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Abstrsct. The heat kemel K(s) = Tr(e~'H'*'-ePH'o') is determined exactly for the 
operator H(A) = -a: - A ( A +  1) sech' X. The behaviour of K ( s )  is extracted lor both large 
and small s. It is shown that for all s<m, K(s)  is a continuous function of A although 
new bound sates are formed when A passes through the positive integers. This implies 
that thescatrering states provide a discontinuous contribution to the heat kernel such that 
the sum of bound and scattering contributions is continuous. For ma11 s, a general 
expression is derived lor the.coefficients K, in the small s expansion of the heat kemel: 

N(E)=~[R(E-E.(A))-o(E-E.(O))] is found. It is proved for general potentials that 
the coefficients of the large E expansion of N ( E ) ,  N,, given by N ( E ) = X  N,E-'"-'"' 
are related to those of the small 5 expansion of K(s) by N ,  = K,/r(3/2- m )  and this is 
demonstrated explicitly for H(A) given above. A discussion is given on the use of the small 
.Y expansion to reproduce K(s). 
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1. Introduction 

Consider a Hamiltonian operator H ( A )  that depends on the parameter A. This parameter 
characterizes the strength of the potential appearing in the Hamiltonian. The heat 
kernel associated with this operator is defined in the present work to be 

K ( s )  = Tr(eCSH'*'- e - s H ( o ' )  (1.1) 

where Tr denotes the trace over a complete set of states. Quantities of this type appear 
in a number of areas of physics including gravitation and various field theory applica- 
tions. The interest of the present authors lies in the fact that logarithms of functional 
determinants may be found once the heat kernel is known. This follows from the work 
of Schwinger [ l ]  who used the following representation 

Indet[H(A)/H(O)]= - d s / s K ( s )  (1.2) r 
which is valid for operators with positive spectra. The logarithm of functional deter- 
minants appears, for example, in the free energy of condensed matter systems when 
fermions are explicitly integrated out of mean-field type theories (see for example [2]). 

find an approximation of the logarithm of a functional determinant ratio. The approach 
of Dyakanov el a/ was to approximate Indet[H(A)/H(O)] by using two different 
approximations to the heat kernel appearing in equation (1.2). Thus for s less than a 
partition point 6, a truncated small s expansion was used while for s larger than S the 
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heat kernel was approximated by its low-lying modes. In [2] the low-lying modes were, 
in fact, bound states and we shall refer to the low-lying modes as bound states in what 
follows. The partition point 8 was determined in [3] by requiring the approximation 
to In det[H(A)/H(O)] to be stationary under variations of 8, some further discussion 
of this can be found in [21. The above procedure seems to give an accurate approxima- 
tion to In det[H(A)/H(O)] over a range of values of A but it does seem to have one 
failing. When the parameter A is varied to such an extent that the number of bound 
states changes, it leads to a discontinuous approximation to In det[H(A)/H(O)]. This 
comes about since the small s expansion of K ( s )  depends only on the potential and 
its derivatives and is a smooth function of A (if the potential is) while the large s, 
bound state contribution is discontinuous (reasonable choices of 8 do not change the 
discontinuous behaviour of the approximation). Given that in a soluble problem that 
uses exact results for the functional determinant ratio [4], continuous behaviour in A 
is found, it suggests that the discontinuity in the bound state cnntrihution to the heat 
kernel may be healed by contributions from scattering states that were neglected in 
the approximation used. 

One of the purposes of the present work is to expose the detailed way the scattering 
states yield a discontinuous contribution to the heat kernel-thereby compensating for 
the discontinuity associated with the bound states. We shall do this by investigating a 
problem that exhibits the above behaviour and yet is simple enough to be solved 
exactly. An interesting result that follows from an exact determination of the heat 
kernel is that a general formula for the coefficient of sn in the small s expansion can 
be given. 

As a warning to the mathematically knowledgeable reader, we note that the level 
of mathematical precision employed in the present work is that commonly practised 
in much of theoretical physics. We shall therefore make a number of assumptions 
which are not, in a strict mathematical sense, justified but which we believe to be 
correct. We shall furthermore freely interchange orders of summation and integration. 

Sections 2, 3 and 4 of this work are concerned with defining and calculating the 
heat kernel for an exactly soluble problem. Section 5 looks at limiting cases of the 
exact result. Section 6 relates the small s expansion of the heat kernel to the high 
energy expansion of the spectral function (which is essentially the integrated density 
of 
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2. Definition of the problem 

Let us define one-dimensional Schrodinger operators ( J ,  = J/Jx)  

- - \ . . I  H ( A \  = - J : - h ( A  + 1) sech’ x 

H ( 0 )  = -J: 

(2 , la)  

( 2 . l b )  

subject to Dirichlet boundary conditions at (-L, L ) .  This corresponds to a panicle 
being restricted to the interval ( -L,  L )  of the x axis (in following sections we shall 
consider the limit L+m).  We shall restrict our discussion to the range A a0. 

We define the heat kernel associated with this problem by 

KL(s)  = Tr[exp(-sH(A)) - exp(-sH(O))] (2.2) 

where Tr denotes the trace over a complete set of states. We note that the heat kernel 
KL(s) is finite because of the rapid fall-off of the potential - A ( A +  1) sech’x with x. 
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If the eigenvalues of H ( A )  and H ( 0 )  are E.(,+) and E,(O) respectively, then we 

K L ( s )  = E  [exp(-sE.(A)) -exp(-sE.(O))]. (2.3) 

If, for example, 2. exp(-sE,(O)j] was not finite then there is a possible ambiguity in 
going from (2.2) to (2.3). In this case the sum in (2.3) would change on an infinite 
reordering of the exp(-sE.(O)). It turns out that for finite s and L, Z, exp(-sE,(O))] 
exists (the sum is calculable and may be expressed in terms of the Jacobi theta function). 
Presumably the corresponding sum with A finite also exists and hence the passage 
from (2.2) to (2.3) is unambiguous. 

In order to calculate &(s) let us introduce the spectral function N , ( E )  defined 
in terms of the eigenvalues of H ( A )  and H ( 0 )  by 

can write 

&-L(E j = 1 {@(ti - tin(* j j  - @ ( E  - EJOj j j  ji.4j 

where 0 is the Heaviside step function: 

O(x) = 1, x > o  

x = o  -I 
- 2  

= O  x<o. (2.5) 
The potential in (2.10) results in the eigenvalues of H ( A )  moving relative to those of 
H ( 0 )  but not in their creation or destruction. In particular, it drags down one or 
more eigenvalues below E =O.  At energies more negative than the lowest of these, 
corresponding to the ground state of H ( A ) ,  NL(E)  vanishes sharply. This allows us to 
perform an integration by parts and write 

r 

K L ( s ) = J  dEsN,(E) e-’E. (2.6) 

It thus remains to find a convenient form for N,(E). 

3. Determination of the spectral function N(E) in the limit L+oo 

The spectral function N L ( E )  can be determined from knowledge of the functional 
determinant 

D L ( z )  =det[(H(A)-z)(H(O)-z)-’]. (3.1) 

The subscript L on D reminds us that Dirichlet boundary conditions are imposed on 
the eigenfunctions at * L ;  for finite L the spectra of H ( A )  and H ( 0 )  are discrete. In 
terms of the eigenvalues, we take the definition o f  the determinant as 

assuming the product is convergent. 
Noting that 

lim Im In( E, - E + i s )  = T O ( E  - E . )  
6-0+ 

(3.3) 
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(with O(x) as defined in (2.5)) allows us to write 
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1 
N L ( E ) =  6 - O +  lim -ImInD,(E-iS) .  a (3.4) 

As is often the case, the simplest results are obtained in the limit L+ m. The limit 
is slightly subtle in that the limits L+ 00 and 6 + 0 do not commute. The conventional 
treatment (see for example section 49 of the textbook by Gottfried [ 5 ] )  is t o  define 
the appropriate quantity by taking first the limit L+m and then allowing S to tend to 
zero. Thus we define 

1 
N ( E )  = lim lim - Im In DL(E -is). 

6-Of L-m T (3.5) 

The result of taking this order of limits is that N ( E )  is, in general, no longer an 
integer valued function of E. For negative energies (where the bound states contribute) 
it is integer valued, however for positive energies (scattering states) it is a continuous 
function of E. Our understanding is that keeping S finite during the 'infinite volume' 
limit L+ 00 implements an averaging over the scattering states resulting in a continuous 
spectral function, N ( E ) .  The function 

D ( z )  = lim DL(z)  z a general complex number (3.6) 

for the operator of (2.1) is well known in the literature (in appendix C of [4] a derivation 
is given, using a theorem from scattering theory that directly relates the transmission 
amplitude to the functional determinant ratio, (3.1)). It is given by 

L-rm 

r(i + c ) r ( & )  m7\ = 
- \ - I  r(l+A+&)r(&-A) 

where the square roots are cut along the negative real axis and the branch selected is 
such that & is positive when w is real and positive. Thus we obtain N ( E )  from (3.5) 
by making the replacement of z by E -iS and taking the limit S -t O f .  

Proceeding with the calculation (the limit 8-O+ being implicit in what follows) 
we write 

(3.8a) N ( E )  = N ,  + N2+ N,+  N4 

where 

(3.86) 1 
N ,  = -- Im In[-] 

N2 = - Im In r(l+-) 

N ,  = -- Im In r(l +A+-) 

N 4 =  -- Im In F'(--A). 

71 

( 3 . 8 ~ )  2 
T 

(3.8d) 1 
T 

(3.8e) 1 
T 
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We can write N, in the form 

~ t a n - , ( ~ + E ) ” ’  
71 JE‘+-E 

and this is recognizable, in the limit where 8 tends to zero, as 

(3.9) N ,- - -~ @(E). 

For N 2 ,  N, and N4 let us distinguish their contributions for positive and negative E. 

(a) Negatiue E 
N2 and N, may be seen to make no contribution to N. Using the recursion relation 
of the gamma function we can rewrite N4 as 

N4= -- Im In r ( m + [ A ] - A +  I ) + -  Im 1 I n { m - h +  n } .  (3.10) 

It may be quickly verified that for negative E only the sum in this equation makes a 
contribution which is 

1 1 [ A I  

7r 71 n = o  

[ A I  

”=a 
N 4 =  O ( E + ( A - n ) 2 ) .  (3.11a) 

This is the bound state Contribution to N(E) ,  the bound states lying at energies 

E.= - ( A - n ) ’  n = O , l ,  ..., [A]. (3.11b) 

There are [A]+  1 bound states and as A passes through the positive integers, [ A ]  jumps 
discontinuously, signalling the formation of new bound states. 

(b) Positive E 
For positive E we can replace 
which Q is the digamma function 

by i a .  Using the standard result [6] in 

m 

Im In r ( x + i y )  = y Q ( x ) +  x [y/(x+ n)-tan-’[y/(x+ n)]] (3.12) 
“-0 

we can write for positive E 

2Q(l ) -Q( l+A)-$( -A)  

l + n  l + A + n  - A + n  

-1 ; {Ztan-l(-i%)-tan-’( I + n  
l + A + n  JE ) 71 “ -0  

-tan-’ (5)) ( 3 . 1 3 )  

It may be shown, using the properties of the digamma function that the coefficient of 
on the RHS of this equation vanishes identically. 



3308 

(c)  General E 
Putting the above results for positive and negative E together, we can write, for 
general E, 
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@ ( E )  L A 1  

n=o 7T 
N ( E ) =  1 B ( E + ( A - ~ I ) ~ ) - ~ @ ( E ) - -  

Note that an alternative way of writing N ( E )  follows from using 

tan-'(a/b) = r / 2  sgn(a/b)-tan-'(b/a). (3.15) 
It quickly follows that we can write 

@(E) L A 1  

n-n 71 
N ( E )  = 1 @ ( E  + ( A  - n ) 2 )  -@(€)([A] + 1) - $ @ ( E ) + -  

When N ( E )  is written in this form, the Euler-Maclaurin summation formula may be 

in the high-energy expansion of N ( E ) .  Here we simply note that for E+m, N ( E )  
vanishes (as E-'"). 

app!ied !G &:ai= a Ligh-e-ergy expansi=-. !E appe-dix !, we derive :he !eading :e;=; 

4. Calculation of the heat kernel 

We shall now calculate the heat kernel given by (2.6) in the limit L+m. We assume 
that this follows from the sequence of limits used in (3.9, thus we take 

K ( s ) =  d E s N ( E )  (4.1 ) 

with the spectral function N ( E )  given by (3.14). To evaluate the heat kernel we use 
the following result (a derivation of this is given in appendix 2) 

J 

Thus 

-exp[-Zu&<n + A  + I)l-sgn(n - A )  exp[-Zu&(n -AI]). (4.3) 

1: is. ;= ;i-pgy :his expressiox by using the i&n!i!y 
sgn(n-A)exp[-Zu~ln-Al]  

- {exp[Zu&(n -A)]+exp[-Zu&(n - A ) ] ] @ ( n  - A )  

+exp[-2u&(n -A)] .  (4.4) 
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Using this identity in equation (4.3), it is straightforward to show that the terms of 
(4.4) multiplied by the step function cancel, after the integration in (4.3), with the 
bound state contributions from the leading sum in (4.3) leaving 

K ( s ) = - - - -  1 du exp(-u2){2exp[-2u&(n+1)] 
2 A.=, 

(4.5) 

r 
= e x p [ - 2 ~ v ~ ~ i +  A +  1); - e ~ p [ - 2 ~ & ( ~  - A ) j ) .  

Finally the sum may be carried out and we obtain, after a few simple manipulations, 
the following exact integral representation for the heat kernel which contains the 
explicit s and A dependence 

K ( s ) = z i 0  2 "  d u e -  .,sinh[u&A] sinh[u&(A+ l ) ]  
sinh[ U&] 

We shall make use of this exact result in later sections. 
For future reference let us note that if A equals an integer, say m, the heat kernel 

can be obtained in terms of a finite sum of known functions. To see this we use the 
identity 

and use the following integral involving the complementary error function erfc(z) [6] 

5 (d' du exp[ - U-' - 2 uz] = exp[r2] erfc( z )  (4.8) 

to obtain 

m-1 

( A  is an integer, m). K ( s ) =  1 e3(m-")'l  ,(erfc[-&(m-n)]-erfc[&(m-n)]) 
"=O 

(4.9) 

5. Limiting behaviour of the heat kernel 

Let us investigate the behaviour of the heat kernel as a function of A in the limit where 
s is either large or small compared with unity. 

(a) Large s 
To obtain the large s limit we use 

m 1 
= 2  1 exp[- (2n+l )uJ3]  

sinh[u&] "-0 

Next we replace the sinh's appearing in the numerator of (4.6) by their definition in 
*a....." ^F ---- ̂̂ ^t:^l^ .I,- Î-*":" 
l c i l l l l D  "1 ~ny"rrs,rLr'a1J. .I= UULLllll 

m 

K (  s) = f 1 {exp[( n - A)*s] erfc((n -A)&) - exp[( n + l)'s] erfc(( n + 1)&) 
0-0 

-exp[n2s] erfc(n&)+exp[(n+ A)'s] erfc((n+A)&)}. (5.2) 
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(5.3) 

Then in terms of U, the deviation of A from an integer 
U =  A -[A] Y E [O,  11 

we find we can write 
[*]-I K ( ~ )  = 2 e.-(n-*)21 ,erfc(-&(A - n))+fe’”’erfc( -AV) 

“ = O  

+feS“-”” erfc[A(l-  v)] - $ + ~ ( s - ’ / ’ )  ( 5 . 4 ~ )  
where a sum over the leading term in the asymptotic expansion of the error functions 
with large arguments in (5.2) has led to the O(s-’ / ’ )  corrections in this equation. We 
note that within the sum in (5.4a), all terms have &(A - n) P 1, so we can replace the 
erfc by 2 (and generate additional O(S-”~)  corrections to K ( s ) ) :  

K(s)=[y’  e’:”=”:’+te””’r~cc(-~~vj  
n=O 

+fe”1-u’2erfc[&(1 - u ) l - f + ~ ( s - ’ / ~ ) .  (5.4b) 

It  is evident from (4.6) that K ( s )  is a continuous function of A however from (5 .46 )  
it follows that K ( s )  takes two different forms depending on how far A is from an 
integer (we recall that every time A passes through an integer from below a new bound 
state is formed). 

(i) provided A does not lie within 0 ( s - ’ l 2 )  of an integer, i.e. 

U P  I /& ( 1  - v)* I/& (5.5) 
we may approximate the erfcs in the second and third terms by 2 and zero respectively 
(with the generation of additional 0 ( s - ’ l 2 )  corrections). This leaves contributions only 
from bound states and the scattering states at the edge of the continuum: 

(11 
v, 1 - Y P s-’/2. (5.6) 

(ii) I f  A lies within O(s-”’) of an integer, say m, then it is straightforward to show 

K ( ~ ) =  2 es(“-*)*-l + O( s-112) 

“ = O  

that irrespective of whether A is larger or smaller than m, we have 
m-1 K ( ~ )  = e ’ ( n - ~ ~ 2 + e s ( ~ - m ) 2 i  ,erfc(-&(A-m))-f+O(s-l/Z).  (5.7) 

(This should he compared with the exact result, given in equation (4.9) for all s.) Given 
that all quantities in (5.7) are, to O ( S - ” ~ ) ,  continuous functions of A we recover a heat 
kernel that is continuous function of A (to this order). With additional work one can 
shown, order h y  order, !ha! K ( s )  is mn!ir?cocs b??! !his is obvious from equation (4h) 
already. Note that we have continuity even when A passes through an integer and the 
number of bound states changes. Thus when A goes from just below to just above the 
integer m, a new bound state is formed and the bound state contribution to K ( s )  is 
discontinuous. The only way a continuous variation of K ( s )  can occur is by a 
discontinuous rearrangement of the scattering states that screens or compensates the 
effect of the number of bound states changing. We can explicitly compute the discon- 
tinuity in the scattering contribution by defining the scattering part of the heat kernel 
as 

“ = O  

[AI 

“ = O  
K , , ( S ) - K ( S ) -  1 (5.8) 
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the sum on the right-hand side being the bound state contribution. It follows from 
continuity of K ( s )  that for all s, 

K ~ ~ ( s ) I ~ = , " + - K ~ ~ ( s ) I ~ = , " -  = -1. (5.9) 

(b) Smalls 
To obtain the small s limit we use [6] 

Sn-1/2 2n- ,  (22"-1-1) m 1 
= - 2  1 U Eln sinh(ud?) "=,, (2n)!  

(5.10) 

where E, are the Bernoulli numbers. Furthermore we write the sinh product of 
appearing in (4.6) for the heat kernel as a difference of two cosh terms which we also 
expand about zero argument. We obtain, on evaluating the U integral 

Writing 
m 

K ( s ) =  K,,S"-"~ (5.12) 
" = I  

and expressing the Bernoulli numbers in terms of the Riemann zeta function 

(5.13) 

we obtain the general expression for the expansion coefficients K. 

qn) ii=: 

K" =- c (-I)," J;; ,"=a 
(p-! - ij[(iA t ijZ!n-m! - iji(im) 

(5.14) 
[2(n - m ) ] ! ( 2 ~ ) ~ " '  

Up to a normalization convention, the expansion of (5.12) is termed the 
Minakshisundarem-Seeley expansion [7] or the Schwinger-De-Witt expansion [E]. 
We shall refer to the coefficients K ,  as the MS coefficients. Let us note that the quantity 
in the square brackets in (5.14) can be written in terms of the strength of the potential 
Va defined by 

Vo= - A ( h + l )  (5.15) 

as 

[(2A+ 1)2'"-,"'- 1]1[(1-4Va)"-" - 11. (5.16) 

This last form makes it obvious that K. is a polynomial of degree n in V,, a fact not 
immediately obvious from the exact result of (4.6). 

6. Relation of the small s expansion of the heat kernel to the high energy expansion 
of the spectral function 

In section 3 of this work we derived an expression for the spectral function N ( E ) .  By 
virtue of (4.1) there is an intimate relation between the heat kernel and the spectral 
function. We note that the heat kernel is closely related to the partition function of 
statistical physics. It is clear that the parameters plays the role of an inverse temperature, 

. 
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thus small s correspond to high temperatures and hence high energies. It therefore 
follows that the small s expansion of the heat kernel is related to a high-energy 
expansion of the spectral function [9]. In this section we shall, for completeness, use 
'physicists methods' to make explicit the connection of the higher terms of the small 
s expansion of the heat kernel and the high-energy expansion of the spectral function, 
Let us note that we do  not prove that the resulting series is genuinely asymptotic to 
the heat kernel. A recent more rigorous analysis is contained in [lo]. 

Before we give a proof of the result for general potentials, let us look at the relation 
between the small s expansion of K ( s )  and the large E expansion of N ( E ) .  From 
equations (5.12) and (5.14) we have 
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1 
K ,  =- A ( A + l )  (6.1 b)  J;; 

1 K - - + [ A ( A + l ) ] '  
2-J;; 

( 6 . 1 ~ )  

whereas from the results of appendix 1, we have 
m 

N ( E ) =  N"E-'"-'/2' ( 6 . 2 ~ )  
n=, 

(6.26) 
i 

N ,  =- A ( A +  1) 
7r 

1 
6 ~ r  

N 2 =  -- [ A ( A +  l)]' ( 6 . 2 ~ )  

An inspection of equations (6.1) and (6.2) indicates that, at least as  far as the leading 
coefficients are concerned, the coefficients K .  and N ,  differ only by a factor that 
depends on n which is given by 

In the proof of this for general n and for a reasonably general class of potentials we 
shall use similar notation to the previous sections, with the exception that the operators 
are denoted by H and Ho and their eigenvalues are E. and E"", respectively. We shall 
also implicitly use the sequence of limits for L and 8 used in section 3. The proof is 
2s fo!!nws. 

Using equation (3.4) we can write 

N ( E ) = Z { O ( E  - E , , - @ ( E - E n O ) ]  

(6.4) 
1 

= -- Im Tr(ln[(H - (E +is)] -In[(&- (E + is)]]. 
7r 
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In terms of 

G ( z ) = [ H - z ] - '  G0(z) = [ H 0 - z ] - '  

we have 

1 
N ( E )  = -- Im Tr[ln G ( E  + i s )  -In G,(E +is)]. (6.6) 

a 

It is convenient, at this point, to introduce the function 

C(-m2)=-Tr[ln G(-m2)-ln Go(-")]. (6.7) 

On the assumption that both H and Ho have positive spectra, as can be arranged by 
a common additive shift of all their energy levels (we always assume that the spectra 
of H and Ho are bounded from below), we can use the 'Schwinger representation' of 
the logarithm given in equation (1.2) and write 

C(-m2) = Tr ~ o m ~ ( e x p [ - s ( m 2 +  H ) ]  -exp[-s(m2+ HO)] l  

Then given 

m 
K ( s ) =  K,,s'"-"*' 

" = I  

we find 

By analytic continuation 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(the square root is cut along the negative real axis and is positive on the positive real 
axis). It then follows from equations (6.6) and (6.7) that 

1 
N ( E ) = - I m  C ( E + i S )  

a 

Lastly, we use the standard result [6] 

(6.12) 

(6.13) 
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with x = n -;, yielding the high-energy expansion of N ( E )  in terms of the MS 

coefficients of K (s): 

D Waxman and G Williams 

(6.14) 

Note that we have proved this result for operators with positive spectra. However the 
MS coefficients, K., depend only on integrals of various powers of the potential H - Ho 
and its derivatives and these may be analytically continued to operators having spectra 
beginning at a finite negative energy. 

The result (6.14) depends on the small s expansion of K ( s )  having only half odd 
integral powers of s (equation (6.9)). This holds for non-singular potentials which are 
infinitely differentiable. An example where it does not hold is for delta function 
potentials which yield both half integer and integer powers of s. 

7. Discussion 

In this work we have exactly evaluated the heat kernel for a particular, one-dimensional, 
Schrodinger operator. This exact result has provided an explicit example of the 

changes. Equation (5.9) gives the discontinuity of the Scattering part of the heat kernel, 
it yields, for all s, 

K,,(s)I*=,+-K,,(s)I*=,_= -1. (7.1) 

In the limit s + 0, the left-hand side of this equation measures the change in the number 
of scattering states when the number of hound states increases from m to ( m  + 1). It 
is thus an example of the conversion of scattering states into bound states (cf Levinsons 
theorem). 

The result of the explicit evaluation of the MS coefficients in the small s expansion 
of the heat kernel, equation (5.14) deserves further comment. Ordinarily, one is not 
in the fortunate position of having knowledge of all the MS coefficients of a heat kernel. 
The principal reason is that in a general problem, their complexity increases rapidly 
with order and their calculation becomes increasingly time consuming. I t  is interesting 
to see whether the effort of calculating a large number of MS terms is justified. In the 
present section we shall investigate the ability of the MS expansion to reproduce the 
large s (predominantly bound state) behaviour of the heat kernel. We do this from 
the naive approach of simply summing a finite, number of terms of the MS series. In 
view of the asymptotic nature of the expansion (cf comments in section 5) it makes 
no sense to sum an arbitrarily large number of terms. Rather, the procedure is to 
truncate the expansion at an appropriate point. 

A: I..-..- -~ nrm-r a---+ - F l h o  o.."&+e-:-- ... Lo- .Ln L-- -CL,...-rl -*-*-- 
"UULlU J L a I T J  UII.,ULIII,IUUUI L C a " a " & c " 1 ~ L 1 ,  U1 U,= " c a L G " 1 L 1 s  J L ' a L C J  W11G.L Lllci IIUIIIUSL U, 

7.1. Heat kernel as a Junction oJs at fixed A 

We shall, for simplicity, consider the heat kernel as a function of s when A is held 

integers. We take A to have the values A = 1.2 and A = 2.7. In order to see the ability 
of the M S  expansion to reproduce the large s part of the heat kernel we provide a 
number of plots. In figure l ( a )  and l(b) the crude large s approximation of (5.6) is 
presented along with a small s expansion, (5.12). in which 10 terms have been included. 

C..-A X X L  --_-:A-- --- :-&---"I . . - I . . o I  -$ > -:-A- -----+:---I h0Ln.r: -..- -^ -..-^ - . & L A  
IIAC". ""G UJIIDIUGil  L , U 1 L - , L 1 L c ~ 1 P 1  "a,UGD U1 n J111bC c"ccp1U"a.l u c I I a " I Y Y L  U C C U l D  a, L,,G 
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A = 1.2; ( b )  for A = 2.7. ( c )  Logarithm of the heat kernel as a function of d at fixed A.  Plots 
of the logarithm of the I0.tem MS expansion and the lowest bound stale contribution to 
this quantity. A's for A = 1.2. 
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This number of terms is before the point in the asymptotic expansion where successive 
terms start increasing. In figure (IC) we plot the logarithm of the above small s 
approximation to the heat kernel for A = 1 . 2  along with the straight line A2s; at 
sufficiently large s we know K ( s )  - e'*'and thus the logarithm should become approxi- 
mately linear in s. The figures show that at fixed A there is a very strong overlap 
between the truncated MS series and the large s behaviour of the heat kernel. 

7.2. Heat kernel as a function of A a t f x e d  s 

Let us now consider the behaviour of the beat kernel as a function of A at large values 
of s. We note that the MS series is an expansion in powers of s. Consequently, on 
varying A when the number of terms (and s) is held fixed may lead to spurious 
behaviour. This follows since different values of A may require different numbers of 
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Figure 2. Heat kernel as a function of A at fired s. A plot of the large I expansion to lhe 
heat kernel given in equation (5.4) alongside 6 and IO term MS expansions far s =4. The 
6 term MS expansion and the large 3 approximation are indistinguishable (on the scale 
used) in the region A = 0 to A = 0.8. The peak in the IO term MS expansion around A = f  
is a spurious feature caused by the inclusion of too many terms in the M S  expansion near 
this value of  A. 
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terms in the asymptotic series for an accurate approximation of the heat kernel. We 
illustrate this for a reasonably large value of s, namely s =4.  In figures 2(a) and 2(b) 
we plot the large s approximation to K ( s )  given in (5.4) and two differently truncated 
MS approximations, (5.121, in which 6 and 10 terms have been included. The peak in 
figure 2 ( n )  (at about A -0.5) that arises from the MS expansion with 10 terms is clearly 
a spurious feature that follows from the inclusion of too many terms in the expansion 
(in this region of A values). By contrast in figure 2(b )  the 10-term series matches 
smoothly onto the large s approximation for A - 1 whereas the 6-term series begins to 
drop off in this region. 

I t  appears then, that with suitable care, the MS expansion of the heat kernel can 
yield not only information about the small s behaviour but also a significant amount 
of information about the large s, predominantly bound state, behaviour. 
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I Appendix 1. High energy expansion of the spectral function N(E) 

I n  this appendix we perform a high energy expansion of the spectral function N ( E )  
given in equation (3.16). 

r 

For E > 0, equation (3.16) reads 

1 -  
N ( E  >O)= -f +- [2 tan-’(n@) -tan-’((n + A ) / @ )  - .  ,, ==> 

-tan-’((n-l - A ) / a } ]  

Using the Euler-Maclaurin summation formula [6], we can write 

1 
( 7 2 0 ~ E ” ~ )  

+ J y O )  + I 

(Al.l)  

(A1.2) 

where a prime denotes differentiation with respect to argument and 

f(u) = 2 tan-l(u) - t a n ~ ’ ( u + A / ~ ) - t a n - ’ ( u  - (  l + A ) / O ) .  (A1.3) 
I 

\ 
If we define 

I ( x )  = du[tan-‘U-tan-‘(u+x)] r 
= -(71/2)x+ (x2/2 -x4/12+x6/30-. . .) 

we can write 

(Jm N ( E > o ) = - ~ + - ( I ( A / O ) + Z ( - ( ~ + A ) / ~ ) }  
x 

(A1.4) 

(A1.5) 
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The large E expansion of N ( E )  now follows by expanding all terms in this equation 
in powers of l/d? up to a given order. We find 
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1 1 
Tr 671 

N ( E  >O) =- A ( A +  i )~- ' / ' - -  [ A (  A + 1)I2E -312 

1 
30m 

+-[2[ A( A + l)]' - [ A (  A + l)]'} E5"+ O( E-'"). (A1.6) 

Appendix 2. Proof of: I;dEseCE tan-'(fi /a) = &sgn(a)I:du exp[-(u'+~uloldi)l 

To prove this result we write s eCE = -d/dE e-*€ and integrate the left-hand side, 
. - which we call I ( a ) ,  by parts 

x,.... *L. ..~.*. .~ ~~~ ~ ~~~ neat we iiialie m e  replacement 

' I/("'+ a2)  = lom dA exp[-A(u2+ a')] ( A 2 . 2 )  

in equation (A2.1) and carry out the U integration first. Lastly we change variables 
from A to U: 

A = ( ~ / l a l + h ) ~ - s  (A2.3) 

and obtain the result given in the title to this appendix. 
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