞd2CðpÞ=dp2 ¼ 0 with
the bounded solution CðpÞ ¼ DGðpÞ þ E where D and E

are constants and

GðpÞ ¼

Z p

0

e�HðqÞ dq. (C.6)

Thus, f ðxÞ ¼ ð1�DGðpÞ � EÞdðxÞ þ ðDGðpÞ þ EÞdð1� xÞ.
Lastly, we note that when p ¼ 0 we must have f ðxÞ ¼

dðxÞ so E ¼ 0, similarly, when p ¼ 1 we must have f ðxÞ ¼

dð1� xÞ so D ¼ 1=Gð1Þ hence the overall solution is

f ðxÞ ¼ 1�
GðpÞ

Gð1Þ

� �
dðxÞ þ

GðpÞ

Gð1Þ
dð1� xÞ. (C.7)

As established in this work, the long time fixation
probability is the coefficient of dð1� xÞ in the solution of
the forward diffusion equation, i.e., GðpÞ=Gð1Þ, which is the
standard result (Crow and Kimura, 1970).
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As it stands, Eq. (C.7) does not appear to be of the formP0
n fnðxÞcnðpÞ, however, it turns out that there are two

eigenfunctions of Eqs. (C.2) and (C.3) that are associated
with vanishing eigenvalues. Thus, the right-hand side of
Eq. (C.7) can be written f0ðxÞc0ðpÞ þ f1ðxÞc1ðpÞ and a
possible choice of the eigenfunctions is f0ðxÞ ¼

2�1½dðxÞ þ dð1� xÞ�, c0ðpÞ ¼ 1, f1ðxÞ ¼ 2�1½dðxÞ�dð1�xÞ�

and c1ðpÞ ¼ 1� 2GðpÞ=Gð1Þ.
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