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Abstract

Fisher’s geometrical model amounts to a description of mutation and selection for individuals characterised by a number of

quantitative traits. In the present work the fitness landscape is not assumed to be spherically symmetric, hence different points, i.e.

phenotypes, on a surface of constant fitness generally have different curvatures. We investigate two different approximations of Fisher’s

geometrical model that have appeared in the literature. One approximation uses the average curvature of the fitness surface at the

parental phenotype. The other approach is based on a normal approximation of a distribution associated with new mutations. Analytical

results and simulations are used to compare the accuracy of the two approximations.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In his book The Genetical Theory of Natural Selection,
Fisher (1930) introduced a description of mutation and
selection of quantitative traits that was essentially geome-
trical in content. This has come to be known as Fisher’s
geometrical model. Individuals were characterised by the
value of n quantitative traits. These trait values were taken
as the Cartesian coordinates in an n dimensional space of
characters and an individual, with their particular set of n

characters, was represented as a point in this space.
Fisher was one of the first people to consider fitness to

depend on all relevant biological variables, when he
allowed selection to depend on the n quantitative traits
characterising an individual. Implicit in Fisher’s writing,
was the existence of a single fitness optimum. Hence for
phenotypes in the vicinity of this optimum, selection is of a
stabilising type. Phenotypes far from this optimum are
subject to directional selection.

The process of mutation results in a mutant offspring
being located at a different position in the character space
to that of their parent (for simplicity we couch matters in
e front matter r 2006 Elsevier Inc. All rights reserved.
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the language of an asexual population). When the number
of characters, n, is large, results from the model confirm the
commonly held belief, that most random changes of a
complex organism reduce fitness, and that only a small
fraction are beneficial (increase fitness). Amongst other
things, this model actually allows us to quantify the
proportion of mutations that are beneficial and, quite
recently, such a model has been considered in a variety of
different contexts (Rice, 1990; Hartl and Taubes, 1996,
1998; Peck et al., 1997; Orr, 1998, 1999, 2000, 2006; Burch
and Chao, 1999; Poon and Otto, 2000; Barton, 2001;
Welch and Waxman, 2003; Whitlock et al., 2003; Waxman
and Welch, 2005; Waxman, 2006; Martin and Lenormand,
2006). Indeed this model and generalisations of it are
becoming part of the conceptual and theoretical toolkit of
workers in the area of evolutionary adaptation.
In the present work, we compare two approaches to

approximating Fisher’s geometrical model, when the fitness
landscape is not spherically symmetric—which is a highly
idealised situation—but rather, when a surface of constant
fitness has different curvatures at different locations on the
surface.
The first approach (Rice, 1990) involved averaging over

curvatures. Thus at the location of a parental phenotype, in
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Fig. 1. This figure illustrates Fisher’s geometrical model when there are

two traits, z1 and z2, and fitness and mutation are spherically symmetric.

The fitness optimum lies at the origin of the coordinate system, ð0; 0Þ and is

represented by a filled dot. The unfilled dot represents the phenotype of an

individual and the arrow stemming from this point represents a

mutational change, of magnitude r. The quantity kzk is the distance of

the parental phenotype from the optimum. All points on the solid circle,

with radius kzk, correspond to the same value of fitness—i.e. they

constitute a surface of constant fitness. The dashed arc shows the set of

mutations that are closer to the optimum than the parental phenotype and

are thus beneficial mutations.
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the n dimensional space of characters, an approximate
(curvature averaged) fitness surface was used in place of the
exact fitness surface. An alternative approach (Waxman
and Welch, 2005; Waxman, 2006) approximated the
problem as one in which new mutations are associated
with a Gaussian random variable that depends on the
parental phenotype. It is hard to directly compare the two
approximations since they involve related quantities, but in
apparently quite different combinations. It is the purpose
of the present work to make a comparison of the two
approximations. We shall approach this by looking at a
specific case that clearly illustrates the differences and has
the virtue of being exactly calculable within a well-defined
approximation scheme.

2. The basic form of Fisher’s model

The values of the n quantitative characters that describe
the relevant phenotype of an individual are z ¼

ðz1; z2; . . . ; znÞ and each of the different characters, zi, is
taken to range from �1 to 1.

Individuals are assumed to be subject to stabilising
selection, with the characters defined in such a way that the
optimum of the fitness function lies at the coordinate
origin, z ¼ ð0; 0; . . . ; 0Þ. In Fisher’s original analysis, the
fitness landscape was implicitly taken to be spherically
symmetric, with the fitness of an individual depending only
on the Euclidean distance of z from the origin:

kzk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22 þ � � � þ z2n

q
, for example expð�skzk2Þ where

s is a positive constant whose value is a measure of the
strength of stabilising selection. A consequence of spherical
symmetry is that surfaces of constant fitness are hyper-
spheres centred on the coordinate origin, that is, circles if
n ¼ 2, spheres if n ¼ 3 and higher dimensional analogues of
these for higher n.

The change in characters, due to mutation, is given by n

random mutational changes on the different characters,
namely the numbers r ¼ ðr1; r2; . . . ; rnÞ. An organism, with
phenotype z, gives rise to a mutant offspring with
phenotype zþ r. We assume all n components of r are
generally non-zero, so when a mutation occurs all n

characters are generally changed. This model therefore
assumes a universal form pleiotropy. In Fisher’s original
formulation, a mutation will be adaptive (or beneficial) if
the distance of zþ r from the origin, i.e. kzþ rk, is smaller
than the parental distance from the origin, kzk. The
condition for being adaptive can thus be written as kzþ
rk2okzk2 and for a given distribution of r, we can
determine the proportion of adaptive mutations from the
proportion of all mutations satisfying this condition.

Fisher compared the adaptive nature of mutations with a
given magnitude of r, which we denote by r, i.e., r ¼ krk.
He took r to be uniformly distributed over the surface of a
sphere of radius r in n dimensions. As long as the
distribution of mutational changes is spherically symmetric
(depends only on krk) the proportion of beneficial
mutations, Pben, depends on only a single aspect of the
parental phenotype, z, namely its magnitude (or distance
from the optimum), kzk. The case of n ¼ 2 characters is
illustrated in Fig. 1.
Fisher gave an exact result for the proportion of

beneficial mutations, Pben, when n ¼ 3 and it is possible
to write an exact expression for Pben for general n in terms
of special functions (see e.g. Kimura, 1983). However for
nb1 an accurate and convenient approximate expression
for Pben was also given by Fisher. It was found to depend
only on the combination of parameters

r0 ¼
r
ffiffiffi
n
p

2kzk
(1)

and given by

Pbenðr0Þ ’

ffiffiffiffiffiffi
1

2p

r Z 1
r0

e�u2=2 du ¼
1

2
erfc

r0ffiffiffi
2
p

� �
, (2)

where erfcð�Þ denotes the complementary error function
(Abramowitz and Stegun, 1970). The ratio r0 naturally
emerges from the calculations and a possibly useful way to
view it is as the mutational magnitude, r, divided by a scale
that is intrinsic to the problem, which is not kzk, but rather
2kzk=

ffiffiffi
n
p

.



ARTICLE IN PRESS

−3

0−3
0

3

0

0.5

z1

z2

P
be

n

Fig. 2. The figure applies to the case of n ¼ 2 traits. The proportion of

beneficial mutations, Pben, for the fitness function W ðzÞ ¼

expð�
P2

j¼1 sj z
2
j Þ is plotted as a function of the trait values z1 and z2.

The strengths of selection on the different traits are s1 ¼ 0:15 and

s2 ¼ 0:85. The dashed line is a ‘‘surface of constant fitness’’—the set of

trait values corresponding to the fixed value of fitness W ðzÞ ¼ 1
2
. Because

fitness is not spherically symmetric, the surface of constant fitness is not

spherically symmetric, but an ellipse, whose curvature varies from point to

point. Furthermore, the proportion of beneficial mutations, Pben, varies

over the surface of constant fitness. To produce the figure, mutations were

taken to have a spherically symmetric distribution, with a fixed magnitude

of r ¼ 0:4.
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Generalisations of Fisher’s model involve more compli-
cated fitness landscapes (Rice, 1990; Whitlock et al., 2003;
Waxman and Welch, 2005; Waxman, 2006; Martin and
Lenormand, 2006). In the work of Waxman and Welch
(2005), a generalised stabilising-selection fitness function
was introduced that was motivated by concerns of Haldane
(1932). It takes the form

W GðzÞ ¼ exp �
Xn

j;k¼1

Mijzizj

 !
, (3)

where Mij are elements of a positive definite symmetric
matrix and if, for different i and j, some of the Mij are non-
zero, then this form of fitness function represents fitness
interactions between different traits. However, compound
traits exist that are linear combinations of the existing traits
and which simplify the structure of the problem. If we write
the compound traits as z�i then when these are chosen
appropriately, the fitness function of Eq. (3) can be
expressed in terms of these compound traits as
expð�s1z�21 Þ � expð�s2z�22 Þ � � � � � expð�

Pn
j¼1sjz

�2
j Þ,

where all sj40. Such a fitness function corresponds to
selection acting independently, and in a stabilising manner,
on the compound traits (Waxman and Welch, 2005).
Furthermore, the distribution of mutations, because it has
been taken to be spherically symmetric, is completely
unaffected by the above ‘‘diagonalisation’’ (which is simply
a rotation of the coordinate axes, in the n-dimensional
space of traits). In what follows, we shall assume a
transformation of the traits appearing in the generalised
fitness function, Eq. (3), has been made and that all traits
are now compound traits. To reflect the formal similarity
of problems with the original traits (as appearing in Eq.
(3)) and those expressed in terms of compound traits, we
will use the notation z to refer to any collection of traits,
regardless of their nature—original or compound. We thus
define the fitness W ðzÞ by

W ðzÞ ¼ exp �
Xn

j¼1

sjz
2
j

 !
. (4)

An explicit implication of W ðzÞ is that various properties,
e.g., the proportion of beneficial mutations, generally
depend on details of z other than simply its length, kzk.
The behaviour of the proportion of beneficial mutations is
illustrated in Fig. 2, for the case of two traits, and this
example explicitly shows a dependence on z beyond that of
kzk.

We note that when all sj take the same value, say s, in
the fitness function of Eq. (4), then it reduces to
expð�s

Pn
j¼1z2j Þ which can be written expð�skzk2Þ. This

depends only on kzk and is spherically symmetric.
The primary focus of this paper is an accurate treatment

of generalised fitness landscapes that are not spherically
symmetric. Such landscapes have curvatures which do not
take the same value over all points of a surface of constant
fitness. In this section, we shall establish sufficient notions
of curvature for the analysis presented in this work. More
general treatments of curvature can be found in textbooks
(see e.g. Kreyszig, 1991).
The curvature, k, of a circle of radius r is defined as

k ¼ 1=r. For a more general curve in the x–y plane, which
we write as y ¼ yðxÞ, we can determine the curvature at any
point by fitting a circle to the point in question. Thus, at
any point of interest, we write the formula of the circle we
shall fit as ðx� aÞ2 þ ðy� bÞ2 ¼ r2. This has three un-
knowns, a, b and r, which have to be found before the circle
is determined. We shall use three nearby points on the
curve to determine the three unknowns. Taking the x value
of the point of interest as x0, the three points we shall use
are ðx0 � e; yðx0 � eÞÞ, ðx0; yðx0ÞÞ and ðx0 þ e; yðx0 þ eÞÞ.
Since the circle passes through these points, we have three
equations in three unknowns: ðx0 � aÞ2 þ ðyðx0Þ � bÞ2 ¼ r2

and ðx0 � e� aÞ2 þ ðyðx0 � eÞ � bÞ2 ¼ r2. We then solve
these three equations for a, b and r. In the limit e! 0 we
obtain the unique circle that makes contact with the curve.
With a prime denoting differentiation of a function with
respect to its argument, e.g. y0ðxÞ � dyðxÞ=dx, we find that
centre of the circle has coordinates ða; bÞ where a ¼

ðx0y
00ðx0Þ� y0ðx0Þ � ½y

0ðx0Þ	
3Þ=y00ðx0Þ, b ¼ ð1þ y00ðx0Þyðx0Þþ

½y0ðx0Þ	
2Þ=y00ðx0Þ and the curvature of the curve, at x ¼ x0,

is

k ¼ 1=r ¼ jy00ðx0Þj=ð1þ ½y
0ðx0Þ	

2Þ
3=2 (5)

(we do not assign a sign, here, to curvature, and so always
take k as a positive quantity). The formula in Eq. (5)
appears to originate with Newton (Rouse Ball, 1960).
As a simple example of this, consider the ellipse

x2=a2 þ y2=b2 ¼ 1. This can be solved for y to yield yðxÞ
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which has one of the two sign choices

yðxÞ ¼ �b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=a2

q
(6)

and a direct application of Eq. (5) leads to a curvature at
x ¼ 0 of k ¼ b=a2.
Fig. 3. A surface of constant fitness is illustrated for the case of n ¼ 3

traits. The black dot represents the point ðz1; 0; 0Þ and the two broken

curves through this point signify lines in the surface of constant fitness that

are in the z1–z2 and z1–z3 planes. The two curvatures, k2 and k3 (see Eq.

(9)) are obtained by fitting circles at ðz1; 0; 0Þ in these two planes.
3. Curvature associated with fitness

Now let us consider the case of a surface of constant
fitness, when the fitness function is not spherically
symmetric and given by Eq. (4). This form of fitness
function was motivated above, in Section 2.

For the purposes of the present work, the most relevant
quantity is not W ðzÞ but its natural logarithm, logW ðzÞ,
and a surface of constant fitness is also a surface of
constant logW ðzÞ and given by �

Pn
j¼1 sjz

2
j ¼ �c2 where c

is a constant. We shall restrict analysis to a particular point
of extreme symmetry on such a surface, where elementary
considerations of curvature suffice. We shall thus focus
interest on the (generally different) n� 1 curvatures at a
point which has z1a0 and all other zj’s vanishing, i.e. the
point ðz1; 0; 0; . . . ; 0Þ.

At a general point on the surface of constant fitness, z1
takes one of the two sign choices of

z1 ¼ �
1ffiffiffiffiffi
s1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �

Xn

j¼2

sjz
2
j

vuut . (7)

Thus, for example if z3 ¼ z4 ¼ � � � ¼ zn ¼ 0 then z1 is a
function only of z2 which we write as z1ðz2Þ and

z1ðz2Þ ¼ �
1ffiffiffiffiffi
s1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � s2z22

q
. (8)

This is directly analogous to Eq. (6), with z1 ! y and
z2! x, and the curvature at the point of interest (z1a0,
z2 ¼ 0) is k2 ¼ s2=ð

ffiffiffiffiffi
s1
p
jcjÞ. We can simplify this expression

by noting that in the limit where all zj (except z1) vanish, we
have jcj ¼

ffiffiffiffiffi
s1
p
jz1j hence k2 ¼ s2=ðs1jz1jÞ. This quantity

represents the curvature, at z2 ¼ 0, of a curve in the z1–z2
plane that is constrained to lie in the surface of constant
fitness. More generally, there are n� 1 orthogonal direc-
tions that pass through the point of interest, ðz1; 0; 0; . . . ; 0Þ
in the surface of constant fitness. These correspond to
curves that have only z1 and zj varying, with j taking only
one of 2; 3; . . . ; n, and the explicit value of the local
curvature of such a curve, at the point of interest (i.e. where
zj ¼ 0) is

kj ¼
sj

s1

1

jz1j
; j ¼ 2; 3; . . . ; n. (9)

See Fig. 3 for an illustration of the case of n ¼ 3 characters,
and the two different curves through the point ðz1; 0; 0Þ.

The n� 1 values of curvature given in Eq. (9) correspond
to the principal values of curvature at the point
z3 ¼ z4 ¼ � � � ¼ zn ¼ 0. At a general point on a surface of
constant fitness, the curvatures have a much more
complicated expression.
4. Application to generalised versions of Fisher’s geometrical

model

We now apply the above results to generalised versions
of Fisher’s geometrical model, where fitness functions are
not spherically symmetric. Consider the proportion of
mutations, of size r, that are beneficial in a fitness
landscape given by Eq. (4). The two approximations we
discuss both yield a proportion of beneficial mutations of
the form

Pben ’
1ffiffiffiffiffiffi
2p
p

Z 1
r

e�t2=2 dt ¼
1

2
erfc

rffiffiffi
2
p

� �
. (10)

Here r is a dimensionless quantity that characterises
mutational changes relative to selection. In the two
approximations under consideration, r takes different
forms. Both of these are generally different to the quantity
r0 of Eq. (1).
We note that Rice (1990) was not approximating an

identical fitness surface to that associated with Eq. (4)—
which is an ellipsoid; Rice’s geometry was apparently that
of a torus (Rice, 1990). However, it seems reasonable to
assume the two approximations should coincide for local
quantities—such as the proportion of beneficial mutations,
when mutations only probe a small region of a fitness
surface.
Proceeding, we interpret Rice’s calculation (Rice, 1990)

as referring to the curvature of the natural logarithm
of fitness, rather than to fitness itself. The resultant
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approximation for r is rR where

rR ¼

ffiffiffi
n
p

rK

2
, (11)

K ¼
1

n� 1

X
n�1 curvatures

1

kjðzÞ

 !�1
(12)

(we assume Rice’s Eq. (9) contains a misprint and the
factor n� 1 should lie within the bracket in this equation).
The form of Eq. (12) is a particular average curvature: the
harmonic mean of the n� 1 principal curvatures at the
point of interest.

In the special case where z1a0 and all other zj’s are zero,
we use Eq. (9) to reduce rR to:

rR ¼

ffiffiffi
n
p

r

2

1

n� 1

Xn

j¼2

s1jz1j
sj

 !�1

¼

ffiffiffi
n
p

r

2jz1j

H

s1
special case ð13Þ

where

H ¼
1

n� 1

Xn

j¼2

1

sj

 !�1
(14)

is the harmonic mean of s2;s3; . . . ;sn.
By contrast, Waxman and Welch (2005) obtained an

alternative approximation from analysis of quantities
associated with new mutations in Fisher’s geometrical
model. This was based on the approximate behaviour of
logðW ðzþ rÞ=W ðzÞÞ as a Gaussian random variable (recall
that r is a random mutational change). These authors
derived the approximation r ’ rWW where

rWW ¼
r2s̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2s2z2

p ¼
rs̄

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
Pn

j¼1s
2
j z2j

q
¼

ffiffiffi
n
p

rs̄

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1s
2
j z2j

q , ð15Þ

where s̄ ¼
Pn

j¼1sj=n is the mean value of the si. Specialis-
ing to the case above, namely z1a0 and all other zj’s
vanishing, we find

rWW ¼

ffiffiffi
n
p

r

2jz1j

s̄
s1
; special case. (16)

Note that both rR and rWW are of the form
ð
ffiffiffi
n
p

r=2jz1jÞðA=s1Þ where A is either H (the harmonic mean
of s2; s3; . . . ; sn) or s̄ (the arithmetic mean of
s1;s2; . . . ;sn). Note also that when all sj are identical, rR

and rWW (Eqs. (16) and (13)) coincide with one another.
It is evident that generally, rR and rWW do not coincide

in value. We note that although the arithmetic mean is
larger or equal to the harmonic mean, we cannot apply this
result here, without further assumptions, and infer that
rWWXrR, since s̄ and H refer to different sets of s’s (s̄
involves s1 while H does not involve s1). However if we
view the si as having been drawn from a given probability
distribution, then for large n we have, by the law of large
numbers, s̄! E½s	 and H ! 1=E½s�1	, where the expecta-
tions, E½. . .	, are taken with respect to the probability
distribution of the s’s. The ratio of rWW to rR is then given
by rWW=rR ¼ E½s	E½s�1	 and when this result is applic-
able, the fact that E½s	E½s�1	X1 yields rWWXrR.

4.1. Example

As an example, assume the s’s are drawn from a uniform
distribution that ranges from sminð40Þ to smax. The
coefficient of variation (i.e. standard deviation/mean) of
this distribution is given by CVðsÞ ¼ ðsmax �

sminÞ=
ffiffiffi
3
p
ðsmax þ sminÞ

� �
and this lies in the range 0 to

1=
ffiffiffi
3
p
’ 0:58. We find

rWW=rR ¼
1ffiffiffiffiffi

12
p

CVðsÞ
ln

1þ
ffiffiffi
3
p

CVðsÞ

1�
ffiffiffi
3
p

CVðsÞ

� �
(17)

and this is an increasing function of CVðsÞ.
If the s’s deviate very little from their mean value, by

having a small coefficient of variation, CVðsÞ, then
expanding rWW=rR in Eq. (17) to leading non-zero order
in CVðsÞ yields the approximation rWW=rR ’ 1þ CV2

ðsÞ.
For illustrative purposes, let smin ¼ 0:7 and smax ¼ 1:3.
This leads to CVðsÞ ’ 0:17 and rWW=rR ’ 1:03.
Alternatively, suppose there is appreciable variation in

the s’s, by CVðsÞ being close to the maximum
possible value it can take for a uniform distri-
bution: CVðsÞ ’ 1=

ffiffiffi
3
p

. We then have rWW=
rR ’

1
2
lnð2=ð1�

ffiffiffi
3
p

CVðsÞÞÞ. To illustrate this, let smin ¼

0:002 and smax ¼ 1:998, then CVðsÞ ’ 0:58 and rWW=rR ’

3:46 i.e., rWW is more than three times the size of rR.

5. Numerical test

For the special case where z ¼ ðz1; 0; 0; . . . ; 0Þ, we have
numerically tested the two approximations for the propor-
tion of beneficial mutations that result from using either rR

(Eq. (13)) or rWW (Eq. (16)) in Eq. (10), for Pben.
To set up a numerical test we first invert Eq. (10), to

obtain r ’
ffiffiffi
2
p

erfc�1ð2PbenÞ, where erfc�1ð�Þ is the inverse
function to erfcð�Þ. We note that when all si are identical,
r ’ r0 (r0 is given in Eq. (1)) hence in this case r=r0 ’ 1. It
is natural, in a more general case, to define a measure of
deviations of r=r0 from unity, since both approximations
generally lead to r=r0a1. Accordingly, we define a new
quantity R, given by

R ¼
2jz1jffiffiffi

n
p

r

ffiffiffi
2
p

erfc�1ð2PbenÞ. (18)

Using the approximation of Pben in Eq. (10) yields
R ’ 2jz1jr=ð

ffiffiffi
n
p

rÞ � r=r0, whatever the value of r, hence
R does indeed measure of deviations of r from r0. The
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Table 1

Results of simulations

Row n r smin smax CVðsÞ H=s1 s̄=s1 R

1 50 0.05 1.000 1.000 0.00 1.00 1.00 0.98

2 50 0.05 0.200 1.800 0.46 1.26 1.79 1.78

3 50 0.05 0.002 1.998 0.58 0.41 1.39 1.36

4 50 0.10 1.000 1.000 0.00 1.00 1.00 0.99

5 50 0.10 0.200 1.800 0.46 1.26 1.79 1.78

6 50 0.10 0.002 1.998 0.58 0.41 1.39 1.37

7 100 0.05 1.000 1.000 0.00 1.00 1.00 0.99

8 100 0.05 0.200 1.800 0.46 2.13 3.04 3.02

9 100 0.05 0.002 1.998 0.58 0.27 1.16 1.16

10 100 0.10 1.000 1.000 0.00 1.00 1.00 0.99

11 100 0.10 0.200 1.800 0.46 2.13 3.04 3.00

12 100 0.10 0.002 1.998 0.58 0.27 1.16 1.16

Results of simulations, as described in the main text are given in the Table.

Rows 1, 4, 7 and 10, which have smin ¼ smax, correspond to no variation

amongst the si , and serve to show that the R statistic, introduced in Eq.

(18), is very close to unity in this case—as predicted by the analytical

approximations. In all other rows, R is significantly larger than the

approximation following from the work of Rice (H=s1), while it is always
close to the corresponding result of Waxman and Welch (s̄=s1).
There are significant differences between R values arising from identical

distributions of the s’s, but having different values of n, e.g. the R values

given in rows 2 and 8 of the table. Given that in both approximations for

r, we have that R / 1=s1, the differences arise because s1 may vary greatly

from one set of s’s to the other, because for different n, the R’s were

calculated from independently generated sets of s’s.
Note that because of the specialisation to z1a0 in this work, s1 has a

privileged place in various formulae derived here. However, s1 was not

distinguished in any way from any other of the si , during the generation of

sets of the s’s. Thus generally, s1 is neither the smallest nor the largest of

the si but merely a random member of each set of s’s.
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approximation of Rice (1990) yields R ’ H=s1, while that
of Waxman and Welch (2005) yields R ’ s̄=s1.

To use R as the basis of a numerical test of the value of
r=r0, we specialised to the case z1 ¼ 1 and estimated Pben

from simulation.
A test of the value of r=r0 is carried out with: (i) a given

number of traits, n; (ii) a given magnitude of mutational
changes, r; and (iii) a given set of s’s, i.e. ðs1;s2; . . . ;snÞ.

A test of the value of r=r0 involves generating a large
number of random mutation vectors, r, with a fixed
magnitude of r, and which are uniformly distributed over a
sphere in n dimensions. We generated 105 random
mutation vectors. The proportion of these mutational
changes that are beneficial, i.e. the proportion of all r for
which W ðzþ rÞ4W ðzÞ, are determined as an estimate of
Pben, which is then used in Eq. (18).

In Table 1 we summarise results of simulations for two
different values of the number of traits, n, two different
magnitudes of the mutational changes, r, and three
different sets of s’s. For a given n, a particular set of the
s’s was obtained by independently drawing each si from a
uniform distribution ranging from smin to smax. Each set of
s’s was held fixed, for all of the mutational changes used to
determine Pben, for the two different values of r.
6. Summary

In this work, we have compared two different approx-
imations of Fisher’s geometrical model of evolutionary
adaptation. We considered fitness landscapes with surfaces
of constant fitness that are not spherically symmetric and
hence have different curvatures at different points. The two
approximations are rather different in character, and arise
from different viewpoints; one manifestly geometrical in
nature, the other analytical. The approximation of Rice
(1990) is based on a geometric analysis. Because of the
qualitative reasoning on which the approximation is based,
it is not straightforward to determine its region of validity
or its limitations. The approximation of Waxman and
Welch (2005) was based on the distribution of the quantity
log½W ðzþ rÞ=W ðzÞ	 for fixed z but random r. Eq. (4) allows
this quantity to be written as �

Pn
j¼1 sjð2zjrj þ r2j Þ. The

region where a central limit (i.e. Gaussian) sort of
behaviour of this sum manifests itself, despite incomplete
independence of the different terms, is susceptible to direct
analysis (Waxman and Welch, 2005).
We compared the two approximations by focussing on

specific points of particular symmetry on a surface of
constant fitness. This allowed us to analytically and
numerically distinguish the predictions of the two approx-
imations. The two approximations were used to compare
the value of the quantity r that appears in Eq. (10) and
which characterises mutational changes relative to
selection. The value of r was determined from the
proportion of beneficial mutations. Thus, its value was
determined from what is a rather subtle feature of the
distribution of selection coefficients: the relatively small
part of the distribution corresponding to beneficial muta-
tions. As such, a comparison based on r provides a
stringent test of the approximations. Our findings, for the
range of parameters considered in this work, indicate that
when there is variation in the strengths of selection on
different traits (the si) the Gaussian approximation of
Waxman and Welch (2005) (see also Waxman, 2006) is
very close to the results of simulations and significantly
different to the ‘‘average curvature’’ approximation of Rice
(1990).
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