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The Fredholm determinant for a Dirac operator appropriate to a particle moving in one
spatial dimension is investigated. The operator is written as H = p, o, +ma, + V(x), where p,
m, and V(x) are, respectively, the momentum, mass, and potential energy of the particle and
the Pauli spin matrices, o,, constitute a representation of the Dirac matrices. With
Hy=p.6,+mae; and z a complex number, the Fredholm determinant is denoted by
Det([(z — H)/(z— Hy)]. Let M(x) be the 2 x 2 matrix that transfers a spinor solution, ¥{x), of
the Dirac equation Hy(x)=zy(x) from —L to x:y{x)=M(x)y¥(— L) and let M(x) be the
corresponding matrix for H,. Then it is shown, for eigenfunctions obeying the periodic
boundary condition ¥(£L)=y(— L), that Det[(z — H)/(z — Hy)] equals the determinant of the
2x2 matrix [1—M(L)}/[1—My(L)). The calculation of an infinite determinant is thus
reduced to the calculation of a 2x2 determinant and for piecewise constant potentials an
expression for Det[(z — H)/(z — H,)] may be derived in closed form. The relation between the
Fredholm determinant and the finite determinant was conjectured in an earlier work by
D. Waxman and K. D. Ivanova-Moser, Ann. Phys. 226 (1993), 271. @ 1994 Academic Press, Inc.

1. INTRODUCTION

The Dirac equation involves a first quantised Hamiltonian in the form of a
matrix whose elements are linear in the momentum operator. It was introduced by
Dirac to incorporate special relativity into quantum mechanics and is applicable to
fermions such as electrons. The motivation for the present work did not arise from
a relativistic context. [t arose from work on Fermi systems which are superfluid at
low temperatures [1] and whose particles are non-relativistic. A number of these
superfluid Fermi systems are well described by a Dirac Hamiltonian appropriate to
a particle moving in one spatial dimension.’

! Non-relativistic systems including the linear molecule, polyacetylene, and some Fermi superfluids are
approximately describable in terms of a Dirac Hamiltonian. For the Fermi superfluids this approximate
description has the following origin. The interacting fermions of such systems (including *He, a dilute
solution of *He in *He and also electrons in metals) are undersiood to undergo a low temperature phase
transition into a superfluid state. The broken symmetry of such a state is signalled by the appearance
of an order parameter which results in the first quantised Hamiltonian for the system, the Bogoliubov
Hamiltonian, possessing a non-trivial matrix structure. Since the particles in question are non-
relativistic, the Bogoliubov Hamiltonian has a quadratic dependence on momentum. Often, however,
this may be well approximated by a linear momentum dependence (see, e.g., Appendix A of Ref. {1] or
Ref. [2]) and once this linearization is made the resulting Hamiltonian is a matrix differential operator,
identical in form to a Dirac Hamiltonian with the role of the mass played by the order parameter.
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Given the first quantised Hamiltonian for a system, some physically interesting
quantities require information on the spectrum, but not the eigenvectors of this
operator. For example, in the context of relativistic quantum field theory and also
the theory of the linear molecule, polyacetylene, the fractional fermionic charge of
a topological soliton is directly related to the spectral asymmetry of the
Hamiltonian [3]. In a condensed state context, the free energy and global
density of states of a system described by the Hamiltonian are determined by its
eigenvalues.

An obiject that encapsulates full information on the spectrum of an operator is
the functional or Fredholm determinant associated with the problem.?

If H denotes the operator of interest, with eigenvalues E,, and a suitable
reference operator H, has eigenvalues E,,, then the Fredholm determinant
associated with the problem is denoted by D(z) and*

—H - F
D(z) = Det (:Z_ Ho) = 1—[ (zz_ E""O), z complex. (1.1)

We note that in Ref. [1], the density of states was calculated from the Fredholm
determinant.

The purpose of the present work is to prove a conjecture made in Ref. [1] that
identified the Fredholm determinant of a Dirac operator acting in one spatial
dimension with a finite-dimensional determinant. The latter was constructed from
the matrix that takes the solution of the Dirac equation at one point in space and
transfers it to another position. The great virtue of the identification made in the
conjecture is that the determinant of an infinite-dimensional matrix may be found
by computations on matrices whose dimension is low; namely that of the matrices
appearing in the Dirac equation. In the case where the potential appearing in the
Hamiltonian has a piecewise constant variation in space (always valid to some level
of approximation), the Fredholm determinant is very simply calculable in closed
form by multiplying together matrices of low order.

This work is arranged as follows. In Section 2 the conjecture on Fredholm
determinants is motivated and in Section 3 it is proved. Section 4 deals with the
form of the Fredholm determinant when the length of the system tends to infinity
and a related result is derived in an appendix. The paper is concluded by a short
discussion in Section 5.

Throughout the work, we set the natural constants of ¢ and # to unity and freely
use the relationship between the trace and determinant of a matrix: tr In = In det for
both finite and infinite matrices (first quantised operators).

2 For some systems an expression for the free energy may be given directly in terms of the Fredholm
determinant associated with the problem. For example, in Ref. [2], the free energy of a vortex in a type
II superconductor is expressed in this way.

3 Throughout this work we use Det and Tr to denote the determinant and trace of infinite matrices
(first quantised operators), whereas for 2 x 2 matrices we denote these quantities by det and tr.
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258 D. WAXMAN
2. MOTIVATION OF THE CONJECTURE

For completeness we present the motivation of the conjecture made in Ref. [1].
Let us take, for the Hamiltonians H and H, appearing in Eq. (1.1),

H=o0,p.,+0;m+ V(x) (2.1a)
Hy=0,p,+0:m, (2.1b)

where a,, i=1, 2,3, are the usual Pauli matrices, two of which act as a 2x2
representation of the Dirac matrices in one spatial dimension. p, is the momentum
operator for motion along the x-axis, m is the mass of the particle, and the
potential energy, V(x), is assumed to have no matrix structure,

Let us consider how the eigenvalues of the operator H are determined. To make
the problem well defined we must impose a boundary condition and we take the
eigenfunctions to be periodic over an interval 2L. Thus, in coordinate representa-
tion, the eigenvalues of H are the values of z such that the twe component
eigenfunction ¥ obeys both*

[—id,o,+may+ V(x)]yr(x)=z(x) (2.2a)
and
Y(L)y=y(-L) (2.2b)

Since Eq. (2.2a) is a linear differential equation, we can use this equation to relate
W(x) to Yy(—L) and generally we find that there is a 2x2 matrix M(x;z) that
transports a solution from — L to x. It obeys

(—id,o,+moy+V(x)—z]1 M(x;2z)=0, M(—-L;z)=1. (2.3)
In terms of this matrix,
Y(x)=M(x;z)Y(-L) (2:4)
The quantization condition, Eq. (2.2b) can, using Eq. (2.4), be cast in the form
[1—M(L;z)]¢(—-L)=0 (2:5)

4 Compared with Ref. {1], we have, here, taken a different representation for the Dirac matrices and
a different choice of space interval but these are differences in presentation only. Beyond this, the
apparent difference of Eq.(2.1a) and its analogue in Ref. [1], namely Eq.(3.2b), is that this last
equation had a spatially varying mass but no potential term. By contrast, Eq. (2.1a) has a constant mass
but a non-zero potential. We can, however, eliminate the potential V(x) from Eq. (2.1a) in favour of a
spatially varying mass: With 9(x)=2 [*dx'V(x’) the unitary transformation H — exp[i3{(x)a,/2] H
exp[ —i¥(x) 6,/2] generates a Hamiltonian with the mass term mo, exp[ —i%(x) o,] and no potential.
For an appropriate choice of V(x), the piecewise constant mass term equivalent to that of Ref. {1] can
be obtained. Thus a consideration of the Hamiltonian H of Eq. (2.1a) with general potential ¥(x) is
sufficient to cover the special case considered in Ref. [1]. To cover a wider class of problems, it is
possible to include in H, spatial variations of both the mass and the potential but we do not do so here.
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and the condition for a non-vanishing eigenfunction is
det[1—-M(L;z)]=0. (2.6)

The eigenvalues E, are the values of z satisfying Eq. (2.6). The corresponding
condition for the eigenvalues of H,, obtained by setting F(x)=0, is written as

det[1— My(L;z)]=0. (2.7)

The conjecture made in Ref. [1] was that for general, complex, values of z, the
quantity d(z) defined by

d(z)

det[1 - M(L;2)] _ (ﬂéﬁ) (238)

T det[1—-M,(L;2)] 1—Mo(L;2)

equals the Fredholm determinant D(z) of Eq.(1.1) when the same boundary
condition is imposed on the eigenfunctions.

The arguments given in Ref. [1] were basically that (i) d{z) has the same zeros
and poles as D(z) and (ii) as |z] — o0, d{z) has the same behaviour as D(z). In the
following section we give a proof that d(z)= D(z).

3. PrRooF oF CONJECTURE

In the case of the Schrodinger operators, one possible method of obtaining the
Fredholm determinant is to determine the Greens function (z— H) ™' and then
relate this to the Fredholm determinant [4]. We follow the same route and define

1 G 1
z—-H °"z—H,

z complex ; (3.1)

then

Tr(G“Go)=Tr( : ——L—)=_d_Trln<z—H)

z—H z2—-H,) dz z—H,
d z—H d
=— =—1In D(z). 3.
dzlnDet(z_ 0) = n D(z) (3.2)

We shall find G and apply the above equation.

(i) Determination of the Greens function

We regard operators such as H as acting in an abstract space of bras and kets;
thus the coordinate representation of G is (x|G|x'> = G(x; x') (the 2 x 2 matrix
structure of G is left implicit). Since (z — H) G =1 it follows that G(x; x") obeys

(z—[—io, 0,4+ mo;+ V(x)]) G(x, x')=d(x —x'). (3.3)
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By multiplying this by —io, we obtain
[6,—N(x)]1G(x, x")= —io, d(x —x'), (3.4a)
where
N(x)=io,[z—ma;-- V(x)]. (3.4b)
Go(x, x') is obtained by setting V(x)=0, in which case N(x) is replaced by
Ny=io,[z—mg,]. (3.5)
The periodic boundary condition on the eigenfunctions, Eq. (2.2b), requires
G(L,x")=G(—~L, x'). (3.6)

The Greens function can be constructed using the 2x2 matrix M(x;z) of
Eq. (2.3) which, henceforth, we write as M(x). In terms of N(x), the matrix M(x)
obeys

[é.— N(x)] M(x)=0, M(-L)=1 (3.7)
In terms of a 2 x 2 matrix, 4, that is independent of x, we write
G(x,x')=M(x) A x<x'
=M(x) M (L)A x>x' (3.8)

and this automatically obeys Eq. (3.6).
The delta function in Eq. (3.4a) leads to the discontinuity

G(x; x| % = —io, (3.9)

and combining this with Eq. (3.8) leads to a determination of the matrix 4 and
hence the Greens function. We find

+M(L)

—x -1 !
M(L)Jrsgn(x x))M (x)o,. (3.10)

Glx; x')= —5 M(x )(

(i) Expressing the Fredholm Determinant in Terms of the Matrix M(L)
Using Egs. (3.2) and (3.10) leads to°

d i L . +M(L)
ZlnD(z)= —Eterdx{ (x) o, M(x )< M(L))
1+M0(L)>} _
M 3.11
o oMo (T (311)

* The trace, Tr, appearing in Eq. (3.2) is taken as Tr(..)=1r [*, dx{x]|..}x).
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In Appendix A, it is shown that

ifL dxM“(x)clM(x)=M“(L)4£d§[4) (3.12)
and using this leads to
d 1 (dM(L)[ 1 2
EE'nD(“)‘_ztr{ dz (M(L)+1—M(L))
dMo(L) / 1 2
- nmtwem)) G139

Taking the trace of Eq. (3.12) indicates that tr[M ~'(L) dM(L)/dz] =0 and we can
write Eq. (3.13) as

d _i 1—M(L)
Eln D(z)—dZ tr In <———1 —MO(L))
_i 1—M(L)
=% In det (———l — MO(L)>
d
=Eln d(z). (3.14)

Thus In D(z) and In d(z) differ, at most, by an additive constant. In Appendix B we
show that in the limit of large |z|, the leading behaviour of In D(z) is identical to
that of In d(z), allowing us to conclude that D(z) =d(z); i.e.,

i—HY\ 1— M(L)
Det (Z_ HO)—det (——1 ~M0(L)>, (3.15)

and this is the result we sought to prove.

4, LARGE L LMmIT

In Ref. [1], a problem equivalent to a Dirac equation with a periodic potential
was treated in some detail. To complement that calculation we shall consider here
a potential that is different from zero only in a finite region of space and investigate
the form of the Fredholm determinant D(z)=d(z) in the “infinite volume limit,”
L — .

To begin, we define a 2 x 2 matrix U(x) via

U(x)=e *MM(x)e LM (4.1)
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and using Eq. (3.7) it follows that U(x) obeys
[0,—W(x)]1U(x)=0, U(-L)=1, (4.2a)
where

W(x)=e *M[N(x)—Ny] e
=e M —ig, V(x)] e*™. (4.2b)

The solution to Eq. (4.2a) may be written as
Ulx) =T, exp [ | : dx’W(x’)] (4.3)
~L

where T, denotes the “x ordering operator” that orders the terms in ascending
values of x; terms with smaller values of x are placed to the right of terms with
larger values. Equations (4.1) and (4.3) allow us to write

M(L) = e"MU(L) & (4.4)

SO

1—e“™™U(L)e °>. (45)

D(z) = det ( .

To determine the behaviour of D(z) as L — oo, we note that e2“™ has two eigen-
values; one exponentially large,® the other exponentially small, and the limiting
form of D(z) is determined by projection onto the space of the large eigenvalue. To
isolate the contribution of the large eigenvalue we define’

=i (46)
and note that
P.=3(1+No/i),  P_=3(1-Ny/2), 4.7)

are a complete and orthogonal set of projection operators that project onto the

large and small eigenvalues of e2:%e:
P,+P_=1, P,P_=0 (4.82)
e*tNop  =et?ip | (4.8b)

$For |z| > m, the limit L — co does not exist unless Im(z) #0, signalling the appearance of cuts on
the real z axis along (—o00, —m) and (m, o). These indicate the presence of a continuum of scattering
states at (energies)?>m?2 The imaginary part of z ensures that ¢?/*° has an eigenvalue that grows
exponentially with L. For |z] <m, e*/™ always has an eigenvalue that grows exponentially with L.

" The square root is defined on the complex z plane cut along the negative real axis; the branch
selected has Re{A)> 0. Thus for large |z, Az~ —isgn(Im(z)) z + ...
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It is proved in Appendix C that the determinant of any 2 x2 matrix 4 may be
written as

det A=1tr(P, A)tr(P_ A)—tr(P, AP_A) (4.9)
and applying this to Eq. (4.5) gives, for large L,

— e [P, U(L)] + O(e°)

D(Z)'RS _ezLi+0(eO)

(4.10)
Thus

Lim D(z)= D, (z)=Tr [m <Tx exp U” dx W(x)])], (4.11)

a result that may be useful when perturbation theory is applicable.

We note that for |z| = oo, along a ray through the origin, the right-hand side
of Eq.(4.11) collapses to exp[isgn(Im(z)) [Tw dx V(x)], a result compatible
with Eq. (B.7).

In Appendix D we sketch how D (z) is related to an analytic continuation of the
transmission amplitude in the scattering problem.

5. DISCUSSION

In this work we have proved Eq.(3.15) which gives the relation between a
Fredholm determinant for a Dirac operator and a finite determinant constructed
from the matrix M(x) that transfers a solution of the Dirac equation from one
point in space to another.

By a straightforward use of the methods presented here we could extend the
results to Dirac equations with matrices of order greater than two and allow more
general spatial variations by upgrading the potential V(x) to a matrix. There may
also be advantages in extending the results of this work to boundary conditions
other than periodic; however, we have not pursued this matter.

Let us end this work by illustrating the simplification that follows from the main
result of this work, Eq. (3.15), by sketching the calculation required to determine
the Fredholm determinant for a piecewise constant potential. We consider the
square potential well

Vix)=~V,, Ixl<a

=0, x| > a. (5.1)
The matrix M(L) following from Eq. (3.6) takes the form

exp[(L —a) Ng] exp[2aN,] exp[(L —a) Ny], {5.2a)
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where
Ny=io,[z—mao,], N, =ic,[z—mae,+ V|]. (5.2b)

Then, since det(exp[(L —a) Ny])=1, we have, using Eq. (3.15),

z—HY\ 1 —exp[2(L-—-a)Ny]exp[2aN,]
e (i)~ ()

— (5.3)

“ 0

The evaluation of the determinant on the right-hand side of this equation is
straightforward and yields an expression in closed form for the Fredholm
determinant.

APPENDIX A: PROOF OF THE IDENTITY
ijﬁL dx M '(x)o, M(x)=M " Y(LWdM(L)/dz)

In this appendix, we prove the above identity which is used in Section 3 of this
work. We begin with Eq. (3.7) which we differentiate with respect to z:

dM(x)_%x)

[0, = N(x)]— —~—7= M(x)=0. (A.1)

The explicit z dependence of N(x), given in Eq. (3.4b), results in

[0, — N(x)] 5‘%5—“: io, M(x). (A2)
We write this equation as
(6.~ NG T M) M () 2 i, b, (A3)

and using Eq. (3.7) yields

M(x) 0, (M '(x)dgix)>=ialM(.t) (A4)
or
é\(M '(x)‘%@):iM*(x)alM(x). (A.5)

Integrating this equation from — L to L yields

dM(L) v gy ML)

—1
ML) dz dz

=iJL dx M~ \(x)o,M(x). (A.6)
L
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The second term on the left side of this equation vanishes since M(— L) is the unit
matrix® and we obtain the desired result.

APPENDIX B: LARGE |z} BEHAVIOUR OF In D(z) AND In d(z)

We have D(z)=Det((z— H)/(z— Hy)); d(z)=det((1 - M(L))/(1 — My(L))) and
in Eq. (3.14) we established that In D(z) and In d(z) differ, at most by an additive
constant. By examining the large |z| behaviour of each of these and comparing the
results, we can pin down the value of the additive constant.

It should be noted that both H and H, have (infinitely many) eigenvalues along
the real axis. As a consequence, D(z) will have an infinite sequence of zeros and
poles along this line and, in general, a limit of D(z) only exists when z becomes
infinitely far from the real axis. Thus the by limit |z| — o0, we mean that z tends to
infinite along a ray through the origin that does not coincide with the real axis.’

(1) Behaviour of In D(z)

We have
H=H,+V (B.1)
S0
z—H z—H
In D(z)=In Det (z — H0> =Trin (z — H0>
=Trin(1 =Gy V)= =Tr[G, V] —.., (B.2)

the higher order terms vanishing as |z| — co.
Then

Tr[Go V] =jL dx tr[ G, (x, x)] V(x) (B.3)

and from Eq. (3.10) we have

] 14+ M,(L
tr[Go(x, x)] = —étr {Mg‘(x)alMo(x) (li—M‘O’E—Lm (B.4)
Mqy(x) follows from Egs. (3.4a) and (3.5):
M, (x)=exp[(x+ L)N,], (B.5)

8 Strictly, we should write the second term on the left side of Eq.(A.6) as the limit
Lim, , _,, M~ '(x)dM(x)/dz. For x ~ — L, however, M(x)~ 1+ _[iL dx' N(x') and, using Eq. (3.4b) for
N(x), we find dM(x)/dz ~ ia(x + L), indicating that the naive assignment dM{—L)/dz =0 1s correct.

® Where necessary, the limit along a ray is taken by writing z = ue®, where p and 9 are real, 3 #0,
n, and allowing u to tend to + 0.



266 D. WAXMAN

and it may be verified that the |z] — oo limit of Eq. (B.4) is equivalent to setting the
mass of the particle, m, to zero (cf. Ref. [3]). A straightforward calculation shows
that

Lim tr[Gy(x; x)]= —isgn(Im(z)). (B.6)

Jz| = oc
along ray

Thus

Lim 1nD(z)=isgn(1m(z))jL dx V(x). (B.7)

|zi = oc —
along ray

(it) Behaviour of In d(z)

To determine the behaviour of In d(z) for large |z|, it is allowable to set m =0 in
d(z) and we do this first. When this is done the matrices M(L) and M,(L) depend
only on the unit matrix and ¢, and the determinant in d(z) is trivially evaluated.
Last, the limit |z| - oo can be taken with the result:

Lim In d(z):isgn(lm(z))jL dx V(x). (B.8)

jz| - oo
along ray

Thus in the limit of large |z{, In D(z) and In d(z) coincide.

APPENDIX C: ProoF oF det A =tr(P, A)tr(P_A)—tr(P, AP_A)

The above relation holds for an arbitrary 2x2 matrix 4, where P, are a
complete and orthogonal set of projection operators (ie, P, +P_=1; P P_=0).
To prove it we use the following result, valid for an arbitrary 2 x 2 matrix:

det A=1[(tr 4)* —tr(4%)] (C.1)
Applying Eq. (C.1) to det[ (P, + P_) 4] yields
det[(P,+P_)A]=tr(P,A)tr(P_A)—tr(P_.AP_A)
+3[(tr[P, A1) —tr[(P, A)*]]
+3[(tr[P_A]) —tr[(P_A4)*]]. (C2)
Use of Eq. (C.1) enables us to write this as
det[(P, +P_)A]=tr(P, A)tr(P_A)—tr(P_AP_A)
+det[P, A]+det[P_A] (C.3)
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Then if P, +P_=1 and P, P_=0 it can be proved that any non-zero 2x2
matrices that satisfy these have vanishing determinant, ie., det[P,]=0 (this
corresponds to each projection operator annihilating a vector, and therefore having
an eigenvalue of zero). Consequently the last two terms on the right of Eq. (C.3)
vanish and we obtain the required result:

det A=tr(P, A)tr(P_A)—tr(P, AP_ A). (C.4)

There are versions of Eq. (C.1) applicable to square matrices of arbitrary order
and corresponding generalizations of Eq. (C.4).
Note that if the projection operators are written as

P.=(l+a-6) with a-a=1 (C.5)

then for the vector a real, Eq. (C.4) corresponds to the usual result for the determi-
nant of A, evaluated in the orthogonal basis formed from right and left eigenvectors
of a-o which are Hermitian adjoints of one another. For a complex (the case
applicable to the present work), the right and left eigenvectors of a - 6 are no longer
Hermitian adjoints of one another and Eq. (C.4) may be viewed as a generalisation
of the usual formula for a determinant to more general bases.

APPENDIX D: RELATION OF D (z) TO AN ANALYTIC CONTINUATION
OF THE TRANSMISSION AMPLITUDE

In Ref. [4], the Fredholm determinant for a Schrédinger operator was related to
an analytic continuation of the transmission amplitude in a scattering problem. The
eigenfunctions in the problem were, implicitly, assumed to be bounded on the
infinite line (— oo, o). We have reproduced the analysis for the case of the Dirac
operator studied in this work. The similarities with the Schrédinger case are
sufficiently great that we shall just sketch the details.

We begin with Eq. (3.1), applied to the case of a potential that is non-zero in
only a finite region of the infinite line. With 1 as defined in Eq. (4.6) we let 1, (x)
be independent spinor eigenfunctions obeying Eq.(2.2a) with the asymptotic
form

Lim f,(x;z)=xt(z)V, e™* (D.1a)
X = + o0
Lim f,(x;z)xV, e ™ +r (z) Ve, (D.1b)
x—= For

where

Z+m
Vi=( iii)’ (D.2)
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t(z) and r (z) are complex numbers corresponding to the analytic continuation of
transmission and reflection amplitudes into the complex energy plane. It can be
proved that #(z) is the same for both f, and f_.

With T denoting the transpose of a matrix/spinor, we define for two spinors f|
and f,, the quantity

W[fl’f2]=_iff‘72f2 (D.3)

which is analogous to the Wronskian in Schrodinger theory. The Greens function
G(x; x') that remains bounded as |x| — 0 may be shown to be

if o (x32) [T (x5 2) 0 ,

G(x; x' ’
= o s o1 Y
if (x;2) /7 (x';2) 0,
- , X' D4
Wif o/ (o7 T (D4)
and leads to
i Glx: x) = i1 (x;z) 03 f (x;52) (D.5)

WIf (x;2), felx;2)]

(tr G(x; x') is continuous at x" = x).
It may be straightforwardly proven that

OMWLS_(x52'), fo(x;2)]1=(2" —2)if L (x52') 031, (x;2); (D.6)

thus
WL (x;2)fds, f, (x32)]
trG(x; x)= Wi (o) fo o] (D.7)
We now employ Eq. (3.2) which yields
ilnD (2)=Tr(G—Gy)
dz
= Lim ’ dr tr[G(x; x)—Golx; x)] (D.8)

L -

and using the preceding equations and their analogues for V(x)=0 results in

d -1
Ez—lnD (L)—:i;ln[t (2)] (D.9)
From considerations of this equation for |z] - oo (cf. Appendix B), it may be
verified that

D, (z)=t"'(z). (D.10)
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This is the relation between the Fredholm determinant and the (analytic continua-
tion of) the transmission amplitude.

This work is dedicated to the memory of my father.
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Note added in proof. The calculations presented here for Dirac operators have been extended to
Bogoliubov operators. Details of this work are given in D. WAXMAN, Phys. Rev. Lett. 72 (1994), 570.
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