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Abstract. – When a soliton (such as a kink or vortex) in a condensed fermionic system moves,
it produces particle-hole pairs. These approximately behave as a bosonic field, equivalent to
a bath of harmonic oscillators and an effective bosonization of the fermion degrees of freedom
very naturally arises. This work considers the theory of a moving soliton and an expression is
given for the quantity, known as the spectral function, that characterises the effective bosons in
the system. For a specific system possessing a soliton, the spectral function is evaluated.

A number of different condensed systems containing fermions possess long-range order which
is characterised by a field known as the order parameter. In a mean-field approximation, the
order parameter typically satisfies a non-linear equation that allows the existence of stable
structures of finite spatial extent and we shall refer to these as “solitons.” Some examples of
solitons are given in the (by no means exhaustive) table below (1).

System Fermions Soliton

superconductors electrons line or pancake vortex

superfluid 3He 3He atoms A-B phase boundary
(a domain wall)

neutron star matter neutrons line vortex

the linear molecule electrons kink interpolating between
trans-polyacetylene degenerate dimerization states

(1) It is arguable whether the last entry in the table, polyacetylene, falls into the class of systems
with long-range order. We have included it since the system is interesting in its own right and has
added interest since its mathematical description is that of a “scalar kink”, i.e. a one-dimensional
s-wave superconductor with a real order parameter that interpolates between bulk-magnitude gaps of
opposite sign.
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Although significantly different mechanisms may produce the long-range order in these
systems, they possess the common feature that the fermions are coupled to the soliton and
any fluctuation or variations of the soliton are communicated to the fermions and vice versa.
Furthermore, as far as many calculations go, the only significant features of these systems are
the effective dimensionality of physical space and the tensor character of the order parameter.
Thus an apparently diverse set of systems, with their associated solitons, may be covered by
a single language and formalism.

The interaction of the soliton with the fermion degrees of freedom in the system is an
important aspect to the problem, since motion of the soliton generally “stirs up” the fermions,
producing particle-hole pairs which modify the dynamical behaviour of a “bare” soliton. We
shall provide a quantum-mechanical treatment of both the soliton and the fermions and it will
be shown that the particle-hole pairs act on the soliton as effective bosons, thus an approximate
bosonization of the fermion degrees of freedom very naturally arises. It is the purpose of this
work to characterize the interaction between the soliton in question and the effective bosonic
degrees of freedom. We approach the problem via the partition function, which can be written
as a functional integral over all realisations of the order parameter and whose integrand is of
the form exp[−S] where S is a Euclidean action (2). We proceed in this way since it follows
from work on dissipative quantum systems [1], [2], [3], that information, of direct relevance
to dynamics, lies in the Euclidean action. Under reasonable assumptions, there is a non-local
part of the effective action of a system at temperature T ≡ β−1 that can be brought to the
form

1
2

β/2∫
−β/2

dτ1

β/2∫
−β/2

dτ2K(τ1 − τ2) [X(τ1)−X(τ2)]
2
, (1)

where X(τ) is the position of the soliton as a function of the Euclidean time τ (τ is a variable
introduced in the functional representation of the partition function) and K(τ) is a system-
dependent kernel. A non-local effective action of this form was found by Caldeira and Leggett
in their model of dissipation of a particle coupled to an environment of harmonic oscillators [1].
In the soliton problems at hand, the very existence of such a term in the Euclidean action
allows the problem to be viewed as a system in which a “particle-like” object, the soliton,
interacts with a bosonic field equivalent to a bath of harmonic oscillators (3).

We shall derive a non-local term of the type (1) from basic principles (4). More significantly,
however, we extract the fundamental quantity that fully characterises the interaction of the
soliton with the effective bosons in the problem; a quantity referred to as the spectral function.

To explain more, we note that in the work by Caldeira and Leggett, the part of the Euclidean
Lagrangian involving the harmonic-oscillator heat bath and its coupling to the particle (with
coordinate X) was

∑
α

(
mαẏ

2
α/2 +mαω

2
αy

2
α/2− cαyαX

)
, where yα are the oscillator coordi-

nates and cα are coupling constants. On “integrating” the oscillators out of the problem, it
was found that their influence was encapsulated in J(ω) = π

2

∑
α

(c2α/mαωα)δ(ω − ωa) and this
quantity is known as the spectral function.

(2) Throughout this work the constants h̄ and kB are taken to be unity; a prime, ′, or an overdot, ˙ ,
denote differentiation of a function with respect to x or τ ; δ(x) and Θ(x) denote Dirac or Heaviside
functions.

(3) We note that a superconductor vortex was modelled as a point particle coupled to an oscillator
heat bath in [4].

(4) A fundamental paper studying the non-local effects of electrons on collective degrees of freedom
was given in ref. [5]. Furthermore, in ref. [2] a non-local term in the effective action was derived for
an ion in a normal Fermi liquid.



 

D. WAXMAN et al.: BOSONIC HEAT BATH ASSOCIATED WITH A MOVING SOLITON ETC. 505

Here, we shall determine the corresponding spectral function, J(ω;T ) that characterises
the effective bosonic bath to which a soliton is coupled; we shall find this to be an explicitly
temperature-dependent quantity.

We focus on a specific system where all calculations can be performed in closed form. This
is valuable since most of the systems listed require a numerical treatment and with a solvable
system we are able to explicitly determine the origin of any features found. The insight so
gained may allow the understanding of numerical treatments of more complex systems.

The simplest of the solitons listed occurs in trans-polyacetylene (modelled as a continuum
field theory [6]). In this system, the internal space is spanned by 2 × 2 matrices, the order
parameter is real and the physical space is one-dimensional.

Despite the simplicity of this system, it is not atypical. It has the important feature, shared
by all the other systems, that the soliton can trap the fermions in bound states as well as
scattering them. We shall thus use polyacetylene as a prototypical example for our ideas on
the dynamics of solitons.

The first quantized Hamiltonian for polyacetylene is [6] H = vFpxσ
3 + ∆(x)σ1, where vF

is the Fermi velocity, px is the momentum operator associated with motion along the x-axis
and σ1,3 are Pauli matrices. The order parameter ∆(x) is real and depends on position and
possibly time.

The partition function can be written as a functional integral over ∆(x; τ):

Z =
∮

∆(x;−β/2)=∆(x;β/2)

d[∆(x; τ)] exp
[
− Sf [∆(x; τ)]−

−
β/2∫
−β/2

dτ
∫

dx
( 1
g1

[∆(x; τ)]2 +
1
g2

[∂τ∆(x; τ)]2
)]
,

(2)

where, up to an additive constant, the fermionic contribution to the action is (5)

Sf [∆(x; τ)] ≡ −Tr ln
(
ip0 + vFpxσ

3 +∆(x; τ)σ1
)
. (3)

The terms 1
g1

∫ β/2
−β/2 dτ

∫
dx [∆(x; τ)]2 and 1

g2

∫ β/2
−β/2 dτ

∫
dx [∂τ∆(x; τ)]2 are associated with

the potential and kinetic energies of the ions in the carbon chain and g1 and g2 are constants.
As it stands, the partition function, (2), is a formidably complicated quantity. We shall make

a plausible physical approximation to the functional integral that corresponds to a semiclassical
quantization of the motion of the soliton.

First, since solitons have very long-lived existence, we restrict the field configurations in (2)
to those corresponding to a single soliton. This still leaves a complicated integral corresponding
to all possible fluctuations about a soliton that do not take the field out of the one-soliton
sector. We make the further assumption that, as far as the interaction with the fermions is

(5) We use an operator formulation: thus p0 is treated as an operator conjugate to τ and satisfies
[τ, p0] = i, similarly [x, px] = i. Tr in (3) equals Trx ·Trτ where Trx denotes a trace, tr, over 2×2 matrix
indices as well as a trace over the one-dimensional configuration space: Trx[. . .] = tr

∫
dx〈x|[. . .]|x〉

and Trτ denotes a trace over the eigenfunctions of p0 which are required to be antiperiodic in
τ over the interval of β. In the problem under consideration the fermions are non-interacting.
For systems with non-trivial fermion-fermion interactions, Sf [∆(x; τ)] should be replaced by the
appropriate generalisation given in [7].
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concerned, the soliton may be treated as a structure with a rigid shape whose only degree of
freedom is its position (6), X.

With ∆s(x) the equilibrium shape of a static soliton located at the origin, the rigid soliton
approximation entails, in (2), the replacements ∆(x)→ ∆s(x−X(τ)),∮

∆(x;−β/2)=∆(x;β/2)

d[∆(x; τ)]→
∮

X(−β/2)=X(β/2)

d[X(τ)] and leads to

Z '
∮

X(−β/2)=X(β/2)

d[X(τ)] exp[−Stotal],

Stotal = Smean field[∆s(x)] + Skinetic[X(τ)] + Snon-local[X(τ)],

Smean field [∆s(x)] = Sf [∆s(x)] +
1
g1

β/2∫
−β/2

dτ
∫

dx [∆s(x)]
2
,

Skinetic =
1
g2

β/2∫
−β/2

dτ
∫

dx
[
Ẋ(τ)∆′s(x)

]2

,

Snon-local[X(τ)] = Sf [∆s(x−X(τ))]− Sf [∆s(x)] .

(4)

β−1 Smean field coincides with the mean-field free energy of a static soliton and Snon-local +
Skinetic are corrections to the static mean-field action.
Stotal contains a non-local term of the form given in (1) as may be seen by expanding

Snon-local to quadratic order in X and we make the assumption that the higher-order terms
may be neglected (7).

With GM(τ) the Matsubara Green’s function appropriate to a static equilibrium soliton
with Hamiltonian

Hs = vFpxσ
3 +∆s(x)σ1 , (5)

we find that the quadratic part of Snon-local is

S
(2)
non-local[X(τ)] =

1
2

β/2∫
−β/2

dτ1

β/2∫
−β/2

dτ2K(τ1 − τ2) [X(τ1)−X(τ2)]
2
,

K(τ) = −1
2
Trx

[
GM (τ)∆′s(x)σ

1GM (−τ)∆′s(x)σ1
]
. (6)

The presence of S(2)
non-local means Z has a non-local part of its action of the same form as

that of Caldeira and Leggett [1] and we see a soliton coupled to a Fermi sea behaves as a point
particle in contact with a bosonic bath.

(6) The position of a soliton is taken as an unambiguous feature of its profile; in polyacetylene we
take this as the place where the order parameter vanishes.

(7) Terms in Snon-local beyond second order in X correspond to anharmonicities of the effective
oscillators and non-linear couplings to the soliton’s coordinate.
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Let us now consider the spectral function for the bosons, J(ω;T ), analogous to that
of Caldeira and Leggett [1]. In the work of these authors, the relationship between their
kernel and spectral function was K(τ) =

∫∞
0

dω
2π J(ω){cosh [ω(|τ | − β/2)]}/sinh(βω/2). To find

the spectral function in the soliton case, we use the key identity contained in the pair of
equations (8)

−1
2
Trx

[
GM (τ)∆′s(x)σ

1GM (−τ)∆′s(x)σ1
]

=

∞∫
0

dω
2π
J(ω;T )

cosh [ω (|τ | − β/2)]
sinh (βω/2)

,

J(ω;T ) = tanh (βω/2) Re
{ ∞∫
−∞

dt cos(ωt)Trx
[
GT (t)∆′s(x)σ

1GT (−t)∆′s(x)σ1
] }

,

(7)

in which GT (t) is the equilibrium time-ordered Green’s function for Hs. A comparison of (6)
and (7) indicates that J(ω;T ) of (7) constitutes an explicit expression for the spectral function
in terms of equilibrium quantities and there are natural generalisations of this result to other
systems.

Evaluation of J(ω;T ) requires a knowledge of the soliton profile appearing in Hs. Follow-
ing [6] we take ∆s(x) = ∆0 tanh

(
x

vF/∆0

)
, where ∆0 is the bulk order parameter and we are able

to obtain exact results for J(ω;T ). Here we have space only to state the results in particular
limits.

At zero temperature a contribution arises only from transitions between bound and scat-
tering states and the gap in the spectrum between these states is manifested by the vanishing
of J(ω; 0) for ω < ∆0:

J(ω; 0) =
π2

32
∆0

ξ20

(
ω

∆0

)5

sech2

π

2

√(
ω

∆0

)2

− 1

 Θ
((

ω
∆0

)2

− 1
)

√(
ω
∆0

)2

− 1

. (8)

The gap in the in the spectrum suggests that the long-time soliton dynamics at zero temper-
ature may be governed by other processes, involving a low-frequency component.

At low temperatures, the low-frequency behaviour of J(ω;T ) arises only from transitions
between states with closely spaced eigenvalues: in the system considered these are only
scattering states. We find

J(ω;T ) '
ω¿∆0
β∆0>1

π

8
∆0

ξ20

(
ω

∆0

)2

sinh(βω/2)E2(β∆0) , (9)

with E2(α) ≡
∫∞
1
y−2 exp[−αy]dy and corrections to the above formula are of relative order

O
(
(ω/∆0)2 ln(βω)

)
or O

(
(ω/∆0)2

)
.

Generally, the spectral function is an important ingredient in the dynamics of solitons, since
properties such as their dissipation, mass, diffusion and tunnel escape-rate are governed by
this quantity (9). This work contains a direct route by which the spectral function may be
determined and further details of the calculations and applications to other systems will be
published elsewhere.

(8) A proof of this identity, based on a spectral decomposition of the Green’s functions, will be
given elsewhere.

(9) Recent work on the motion of domain walls in magnetic materials in which a spectral density
is calculated and applied is that of ref. [8].
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