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a b s t r a c t

We investigate the detailed connection between the Wright–Fisher model of random genetic drift and the

diffusion approximation, under the assumption that selection and drift are weak and so cause small

changes over a single generation. A representation of the mathematics underlying the Wright–Fisher

model is introduced which allows the connection to be made with the corresponding mathematics

underlying the diffusion approximation. Two ‘hybrid’ models are also introduced which lie ‘between’ the

Wright–Fisher model and the diffusion approximation. In model 1 the relative allele frequency takes

discrete values while time is continuous; in model 2 time is discrete and relative allele frequency is

continuous. While both hybrid models appear to have a similar status and the same level of plausibility,

the different nature of time and frequency in the two models leads to significant mathematical

differences. Model 2 is mathematically inconsistent and has to be ruled out as being meaningful. Model

1 is used to clarify the content of Kimura’s solution of the diffusion equation, which is shown to have the

natural interpretation as describing only those populations where alleles are segregating. By contrast the

Wright–Fisher model and the solution of the diffusion equation of McKane and Waxman cover

populations of all categories, namely populations where alleles segregate, are lost, or fix.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Random genetic drift is said to occur when, largely independent
of selection, mutation and migration, there is variation in the
contribution of adults of one generation to offspring of the next
generation. Random genetic drift is a process associated with a
finite number of individuals. It results in the number of copies of a
particular allele at a locus randomly varying from generation to
generation. One of the key mathematical approaches for dealing
with genetic drift is the diffusion approximation. This was intro-
duced into population genetics by Fisher (1922) and Wright (1931)
and substantially extended and applied by Kimura (1955a).

Under a diffusion approximation, the relative frequency of an
allele is treated as a continuous random variable whose distribu-
tion obeys a diffusion equation. This approach has been used to
derive many fundamental results and insights into evolution and
population genetics (Crow and Kimura, 1970).

A notable result derived by Kimura is an exact time-dependent
solution of the diffusion equation for a selectively neutral population
(Kimura, 1955b). However, in a paper by McKane and the author, a
different solution of the diffusion equation was established which, in
ll rights reserved.

gineering, Cockroft Building,
contrast to Kimura’s result, has the property of conserving probability
for all times (McKane and Waxman, 2007). McKane and Waxman
solved the forward diffusion equation under a boundary condition
that ensures that no probability is lost. The processes of fixation and
loss then directly emerged in the guise of singular spikes, i.e., Dirac
delta functions (Dirac, 1958), in the solution at the relative frequen-
cies 0 and 1. When the total integrated probability includes the
contribution of the two spikes, its value is conserved and takes the
value of unity for all values of the time.

In the present work we present a clarification of the connection
of the Wright–Fisher model of random genetic drift with the
diffusion approximation. There are considerable mathematical
subtleties associated with the diffusion approximation, and we
largely avoid these by proceeding as follows.
1.
 We introduce a representation of the mathematics underlying
the Wright–Fisher model (namely the eigenvectors associated
with the model) that allows a transparently clear connection
with the corresponding mathematics underlying the diffusion
approximation (namely the eigenfunctions of a diffusion
operator).
2.
 We introduce two instructive ‘hybrid’ models which can be
viewed as lying ‘between’ the Wright–Fisher model and the
diffusion approximation. The intermediate character of these
models follows from the nature of time or allele frequency

www.elsevier.com/locate/yjtbi
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adopted. In the Wright–Fisher model, both time and allele
frequency take discrete values, while in the diffusion approx-
imation, both of these quantities take continuous values. In one
of the hybrid models introduced here, time is taken as a
continuous quantity, while the relative allele frequency remains
discrete; in the other hybrid model, relative frequency is taken
as continuous while time remains discrete. Despite the fact that
both hybrid models appear to have a similar status and the same
level of plausibility, the different nature of time and frequency
in the two models leads to significant mathematical differences.
We find that one of the hybrid models (where the relative
frequency takes continuous values but time remains discrete) is
mathematically inconsistent and has to be ruled out as a
meaningful model.
3.
 We use the remaining hybrid model (where time is continuous
and relative frequency discrete) to clarify the content of Kimura’s
solution of the diffusion equation. Our analysis allows us to show
that the solution of the diffusion equation obtained by Kimura can
be naturally interpreted as describing only those populations
where alleles are segregating. By contrast the Wright–Fisher
model and the solution of the diffusion equation of McKane and
Waxman (2007) cover all categories of populations, namely
populations where alleles segregate, are lost, or fix.
2. Wright–Fisher model

We shall consider a Wright–Fisher model of genetic drift for a
population of N haploid individuals that undergo random mating
(i.e., that have a brief diploid stage of their predominantly haploid
life cycle) and are subject to viability selection. For definiteness, all
calculations in this work will be restricted to such haploid sexual
populations, which cover organisms such as the green alga Ulothrix

(Mable and Otto, 1998). However, we note that under the sub-
stitution N-2N the same results apply to randomly mating diploid
organisms that are subject to genic selection: see e.g., Gale (1990, p.
129). This applicability means the conclusions of this work also
apply to ‘standard diploid populations.’

To begin, consider a population of randomly mating haploid
individuals with a single locus under selection. We take there to be
two alleles at this locus, labelled A and a, and generations are
assumed to be non-overlapping. In the adults of generation t

(¼ 0,1,2, . . .) the proportion of alleles at the locus that are allele A is
written X(t). This is the relative frequency (henceforth termed
frequency) of allele A in adults; the corresponding frequency of
allele a in adults is 1�X(t).

In a very large (effectively infinite) population, the frequency
X(t) changes according to the deterministic rule1

Xðtþ1Þ ¼ CðXðtÞÞ: ð1Þ

In this equation the function C(x) generally depends on mutation,
migration and selection. In the absence of these processes CðxÞ ¼ x,
in which case the allele frequency X(t) takes the same value in all
generations in a very large population.

In the present work we incorporate viability selection into the
dynamics and assume there are no fertility differences between
different genotypes. The relative viabilities of the A and a haploid
genotypes are taken to be 1+s and 1, respectively, so the A allele
confers a fitness advantage of s over the a allele. The function C(x) is
then given by

CðxÞ ¼ xþ
sxð1�xÞ

1þsx
: ð2Þ
1 This rule holds unless the A allele is at very low copy numbers.
In a finite population, a non-selective ecological thinning
process is taken to occur that ensures that N adults are maintained
in a population every generation. The lifecycle adopted is
Generation t
 adults
(haploid)
r
andom mating followed by the

k p
roduction of haploid offspring
a
nd the death of all adults

offspring
k v
iability selection

juveniles
k t
hinning (number regulation)

Generation t+1
 adults.
Assuming the number of offspring in a population is very large
(bN), the principal place within the lifecycle where randomness
occurs is when the number of juveniles is thinned to N individuals.

Thinning effectively corresponds to randomly picking N juve-
niles, without replacement, to become the adults of the next
generation. It results in the frequency of the A allele in adults
having a hypergeometric distribution (for more information on this
distribution, see e.g., the textbook by Haigh, 2002). Making the
assumption that the number of adults, N, is small compared with
the number of juveniles, the hypergeometric distribution can be
well-approximated by a binomial distribution. Given such a
binomial distribution, the relation between the frequency of the
A allele in generations t and t+1 is

Xðtþ1Þ ¼
BinðN,CðXðtÞÞÞ

N
, ð3Þ

where Bin(n,p) denotes a random number that is drawn from a
binomial distribution with parameters n (number of trials) and p

(probability of success on each trial). We thus have a Wright–Fisher
model of random genetic drift (Fisher, 1922; Wright, 1931).

The statistical description of the allele frequency X(t) in a Wright–
Fisher model arises from consideration of an infinite number of
replicate populations which each maintain N adults every generation.
Possible values of X(t) follow from Eq. (3) and are given by

xn ¼ n=N where n¼ 0,1, . . . ,N: ð4Þ

When X(t) has the value xn it corresponds to a population where n of
the alleles at the locus in question are the A allele.

We write the probability that X(t) has the value xn as F(xn,t). The
change of the F(xn,t) over time follows from Eq. (3) and is given by
Fðxn,tþ1Þ ¼

PN
m ¼ 0 Wn,mFðxm,tÞ where

Wn,m ¼
N

n

� �
½CðxmÞ�

n½1�CðxmÞ�
N�n, n,m¼ 0,1,2, . . . ,N ð5Þ

and in this expression ðabÞ ¼ a!= ða�bÞ!b!
� �

denotes a binomial
coefficient. We adopt a matrix representation where the F(xn,t)
are elements of a column vector F(t) and the Wn,m are elements of a
matrix W. The equation governing the change of F(t) can then be
written as Fðtþ1Þ ¼WFðtÞ.

Note that where we have written Wn,m, in Eq. (5), it is standard in
the study of Markov processes to write Wm,n. Thus in the standard
formulation, the matrix W is replaced by its transpose, which acts
from the right on a row vector of probabilities. In the present work it
is more natural to work with the formulation presented above,
which leads to Fðtþ1Þ ¼WFðtÞ. Furthermore, with I an identity
matrix of size ðNþ1Þ � ðNþ1Þ and M the matrix

M¼ I�W ð6Þ

we can write the equation governing the change of F(t) as

�½Fðtþ1Þ�FðtÞ� ¼MFðtÞ: ð7Þ
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3. Different approximations leading to two ‘hybrid’ models

Eq. (7) is an exact formulation for the dynamics of the
distribution F(t) in the Wright–Fisher model. It has been adopted
for the present work since this form of equation is close to that of a
diffusion equation. All that it would take to obtain a diffusion
equation from Eq. (7) would be to
(i)
Tabl
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of M
is gi
assume changes in F(t) from one generation to the next are
small (i.e., selection and drift are weak), so time can be
approximated as a continuous quantity, thereby allowing
F(t+1)�F(t) to be approximated by dF(t)/dt;
(ii)
,

approximate xn as a continuous variable x and, at the same
time, replace M (which appears on the right hand side of Eq. (7))
by a differential operator of diffusion form.
It is convenient to give here the relevant diffusion operator,
which we denote by D. For weak selection (jsj51), we approximate
C(x) of Eqs. (1) and (2) by CðxÞ ¼ xþsxð1�xÞ and the action of D on a
function f (x) is then given by (Kimura, 1955a)

Df ðxÞ � �
1

2N

@2½xð1�xÞf ðxÞ�

@x2
þ
@½sxð1�xÞf ðxÞ�

@x
: ð8Þ

The approximations (i) and (ii) above can be separately applied
to the Wright–Fisher model; they lead to two approximations that
can be viewed as intermediate or ‘hybrid’ models that lie between
the Wright–Fisher model and the diffusion approximation. The full
set of models is summarised in Table 1.
e 1
table summarises the salient features of the Wright–Fisher model, two hybrid

els that take either time or frequency as a continuous variable, and the diffusion

oximation, where both time and frequency take continuous values.

del Time Frequency Dynamical equation

right–Fisher Discrete Discrete �½Fðtþ1Þ�FðtÞ� ¼MFðtÞ
brid model 1 Continuous Discrete �dFðtÞ=dt¼MFðtÞ
brid model 2 Discrete Continuous �½f ðx,tþ1Þ�f ðx,tÞ� ¼Df ðx,tÞ

ffusion Continuous Continuous �@f ðx,tÞ=@t ¼Df ðx,tÞ

n the frequency takes discrete values the column vector F(t) denotes the

ability distribution of the A allele frequency at time t. When the frequency takes

inuous values the quantity f(x,t) denotes the probability density of the A allele

ency at time t and frequency x. The matrix M determines the dynamics when

requency takes discrete values, and follows from Eqs. (5) and (6). The analogue

, for a frequency that takes continuous values, is the diffusion operator D which

ven in Eq. (8).
4. Formal solutions of the different models

In order to solve the four models given in Table 1, we shall
employ the eigenvectors of the matrix M or the eigenfunctions
of the diffusion operator D. We make the assumption that M is
diagonalisable and so has a complete set of eigenvectors, i.e., any
vector can be expressed as a linear superposition of the eigenvec-
tors of M. Evidence for the diagonalisability of M is given in the next
section. The diffusion operator D is, in a very definite sense, an
approximation of the matrix M, hence we also assume the diffusion
operator D has a complete set of eigenfunctions, so any function can
be expressed as a linear superposition of its eigenfunctions.

For the matrix M we write the kth right eigenvector as UðkÞ. This
is a column vector with elements FðkÞn where both n and k can take
the values 0,1,2, . . . ,N. The kth left eigenvector of M is a row vector
which is written as the transpose of the column vector WðkÞ and
whose elements are CðkÞn . With a T superscript denoting the
transpose of a matrix, the eigenvalue equations for M are

MUðkÞ ¼ lkU
ðkÞ

WðkÞT M¼ lkW
ðkÞT

)
k¼ 0,1,2, . . . ,N ð9Þ

and lk are the eigenvalues.
For a matrix M that is diagonalisable, the eigenvectors WðkÞT and

UðkÞ can be chosen to be both orthogonal when the labels differ
(WðjÞTUðkÞ ¼ 0 when jak), and normalised to unity (WðkÞTUðkÞ ¼ 1).

The eigenvalue equations for the diffusion operator D that are
analogous to Eq. (9) are the forward and backward equations

�
1

2N

@2

@x2
½xð1�xÞFkðxÞ�þ

@

@x
½sxð1�xÞFkðxÞ� ¼

~lkFkðxÞ

�
1

2N
yð1�yÞ

@2CkðyÞ

@y2
�syð1�yÞ

@CkðyÞ

@y
¼ ~lkCkðyÞ

9>>>=
>>>;

k¼ 0,1,2, . . .

ð10Þ

where ~lk are the eigenvalues. The diffusion operator D has an
infinite number of eigenfunctions hence k, in Eq. (10), can become
indefinitely large. From analogy with the eigenvectors of the matrix
M, we assume the eigenfunctions of D also have the properties of
orthogonality and normalisation, which in this case meansR 1

0 CjðxÞFkðxÞdx¼ 0 when jak and
R 1

0 CkðxÞFkðxÞdx¼ 1.
Using the properties of the various eigenvectors/eigenfunctions,

it can be shown (see Appendix A) that the four models in Table 1
have the formal solutions given in Table 2.
5. Eigenvectors of the matrix M

In order to investigate the properties of the solutions given in
Table 2 when the allele frequency takes discrete values, we shall
elucidate some of the properties of the eigenvectors of the matrix M
of Eq. (6).

The matrix W of Eq. (5) has the form

W¼

W0,0 W0,1 � � �

W1,0 � � �

^ WN,N

0
B@

1
CA¼

1 vT 0

0 w 0

0 uT 1

0
B@

1
CA, ð11Þ

where a T superscript denotes the transpose of a matrix and (i) u, v
are column vectors of length N�1 with all elements non-zero, (ii) 0
is a column vector of length N�1 with all elements zero and (iii) w
is an ðN�1Þ � ðN�1Þ matrix.

It follows that the matrix M of Eq. (6) has the form

M¼ I�W¼

M0,0 M0,1 � � �

M1,0 � � �

^ MN,N

0
B@

1
CA¼

0 �vT 0

0 m 0

0 �uT 0

0
B@

1
CA, ð12Þ

where, with i an identity matrix of size ðN�1Þ � ðN�1Þ, the quantity
m is the matrix

m¼ i�w: ð13Þ

The matrix M only appears in Table 1 in those models where
frequency is discrete. In the Wright–Fisher model (where both time
and frequency take discrete values), elements of u and v are
probabilities of transition from states of a population where allele A

is segregating, to states where this allele is fixed or lost, while the
matrix w contains transition probabilities between pairs of states
of a population that each have allele A segregating. In hybrid model
1 (where time is continuous, but frequency is discrete), elements of
u and v are probabilities/unit time of transitions from states of a
population where allele A is segregating, to states where this allele
is fixed or lost, while elements of m are transition probabilities/unit
time between pairs of states that each have allele A segregating.



Table 2
This table gives the formal solutions of the four models of Table 1 in terms of the eigenvectors of the matrix M or the eigenfunctions of the diffusion operator D, along with the

corresponding eigenvalues.

Model Time Frequency Formal solution

Wright–Fisher Discrete Discrete
FðtÞ ¼

PN
k ¼ 0

ð1�lkÞ
tUðkÞWðkÞT Fð0Þ

Hybrid model 1 Continuous Discrete
FðtÞ ¼

PN
k ¼ 0

expð�lktÞUðkÞWðkÞT Fð0Þ

Hybrid model 2 Discrete Continuous
f ðx,tÞ ¼

R 1
0

P1
k ¼ 0

ð1� ~lkÞ
tFkðxÞCkðyÞf ðy,0Þ dy

Diffusion Continuous Continuous
f ðx,tÞ ¼

R 1
0

P1
k ¼ 0

expð� ~lktÞFkðxÞCkðyÞf ðy,0Þ dy
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We work under the assumption that the matrix m has all
eigenvalues distinct and hence is diagonalisable. For evidence of
this and other properties of the matrix m, see Appendix B.

For reasons that shall shortly become clear, we label the
eigenvalues and eigenvectors of the matrix m with an index that
ranges 2 to N. We write the right eigenvectors of this matrix as the
column vector /ðkÞ and the left eigenvectors as wðkÞT (i.e., as the
transpose of a column vector wðkÞ). With lk the eigenvalue
associated with both /ðkÞ and wðkÞT the eigenvalue equations of
matrix m are

m/ðkÞ ¼ lk/
ðkÞ

wðkÞT m¼ lkw
ðkÞT

)
k¼ 2,3, . . . ,N: ð14Þ

Distinctness of the eigenvalues of m (i.e., ljalk if jak) results
in the eigenvectors wðjÞT and /ðkÞ with different labels being
orthogonal (wðjÞT/ðkÞ ¼ 0 when jak). We take the eigenvectors to
be chosen so they are normalised to unity (wðkÞT/ðkÞ ¼ 1).

Let us now return to the matrix M. Because this matrix has the
form given in Eq. (12), and hence has a relationship to the matrix m,
it inherits from m the property of being diagonalisable. We can
directly construct the eigenvectors of the matrix M according to
Table 3.
Table 3
This table gives the eigenvalues of the matrix M along with its right eigenvectors,

UðkÞ , and left eigenvectors, WðkÞT .

Label, k Eigenvalue UðkÞ WðkÞ

0 0 1

0

0

0
B@

1
CA

1

vT m�1
� �T

0

0
B@

1
CA

1 0 0

0

1

0
B@

1
CA

0

uT m�1
� �T

1

0
B@

1
CA

2,3, . . . ,N lk �vT/ðkÞ=lk

/ðkÞ

�uT/ðkÞ=lk

0
BB@

1
CCA

0

wðkÞ

0

0
B@

1
CA

The matrix M has two zero eigenvalues associated with the values 0 and 1 of the

label k. The remaining eigenvalues of the matrix M, associated with kZ2, coincide

with the eigenvalues lk of the matrix m.

2 There are two eigenfunctions associated with zero eigenvalue. Different linear

combinations of these eigenfunctions also have zero eigenvalue. In the present work

we have made a particular choice of these eigenfunctions; an alternative, but

equivalent choice of these eigenfunctions has been made by McKane and Waxman

(2007).
In particular, it may be directly verified, using Eqs. (12) and (14)
and Table 3, that for kZ2: MUðkÞ ¼ lkU

ðkÞ and WðkÞT M¼ lkW
ðkÞT .

Accordingly, all eigenvalues of the matrix m are also eigenvalues of
the larger matrix M. In addition, Table 3 contains two right
eigenvectors, Uð0Þ and Uð1Þ, and two left eigenvectors, Wð0ÞT and
Wð1ÞT , which have the properties MUð0Þ ¼ 0, MUð1Þ ¼ 0, Wð0ÞT M¼ 0,
Wð1ÞT M¼ 0. Thus the matrix M also has two eigenvalues which
vanish and which are not shared with the matrix m. We have
attributed the labels k¼ 0 and 1 to these eigenvalues and the
associated eigenvectors, hence l0 ¼ 0 and l1 ¼ 0. For kZ2 ortho-
gonality and normalisation of the UðkÞ and WðkÞT follow directly
from orthogonality and normalisation of the /ðkÞ and wðjÞT .

For future use, we note that the form of the right eigenvectors
UðkÞ given in Table 3 can be written as

Fð0Þn ¼ dn,0, ð15Þ

Fð1Þn ¼ dn,N , ð16Þ

FðkÞn ¼fðkÞn Dn�
vT/ðkÞ

lk
dn,0�

uT/ðkÞ

lk
dn,N , kZ2, ð17Þ

where da,b is a Kronecker delta (da,b equals 1 if a¼ b and is zero
otherwise) and Dn equals 1 for 1rnrN�1 and is zero for both
n¼ 0 and N.
6. Eigenfunctions of the diffusion operator, D

To investigate properties of the solutions given in Table 2 when
the allele frequency takes continuous values, we shall elucidate
some of the properties of the eigenfunctions of the diffusion
operator D of Eq. (8) and which appears in the diffusion equation
�@f ðx,tÞ=@t¼Df ðx,tÞ.

To start, we note that the diffusion operator D of Eq. (8) is, as
already stated, some sort of an approximation of the matrix M and
hence apparently has a set of (forward) eigenfunctions, FkðxÞ,
which are directly analogous to the right eigenvectors UðkÞ of the
matrix M. This, however, is true only when the eigenfunctions of D

satisfy the appropriate boundary conditions. McKane and Waxman
(2007) required that probability is conserved in the diffusion
equation and accordingly imposed the condition that the eigen-
functions of D have no probability current flowing at x¼ 0 and 1.
This leads to the eigenfunctions of D containing singularities,
namely Dirac delta functions (Dirac, 1958), which are ‘located’ at
x¼ 0 and 1.

For the case of selective neutrality (s¼ 0) it is possible to
explicitly determine the full form for the eigenfunctions of D under
the ‘zero current’ boundary condition of McKane and Waxman
(2007). Inspection of the forms given in McKane and Waxman
(2007) shows that for the haploid case the eigenfunctions can be
written as2

F0ðxÞ ¼ dðxÞ, ð18Þ

F1ðxÞ ¼ dð1�xÞ, ð19Þ
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Fig. 1. This figure illustrates how the distribution of the diffusion approximation is

related to the distribution of the Wright–Fisher model. The histogram reflects the

discrete distribution of the Wright–Fisher model for a population of size N¼ 10.

Under a diffusion approximation, the distribution in the frequency range 0oxo1

becomes continuous, while at the boundaries x¼ 0 and 1 it possesses two spikes of

finite area but zero width (Dirac delta functions). We have broadened the width of

the Dirac delta functions for the purpose of visualisation. We note that numerical

computations of the ‘weights’ associated with the spikes that arise in a diffusion

approximation (and which are associated with fixation and loss probabilities) can be

compared with the numerical results following from the exact model of the problem

(the Wright–Fisher model). Such a comparison was made in Fig. 1 of the paper of

McKane and Waxman (2007); see also Fig. 2 of the present paper.
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FkðxÞ ¼fkðxÞDðxÞ�
fkð0Þ

2N ~lk

dðxÞ�
fkð1Þ

2N ~lk

dð1�xÞ, kZ2: ð20Þ

Here dðxÞ is a Dirac delta function, fkðxÞ is a non-singular function
satisfying �ð2NÞ�1@2½xð1�xÞfkðxÞ�=@x2 ¼ ~lkfkðxÞ, and DðxÞ is a box
shaped function which equals 1 for 0oxo1 and is zero elsewhere.
The form of the eigenfunctions in Eqs. (18), (19) and (20) are
strongly analogous to the eigenvectors in Eqs. (15), (16) and (17),
with discrete quantities simply being replaced by continuous
analogues. In particular, the Dirac delta function dðxÞ becomes
the replacement of the Kronecker delta dn,0 and it appears natural
to identify fkð0Þ=ð2N ~lkÞ as the analogue of vT/ðkÞ=lk. In this last
case, the identification makes sense when it is appreciated that the
elements, vn, of v rapidly decay with n (we have vn ¼ ð1�xnÞ

N) so
that vT/ðkÞ obtains the largest contribution from the elements fðkÞn

of /ðkÞwith small n. Thus vT , in a discrete frequency problem, plays a
similar role to a function proportional to dðxÞ in a continuous
frequency model. Similarly uT plays a similar role to a function
proportional to dð1�xÞ.

In Appendix C we show that the general form of the eigenfunc-
tions given in Eqs. (18)–(20) continues to apply when there is a
non-zero level of selection.

6.1. Singular spikes

We note that singular spikes (Dirac delta functions) are present
in all of the eigenfunctions, FkðxÞ, of the diffusion operator D (see
Eqs. (18)–(20)), and we have made the very natural identification of
these singularities with related features of the right eigenvectors of
the Wright–Fisher model.

Generally, in a Wright–Fisher model, the probability distribu-
tion of the allele frequency and the ‘building blocks’ from which the
probability distribution can be composed, namely the right eigen-
vectors of the matrix M, can be represented as a set of N+1 bars that
make up a histogram. We can take these bars to be of width 1/N and
centered at the frequencies 0=N,1=N, . . . ,N=N. Thus the bar corre-
sponding to frequency xn ¼ n=N covers the frequency interval
xn�1=ð2NÞ to xnþ1=ð2NÞ, with n¼ 0,1, . . . ,N. What happens, under
the diffusion approximation, is that (i) the bars at the terminal
frequencies 0 and 1 shrink to zero width, but have a finite area, i.e.,
become proportional to Dirac delta functions that are located at the
frequencies 0 and 1, and (ii) the contributions of all other bars are
interpolated into a continuous function that covers the frequency
range 0oxo1, which excludes the end points x¼ 0 and 1. Thus the
diffusion approximation shrinks the domain of states, correspond-
ing to loss or fixation of the A allele, to zero width, while it
simultaneously stretches the frequencies of the segregating states,
from infinitesimally above 0 to infinitesimally below 1. See Fig. 1
for an illustration of this.
7. Implications of the range of the eigenvalues

The eigenvalues of the matrix M or the diffusion operator D are
important in determining the existence or non-existence of the
discrete time models that appear in Table 1 and whose formal
solutions are given in Table 2.

We have already established that the matrix M has two zero
eigenvalues and that the remainder of the eigenvalues coincide
with the eigenvalues of the matrix m. In Appendix B we provide
evidence that all eigenvalues of the matrix m are real and positive
but are no larger than unity. These properties of the eigenvalues
ensure that the time-dependent factor ð1�lkÞ

t , that is present in the
solution to the Wright–Fisher model in Table 2, never goes negative
and remains in the range 0–1. By contrast, in the case of selective
neutrality, the complete set of the eigenvalues of the diffusion
operator D under the boundary conditions of McKane and Waxman
(2007) and hence including the two vanishing eigenvalues, can be
written as ~lk ¼ kðk�1Þ=2N where k¼ 0,1,2, . . . and k can become
arbitrarily large. The eigenvalues of D thus have the property that
they also can become arbitrarily large. Numerical considerations
(not presented here) indicate that when there is selection (sa0)
the eigenvalues of the diffusion operator deviate from the neutral
form, but still remain real and can become arbitrarily large. Thus
generally, for sufficiently large k the eigenvalues ~lk will be larger
than unity. Under a diffusion approximation, where time is
continuous, this feature is not problematic, since the time-depen-
dent factor in the solution of the diffusion equation in Table 2,
namely expð� ~lktÞ, simply becomes very small for sufficiently
large k. By contrast, in hybrid model 2 in Table 2, the time-
dependent factor is ð1� ~lkÞ

t and for those eigenvalues with ~lk41
this factor alternates in sign over adjacent generations and for
~lk42 the magnitude of the time-dependent factor grows with k.
Thus if, as is natural, we approximate the solution to hybrid model 2
by truncating the sum in Table 2 at a large value of k which has
~lk42, then as time increases, the approximation increasingly
wildly oscillates between negative and positive values. This feature
indicates that despite its reasonable motivation, hybrid model 2
suffers from the severe mathematical problem of convergence of
the probability density f (x,t). We thus rule out hybrid model 2 as
being meaningful and conclude that there is no ‘natural’ model that
is intermediate between the Wright–Fisher model and the
diffusion approximation, where time is discrete but frequency
continuous.
8. Lessons that can be learnt from continuous time dynamics

The dynamics of the Wright–Fisher model has, in past studies,
been numerically investigated and the results directly compared
with the diffusion approximation (Ewens, 1963). Analytical esti-
mates have also been made (Ethier and Norman, 1977). Here we
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Fig. 2. This figure illustrates the probability that fixation has occurred by time t for:
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Fisher model.
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shall investigate the continuous time dynamics of hybrid model 1
and compare its results with solutions of the diffusion equation. We
shall use the representation of the eigenvectors in Table 3 and the
close connection we have established between these eigenvectors
and the eigenfunctions of the diffusion operator in Section 6. In this
way we can establish some of the implications of the dynamics
while avoiding mathematical subtleties associated with
singularities.

To proceed, we write the solution to hybrid model 1 (in Table 2)
as FðtÞ ¼KðtÞFð0Þ where

KðtÞ ¼
XN

k ¼ 0

e�lktUðkÞWðkÞT : ð21Þ

Using the eigenvectors in Table 3 it is shown in Appendix D that we
can also write

KðtÞ ¼

1
R t

0 vT KsegðrÞdr 0

0 KsegðtÞ 0

0
R t

0 uT KsegðrÞdr 1

0
BB@

1
CCA, ð22Þ

where 0 is a column vector of length N�1 with all elements zero
and

KsegðtÞ ¼
XN

k ¼ 2

e�lktfðkÞcðkÞT : ð23Þ

The matrix KsegðtÞ in Eq. (22) is associated with the indices
1,2, . . . ,N�1 of the matrix K(t). It therefore only describes states of a
population where allele A is segregating, i.e., does not have a
frequency of 0 or 1. Additionally, the matrix KsegðtÞhas the property
that as the time t increases, all elements decay to zero, because it
depends on e�l2t , e�l3t , . . . and the eigenvalues l2, l3, . . . are all
positive, and not zero.

When Kimura determined his solution of the diffusion equation
he implicitly imposed the requirements that the eigenfunctions of
the diffusion operator are normalisable (i.e., have a non-infinite
integral) and non-singular. The condition of being non-singular is
generally incompatible with conservation of probability in the
diffusion equation. It also leads to differences in the eigenvalues
and the eigenfunctions, compared with Eqs. (18)–(20). Kimura’s
(1955b) solution, given an initial frequency of y, has the form
KKimuraðx,t; yÞ ¼

P
ke�

~lktfkðxÞckðyÞ where fkðxÞ (ckðyÞ) are eigen-
functions of the forward (backward) diffusion operator associated
with eigenvalue ~lk. A key observation is that the eigenvalues, ~lk, in
Kimura’s expression are all non-zero, and for the haploid case,
Kimura’s smallest eigenvalue has the value 1/N. This indicates that
Kimura’s solution cannot be identified with K(t) of Eq. (21), which
includes contributions associated with the two vanishing eigen-
values. Rather, Kimura’s solution is very naturally associated with
the solution KsegðtÞ of Eq. (23), which describes purely segregating
alleles and obtains contributions from terms associated with
explicitly non-zero eigenvalues. Indeed, in the selectively neutral
case (s¼ 0) it may be verified that the smallest eigenvalue of the
matrix m is precisely 1/N, in full agreement with Kimura’s smallest
eigenvalue (other eigenvalues of m do not precisely coincide with
Kimura’s eigenvalues).

There is additional evidence of the identification of KsegðtÞwith
KKimuraðx,t; yÞ. Let us consider an initial distribution F(0) in the
equation FðtÞ ¼KðtÞFð0Þ in which the pth element is unity and all
other elements are zero (i.e., Fnð0Þ ¼ dn,p) corresponding to the A

allele having an initial frequency of xp. This leads to the interpreta-
tion that the (n,p) element of K(t), namely Kn,p(t), is the probability
that X(t) has the value xn given X(0) had the value xp. Thus the upper
row of K(t) in Eq. (22), namely ð1,

R t
0 vT KsegðrÞdr,0Þ, has elements

K0,p(t) which give the probability of loss of the A allele by time t from
an initial frequency of xp. Similarly, the bottom row of K(t), namely
ð0,
R t

0 uT KsegðrÞdr,1Þ has elements KN,p(t) which give the time-
dependent probability of fixation of the A allele from an initial
frequency of xp. We note that from considerations of current at the
boundary x¼ 1, Kimura established a result that is equivalent, for a
haploid population, to ð2NÞ�1 R t

0 KKimurað1,r; yÞdr for the probability
of fixation of an allele by time t, given that the allele had a frequency
of y, at time 0. This is very similar to the result

R t
0 uT KsegðrÞdr. The

time dependence of the two different expressions are essentially
identical: ð2NÞ�1 R t

0 KKimurað1,r; yÞ dr involves a sum of terms invol-
ving time-dependent factors of the form 1�e�

~lkt where all eigen-
values ( ~lk) occurring in the sum are non-zero, while

R t
0 uT KsegðrÞdr

involves a sum over terms involving time-dependent factors of the
form 1�e�lkt where, again, all eigenvalues (lk) occurring in the sum
are non-zero.

Given the differences in the expressions for the probability of
fixation that arise from hybrid model 1, the diffusion approxima-
tion and, indeed, the Wright–Fisher model, it is interesting to see
the actual similarities in the results, and we illustrate this with an
example in Fig. 2.
9. Discussion

In this work we have investigated the content of the Wright–
Fisher model of random genetic drift and its diffusion approxima-
tion. The diffusion approximation of the Wright–Fisher model is
not a single approximation but several different approximations.
These involve
(i)
 replacing discrete time by continuous time,

(ii)
 replacing discrete allele frequencies by continuous allele

frequencies and simultaneously determining the appropriate
diffusion operator that leads to closely equivalent dynamics to
the Wright–Fisher model.
The complications and obscurities associated with approxima-
tion (ii) make it hard to form a detailed assessment of what is
included in the diffusion approximation, and, indeed, what can be
included in it. For example, in the past, there has been discussion on
whether the forward diffusion equation can directly deal with gene
loss and gene fixation (see e.g., Gale, 1990 and references therein).
To make some progress with the clarification of these and related
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mathematical issues, we have introduced a representation of the
eigenvectors associated with the Wright–Fisher model that can be
seen to have extremely close connections with the corresponding
eigenfunctions of the diffusion operator. This representation allows
us to see the relation of the solution of the Wright–Fisher model
(which includes gene loss and fixation) to the solution of the
diffusion equation of McKane and Waxman (2007) (which also
includes gene loss and fixation).

The solution of the diffusion equation of McKane and Waxman
(2007), which includes singular delta function spikes at the
frequency boundaries x¼ 0 and 1, differs from the earlier solution
of Kimura (1955b), which has no such singularities. To probe this
difference, two hybrid models were introduced that are inter-
mediate (in the character of frequency or time) between the
Wright–Fisher model and the diffusion approximation. One of
the hybrid models (with discrete time and continuous frequency) is
not mathematically well behaved and was ruled out of considera-
tion, while the other (with discrete frequency and continuous time)
avoids mathematical subtleties associated with continuous allele
frequencies, yet provides clear insight into the phenomena occur-
ring. Analysis of this model convincingly establishes that the
solution of Kimura (1955b) only covers populations where alleles
are segregating, but not fixing or being lost. This is in contrast to the
solution of McKane and Waxman (2007), which includes the
processes of loss and fixation, and is in close correspondence
with the solution of the Wright–Fisher model.

In the investigations carried out here, it was also established
that the probability distribution F(t) of the continuous time,
discrete frequency, hybrid model can be written as FðtÞ ¼
KðtÞFð0Þwhere K(t) is given in Eq. (22). However, K(t) is determined
from the quantity KsegðtÞ of Eq. (23), along with the vectors u and v
that appear in Eqs. (11) and (12). Under a diffusion approximation,
K(t) has a direct analogue in the function K(x,t;y) that was found by
McKane and Waxman (2007), while KsegðtÞ has a direct analogue
with the function KKimuraðx,t; yÞ found by Kimura (1955b). Addi-
tionally the action of uT or vT becomes equivalent, under a diffusion
approximation, to acting as a constant times either dð1�xÞ or dðxÞ,
followed by integration over all x. Thus under a diffusion approx-
imation, we only require knowledge of the ‘inner solution’
KKimuraðx,t; yÞ that covers only populations where alleles segregate,
to construct a full solution K(x,t;y) that conserves probability and so
also covers the processes of fixation and loss. However, from a
computational point of view, it is not obvious what precise
boundary conditions should be imposed on the x dependence of
KKimuraðx,t; yÞ, since being normalisable and singularity-free are
not conditions that have an obvious numerical implementation.
It is also unclear how to carry out numerical solution of the forward
diffusion equation when probability is conserved (McKane and
Waxman, 2007), since this automatically entails informative,
but numerically intractable, Dirac delta functions in the solution.
It could be argued that the diffusion approach is an approximation,
thus when a numerical result is required, one should simply return
to the underlying exact theory and numerically solve that. How-
ever, dealing with large matrices, possibly with time-dependent
parameters, is not always feasible or convenient, and it would
be useful, and also important, to have a principled approach
for solving the forward diffusion equation that can be numeri-
cally implemented, or capable of being analytically solved/
approximated.

To conclude this work, let us summarise some of the different
issues touched upon here. From a fundamental point of view, we
started with a Markov stochastic process in discrete time and with a
discrete state space that exhibits irreversibility, due to the presence
of absorbing states. Its diffusion approximation—where time and
‘space’ are continuous, results in the absorbing states non-trivially
becoming singularities (Dirac delta functions), while the remaining
states constitute a continuum. These singularities are present in the
solution of the diffusion equation only if the appropriate boundary
conditions, that conserve probability, are imposed. Conservation of
probability means that the ‘weights’ associated with the singula-
rities, combined with the probability associated with the conti-
nuum states, add to unity (for all times). It is possible to consider
intermediate models where only time or space is continuous—the
other independent variable remaining discrete, and so probe the
nature of the continuum approximations leading to the diffusion
approximation. In the particular problem (of random genetic drift)
considered here, it was found that only of one of these intermediate
models exists, due to the unbounded range of the eigenvalues. It
seems possible that results and observations found in this work
may have broader implications than just for the process of random
genetic drift.
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Appendix A. Formal solutions of the models in Table 1

In this Appendix, we determine the formal solutions of the four
models given in Table 1.

The procedure is similar in all four models.
For the Wright–Fisher model we use completeness of the right

eigenvectors of the matrix M, to allow us to write

FðtÞ ¼
XN

k ¼ 0

ckðtÞU
ðkÞ

ð24Þ

for some set of time-dependent coefficients ck(t). Substituting this
solution into the dynamical equation for the model (see Table 1)
and using the eigenvalue equation for M gives �

PN
k ¼ 0½ckðtþ1Þ�

ckðtÞ�U
ðkÞ
¼
PN

k ¼ 0 lkckðtÞU
ðkÞ. Multiplying this equation from the

left with WðjÞT and using orthogonality and normalisation of the
eigenvectors yields �½cjðtþ1Þ�cjðtÞ� ¼ ljcjðtÞ. This has the solution
cjðtÞ ¼ ð1�ljÞ

tcjð0Þ, which on substituting into Eq. (24) yields

FðtÞ ¼
XN

k ¼ 0

ð1�lkÞ
tUðkÞckð0Þ: ð25Þ

To determine ck(0), we multiple the equation Fð0Þ ¼
PN

k ¼ 0 ckð0Þ
UðkÞ from the left with WðjÞT to obtain

cjð0Þ ¼WðjÞT Fð0Þ: ð26Þ

Using this result in Eq. (25) yields FðtÞ ¼
PN

k ¼ 0ð1�lkÞ
tUðkÞWðkÞT Fð0Þ

which is the solution in Table 2.
For hybrid model 1 we again write F(t) in the form of Eq. (24) and

quickly arrive at �dcjðtÞ=dt¼ ljcjðtÞ, with solution cjðtÞ ¼ e�lj tcjð0Þ.
Using Eq. (26) yields the solution in Table 2 for this model.

For hybrid model 2, the analogue of Eq. (24) is f ðx,tÞ ¼P1
k ¼ 0 ckðtÞFkðxÞ and using the dynamical equation and the eigen-

value equation for D gives �
P1

k ¼ 0½ckðtþ1Þ� ckðtÞ�FkðxÞ ¼PN
k ¼ 0

~lkckðtÞFkðxÞ. On multiplying this equation by CjðxÞ, integrat-
ing from x¼ 0 to 1, and using orthogonality and normalisation of
the eigenfunctions yields �½cjðtþ1Þ�cjðtÞ� ¼

~ljcjðtÞ. This equation
and the analogue of Eq. (26), namely cjð0Þ ¼

R 1
0 CjðyÞf ðy,0Þdy, yield

the solution for hybrid model 2 given in Table 2.
The diffusion approximation requires the same steps as hybrid

model 2; it produces to�dcjðtÞ=dt¼ ~ljcjðtÞ and leads to the solution
given in Table 2.
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Appendix B. Properties of eigenvalues of the matrix m

In this Appendix we provide evidence that the matrix m, which
was introduced in Eq. (12), has eigenvalues that are real, distinct,
positive and do not exceed 1. Since the matrix m is related to the
matrix w by m¼ i�w (Eq. (13)) the corresponding properties of the
matrix w are that it has eigenvalues which are real, distinct,
positive and do not exceed 1.

We begin, assuming s4�1, so all elements of w are positive.
This is the simplest situation where the Perron Frobenius Theorem
applies (Seneta, 1981). It leads to the eigenvalue of w of largest
magnitude being real and positive. There are bounds on this
eigenvalue, which we denote m (Seneta, 1981). In terms of the
matrix w, with elements wi,j and i, j running from 1 to N�1, we have

min
j

XN�1

i ¼ 1

wi,j

 !
rmrmax

j

XN�1

i ¼ 1

wi,j

 !
: ð27Þ

A direct calculation yields
PN�1

i ¼ 1 wi,j ¼ 1�½CðxjÞ�
N�½1�CðxjÞ�

N . The
sum is maximised at CðxjÞ ¼ 1=2 thusmr1�2�ðN�1Þ and is minimised
when C(xj) takes its smallest value (which is positive). Thus 0omo1.
The remaining eigenvalues of w have a magnitude which is smaller
than m and hence less than 1. We have numerically investigated the
properties of these eigenvalues and have extensive numerical evi-
dence, covering s in the range �0.1 to 0.1 and N up to 100, that all
remaining eigenvalues are real, distinct, positive and do not exceed 1.
Appendix C. Form of the eigenfunctions of D with non-zero
selection

In this Appendix we show that the general form of the
eigenfunctions given in Eqs. (18)–(20) also applies when there is
non-zero selection.

We start with the diffusion equation which reads

�
@f ðx,tÞ

@t
¼�

1

2N

@2

@x2
½xð1�xÞf ðx,tÞ�þ

@

@x
½sxð1�xÞf ðx,tÞ�

¼Df ðx,tÞ:
ð28Þ

The probability current of the diffusion equation associated with a
function f(x) is

jðx; f Þ ¼�
1

2N

@

@x
½xð1�xÞf ðxÞ�þsxð1�xÞf ðxÞ: ð29Þ

The property of Dirac delta functions that

xdðxÞ ¼ 0, ð1�xÞdð1�xÞ ¼ 0 ð30Þ

means that the eigenfunctions F0ðxÞ ¼ dðxÞ and F1ðxÞ ¼ dð1�xÞ of
the non-selective (s¼ 0) problem remain eigenfunctions of the
diffusion operator D in the presence of selection, and continue to
have vanishing eigenvalues: DF0ðxÞ ¼ 0 and DF1ðxÞ ¼ 0.

Eq. (30) also results in F0ðxÞ and F1ðxÞ having zero probability
current (jðx;F0Þ ¼ 0 and jðx;F1Þ ¼ 0) and as a consequence they
satisfy the ‘zero current’ boundary condition of McKane and
Waxman (2007).

For the remaining eigenfunctions, with assumed non-zero
eigenvalues, we take them to have the form

FðxÞ ¼fðxÞDðxÞ�adðxÞ�bdð1�xÞ, ð31Þ

where fðxÞ is normalisable and does not contain any Dirac delta
functions, the function DðxÞ is 1 for 0oxo1 and vanishes outside
this interval, while a and b are constants.

A property of DðxÞ we shall make use of is

d

dx
DðxÞ ¼ dðxÞ�dð1�xÞ: ð32Þ
We note that the probability current associated with Eq. (31) is,
using Eqs. (30) and (32),

jðx;FÞ ¼�
1

2N

@

@x
½xð1�xÞfðxÞDðxÞ�þsxð1�xÞfðxÞDðxÞ

¼ �
1

2N

@

@x
½xð1�xÞfðxÞ�þsxð1�xÞfðxÞ

� �
DðxÞ: ð33Þ

Because of the overall factor of DðxÞ on the right hand side, the
probability current jðx;FÞ vanishes for both xZ1 and xr0 and
hence obeys the ‘zero current’ boundary condition of McKane and
Waxman (2007).

We proceed by substituting Eq. (31) into the eigenvalue
equation DFðxÞ ¼ ~lkFkðxÞ. Making use of Eqs. (30), (32) and (33)
allows us to write

DFðxÞ ¼
@

@x
jðx;FÞ

¼
@

@x
�

1

2N

@

@x
½xð1�xÞfðxÞ�þsxð1�xÞfðxÞ

� �� 	
DðxÞ

þ �
1

2N

@

@x
½xð1�xÞfðxÞ�þsxð1�xÞfðxÞ

� �
½dðxÞ�dð1�xÞ�

¼ ½DfðxÞ�DðxÞþ �
1

2N
ð1�2xÞfðxÞ

� �
½dðxÞ�dð1�xÞ�

¼ ½DfðxÞ�DðxÞ�
fð0Þ
2N

dðxÞ�
fð1Þ
2N

dð1�xÞ: ð34Þ

Thus the eigenvalue equation DFðxÞ ¼ ~lkFkðxÞ for an eigenfunction
of the form of Eq. (31) is

½DfðxÞ�DðxÞ�
fð0Þ
2N

dðxÞ�
fð1Þ
2N

dð1�xÞ ¼ ~lk½fðxÞDðxÞ�adðxÞ�bdð1�xÞ�:

ð35Þ

This equation is consistent in the sense that there are the same
types of terms on the left and right sides. On comparing like terms
we arrive at DfðxÞ ¼ ~lkfðxÞ, a¼fð0Þ=ð2N ~lkÞ and b¼fð1Þ=ð2N ~lkÞ.
Thus the eigenfunctions associated with non-zero eigenvalues take
the general form given in Eq. (20), involving singular and non-
singular terms. Of course the precise form for fkðxÞwill depend on
the strength of selection.
Appendix D. Solution of hybrid model 1

In this Appendix we show how the eigenvectors in Table 3 can
be used to explicitly construct the solution of hybrid model 1 given
in Eq. (22).

We start from Eq. (21), KðtÞ ¼
PN

k ¼ 0 e�lktUðkÞWðkÞT , and note that
the contributions from kZ2 to the sum are

XN

k ¼ 2

e�lktUðkÞWðkÞT ¼
XN

k ¼ 2

e�lkt

�vTfðkÞ=lk

fðkÞ

�uTfðkÞ=lk

0
BB@

1
CCAð0,wðkÞT ,0Þ

¼

0 �
PN

k ¼ 2 e�lktvT/ðkÞwðkÞT=lk 0

0
PN

k ¼ 2 e�lkt/ðkÞwðkÞT 0

0 �
PN

k ¼ 2 e�lktuT/ðkÞwðkÞT=lk 0

0
BB@

1
CCA:

Adding the contributions from the k¼ 0 and 1 terms yields

XN

k ¼ 0

e�lktUðkÞWðkÞT ¼

1 vT m�1�
PN

k ¼ 2 e�lktvT/ðkÞwðkÞT=lk 0

0
PN

k ¼ 2 e�lkt/ðkÞwðkÞT 0

0 uT m�1�
PN

k ¼ 2 e�lktuT/ðkÞwðkÞT=lk 1

0
BB@

1
CCA:
ð36Þ
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We use the spectral decomposition, m�1 ¼
PN

k ¼ 2 /ðkÞwðkÞT=lk to
obtain

XN

k ¼ 0

e�lktUðkÞWðkÞT ¼

1 vT
PN

k ¼ 2ð1�e�lktÞ/ðkÞwðkÞT=lk 0

0
PN

k ¼ 2 e�lkt/ðkÞwðkÞT 0

0 uT
PN

k ¼ 2ð1�e�lktÞ/ðkÞwðkÞT=lk 1

0
BB@

1
CCA:
ð37Þ

Lastly, we write ð1�e�lktÞ=lk as
R t

0 e�lkr dr and obtain

XN

k ¼ 0

e�lktUðkÞWðkÞT ¼

1 vT
R t

0

PN
k ¼ 2 e�lkr/ðkÞwðkÞT dr 0

0
PN

k ¼ 2 e�lkt/ðkÞwðkÞT 0

0 uT
R t

0

PN
k ¼ 2 e�lkr/ðkÞwðkÞT 1

0
BBB@

1
CCCA ð38Þ

which is equivalent to Eq. (22) of the main text.
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