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The Fredholm determinant associated with the Bogoliubov Hamiltonians H and Ho (eigenvalues E;
and Ejo) is D(Q)=I1;(¢— E;)/({— Ejo), where ¢ is a complex number. D(¢) holds all possible informa-
tion on the one-particle excitation spectra of the BCS superfluids described by H and Ho. For three-
dimensional systems with order parameters and potentials varying along the x axis, we show that D(¢)
may be calculated from a finite matrix that transports eigenfunctions along this axis. For piecewise-
constant order parameters and potentials, D(¢) can be found in closed form.

PACS numbers: 74.70.Ad, 03.65.—w, 67.57.—z

Some important equilibrium quantities of superconduc-
tors and Fermi superfluids such as the heat capacity and
free energy are, in the framework of BCS theory, deter-
mined from the spectrum of the first quantized Hamil-
tonian for the system, the Bogoliubov Hamiltonian [1].
In this work we provide a method of obtaining complete
information on the spectrum of a Bogoliubov Hamiltoni-
an for a class of interesting systems.

A possible way of finding the spectrum is to diagonal-
ize a finite (and therefore truncated) matrix representa-
tion of H. This yields a finite subset of approximate ei-
genvalues of H which may then be used to approximate
physical quantities. This procedure is useful if all impor-
tant eigenvalues in the problem are calculable within the
available computer time (particular problems may be
posed by systems whose scattering states contribute
significantly). A feature of the above approach is that,
from the outset, the calculation lies in the realm of nu-
merical evaluation with no analytical insight or approxi-
mations available.

Here we present an alternative, and in some cases ana-
lytic, route to the spectrum for a particular class of sys-
tems (arbitrarily taken to be three dimensional) in which
the order parameter and potential depend only on a single
coordinate. This is an effectively one-dimensional behav-
ior and includes systems with layered structures as well as
those with cylindrical or spherical symmetry. We find all
the spectral information in a single attempt by determin-
ing the quantity IT;([£—E;1/[{—Ejo])=Det([{—H]/
[{—Hol), where E; are the eigenvalues of H, Ejo are
those of a suitable reference Hamiltonian Hy, { is a com-
plex number, and Det denotes a determinant taken over
the Hilbert space of H and Hyo. The resulting deter-
minant is known from its connection with integral equa-
tions as a Fredholm determinant and all possible informa-
tion on the spectrum of H is contained within it. For ex-
ample, the density of states may be extracted from it [2],
but quite striking is the fact that the free energy of, e.g.,
an s-wave superconductor, relative to that of a system
with Hamiltonian Ho, is naturally expressed directly
in terms of the Fredholm determinant itself [3]: X,
xInDet(liw,, — H)/liw,, — Hol), where w,, are the Mat-

subara frequencies.

For the purposes of presentation, we shall discuss only
layered systems in which the order parameter and poten-
tial depend on the x coordinate. It turns out, perhaps re-
markably, that for such systems in which the order pa-
rameter and potential are piecewise constant the
Fredholm determinant can be found in closed form via a
finite number of matrix multiplications. Thus full infor-
mation on the spectrum of such a system is available.

The calculational procedure (see below) involves con-
struction of a finite dimensional matrix M (x) [M(x)]
that transports eigenfunctions of H (Ho) from 0 to x.
With L the length of the system, it turns out that
knowledge of M (L) and M (L) is sufficient to completely
determine the Fredholm determinant. Originally it was
conjectured by the author and K. D. Ivanova-Moser that
a relation between the Fredholm determinant and the
matrix M (L) applied to a variant of a Dirac Hamiltonian
subject to periodic boundary conditions (the Dirac Ham-
iltonian resulted from the approximation of a Bogoliubov
Hamiltonian by an operator linear in derivatives [2]).
This was subsequently proved by the author [4] while
Nakahara, using the theory of the Hill determinant,
found a proof for the related problem of the Schrodinger
equation subject to both periodic and hard wall (Dirich-
let) boundary conditions [5].

Here we shall generalize the approach of [4] to Bogo-
liubov operators subject to Dirichlet boundary conditions.
We stress that no approximation of the second derivative
character of the Bogoliubov operator will be made so the
results will be applicable to systems with rapid spatial
variation, for example, short coherence-length supercon-
ductors.

For simplicity we assume that the system is described
by a real s-wave order parameter that has no momentum
dependence; generalizations to higher orbital pairings are
possible.

Working in dimensionless units [6], we write the Bogo-
liubov operators H and Hg as

H=[p}+¢ +V(x)la*+Aalx)e',
Ho=I[p2+¢, +Vo(x)1o3+ae(x)c!,

(n
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where p, is the x component of the momentum operator; , |0
Ci=kP+kr—1 with ky.k, eigenvalues of p,,p,; V(x) [0, —NO;DY (x,x"38) =8(x —x") 60l
and A(x) are, respectively, the potential energy and order 6)
parameter; and o', i =0,1,2,3 are the unit 2X2 matrix 0 o0
and the Pauli matrices which here span the particle hole NGO =1 5 . 3 .
space of an s-wave superconductor. Dirichlet boundary ’lae' +lEi+V (e’ g 0
conditions are imposed on the eigenfunctions ¥ of H and To solve for Y(x,x";¢) we introduce the 4x4 matrix
Hoat x=0and x=L: ¥(0) =0, ¥(L)=0. M (x;¢) with the properties [10]
Using Dirac notation in which [7] Tro[---]
=tryf§dx(x] - - - |x) with try denoting the trace over 8, =N OIM (x:¢) =0,
d x d matrices, we employ the identity [8] o )
o
1 1 d {—H M(0;0) = [ ol -
T ——— | =—Tryl 0 o
“l¢-H c—Ho] T c—Ho] o
Then a form for Y(x,x";¢) that automatically incorpo-
=4 |pet| L=H ) rates the Dirichlet boundary conditions at x=0 and
d¢ {—Hy |’ x =L, i.e., that forces G (x,x";{) to vanish at these points,
is
Setting 0
G (x,x50) =(x|(¢—H) ~'x" (£ complex) (3) Y(x,x'5) =8 —x MM~ (L) | ,
allows us to write (2) as 0
+6(x'—x)M(x) (8)
L — Bl
j; dx trylG (x,x;8) — Go(x,x;0)] =diln Det t%] ,
¢ ¢~ Ho where ©(x) is the Heaviside step function, 4 and B are
4) 2x2 matrices, and, for conciseness, the { dependence of
M has been suppressed. A4 and B are found from the
and we shall proceed by finding G(x,x";¢) and then ap- discontinuity in Y at x =x' as follows from (6). After a
plying the above equation. little algebra we find that
The equation obeyed by G (x,x";¢) is
0
C—{[-8+&,+V (03 +A(X) DG (x,x50) A=(M " ()]2) 7' (6%00M ~(x") [03] ,
=5(x—x")o". 9)
: 0
On setting B=—(M(L)]3) "' (c®00M(LIM ' (x") [a,] ,
, G(x,x"30)
Y (x,x5) = 8:G (x,x";0) (5)  where [M ~'(L)],; is the top right 2x2 block of M (L),
etc.
the equation for G (x,x";¢) takes the form [9] For our purposes it is sufficient to consider Y (x,x";¢)

for x < x'. Using (8) and (9) it is possible to write

0
Y(x,x";8)=—M(x) [([M(L)],z) _|](GO,O)M(L)M ~(x") o3

) 0 _ ,
([M(L)]lz)-l, 0 MM =)

0
03]. (10)

E—M(x)[

Equation (4) requires tr2[G (x,x;£)] and from (5) we have G (x,x";¢) =(06°,0) Y (x,x";¢). Since G is continuous at x =x'
we can use (10) for x < x' and obtain

0 0
ta[G(x,x;0)]1 = —tr, [(o°,0)M(x) [ MLIM ~'(x) | ] ]

([M(L)]lz)—l, 0 0’3

~_[foo 0, 0 _
= trg 0_3 0 M(x) ([M(L)]]Z)_I, 0 M(L)M (X) . (II)

We can write this last expression in a useful form by differentiating the equation of motion for M (x), (7), with respect
to §. It straightforwardly follows that
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—](x) dM(X)

-l
M ~(x) "

00
0'3 OJM(X)'_—'GX [M

and using this in (11) yields

0

(MW ", oMW

) (12)

tralG ()] =Bty | M~ () 2L

dg

This is a key result. We see that the quantity required in (4), [§dx tr,[G (x,x:;¢)], depends only on the values of M (x)

at the boundaries, x =0 and x=L. Furthermore, since M (0) is the 4 x4 unit matrix, it follows that dM (0)/d{=0 [11];
thus f§dx tr[G (x,x;¢)] depends only on M(L). We can therefore write

L e | AM (L) 0, 0
J; dxtrlG(x,x;0) 1 =try M@, 0
dlM(L)];
=try | ————— (M (L -
rzl ac (IM(D)])2)
=Lt ln (ML) 2) =L Indeto (1M (L)1) (13)
ag d¢ ’
where we have freely used trin=Indet and det, denotes
the determinant of a 2 X2 matrix. I superfluids and superconductors and elsewhere we intend
Equation (13) can now be used directly in (4), leading  to apply the results presented here.
to the conclusion that InDet([¢—H]1/[¢—Hol) and It is a pleasure to thank G. Barton and M. Nakahara

Indet,(IM (L)1,2/[Mo(L)],;) differ at most by an addi-  for helpful discussions and the latter for sending a pre-
tive constant whose value may be pinned down by investi-  print of his work in advance of publication. This work
gating the large || behavior of these quantities. Thisisa  was supported by the Science and Engineering Research
high energy limit where the first Born approximation is  Council (U.K.).
applicable. Both quantities are, for large |¢|, given in

leading order by (1/~/—C+1/VO) [f§dxV(x) —Vo(x)]

indicating that the constant is unity; thus [12] [1] P. G. de Gennes, Superconductivity of Metal and Alloys
(Benjamin, New York, 1966).
Det S—H =det, M ) (14) [2]1 D. Waxman and K. D. Ivanova-Moser, Ann. Phys.
{—H (Mo(L)])2 (N.Y.) 226, 271 (1993).

[3]1 The free energy F (or strictly, grand potential) of an s-

We thus have proved that for Bogoliubov operators wave superconductor follows from the expression

subject to Dirichlet boundary conditions [13] and describ-

ing structures with variation along a single direction, the exp(—ﬁF)=Zexp[—ﬂZn,~Ej]

Fredholm determinant may be found from the 4x4 ma- tn) !

trix M(L). This indicates that the Fredholm determinant xexp [ -ﬁfdJrIA(r)lz/g} ‘
may be found from computations on determinants of

finite matrices, rather than attempting approximations on where E; are eigenvalues of the Bogoliubov Hamiltonian
the determinant of infinite matrices (i.e., operators). H, A(r) is the order parameter (with electron-phonon

coupling g), the occupation numbers n; take the values 0
and 1, and B! is the temperature. Summing over all al-
lowed n; and taking into account that the spectrum is
symmetric (E; is always accompanied by —E; if A=0)
quickly leads to

In the particular case of potentials and order parame-
ters that are piecewise constant in nature (or approxi-
mated as so), it is evident from (7) that the matrix M (x)
is a product of the matrices associated with the separate
strata of the system. Thus for a finite number of strata
the Fredholm determinant may be found in closed form - —-lZIn[2cosh(ﬁE,~/2)]+fd’rlA(r)lZ/g.
[14]. B

The calculations that have been presented hold for a Then
system of finite length L, along the x direction. It follows

. . . s E;/2
that finite size effects are contained within the results. ;ln[2cosh(ﬂ i)

We note further that the thermpdy_namic limit L — oo is —Trinl2cosh(8H/2)]
achievable by using a generalization of the projection
techniques used in [4]. =1 Trinliom —H)(—iom— H)/wk

The motivation for this work arose from considerations

X =1 Y InDetlliom — H)(—iom — H)/0k]
of the free energy and density of states of Fermi 2% n Detllio 1 @
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where wm=Qm+1)a/B, m=--- —1,0,1.... Thus the
difference in free energies of two systems with Hamiltoni-
ans H and Hg is

F—Fo=— %Zln Detl(iom — H)/(iwm — Ho)]

+ [ a*rlla®12— a2z

[4] D. Waxman, “The Fredholm Determinant for a Dirac
Operator,” Ann. Phys. (N.Y.) (to be published).

[51 M. Nakahara, Physics Department, Kinki University,
Higashi-Osaka 577, Japan, report (unpublished).

[6] We work in dimensionless units where momenta are mea-
sured in units of the Fermi momentum kf, distances in
units of k7', and energy in units of k#/2m.

[7] In what follows we shall use Tr and Det to refer to a re-
stricted trace and determinant where the good quantum
numbers k, and k. are held fixed. Thus, for example, a
complete trace over all degrees of freedom requires the
restricted trace, Tr, as defined above to be supplemented
by an integration over k, and k.

[8] B. Sakita, Quantum Theory of Many-Variable Systems
and Fields (World Scientific, Singapore, 1985).

[9] A related transformation of the Bogoliubov equation to a
system of ordinary differential equations underlies the
work of N. Schopohl and D. Waxman, J. Phys. Con-
densed Matter 4, L639 (1992).

[10] If we denote eigenfunctions of the Bogoliubov operator by
¥(x) [with the property H¥(x)=¢(¥(x)] then M(x)
may be defined as the matrix that transports the “eigen-
functions”

¥(x)
6x\!'(x)

from O to x:

v(0)
9, v(0)

v(x)

9, ¥(x) =M (x)

[11] Strictly speaking, the lower limit of the integral delivers
not dM(0)/d¢ but rather limy— o+dM (x)/d¢. For x =0,

however, M (x) = M(0)+ [§dx' N(x";{) and the assign-
ment dM (0)/d{ =0 yields the same result as the limit.

[12] Equation (14) may be viewed as a generalization of a re-
sult for Schrodinger operators (subject to Dirichlet
boundary conditions) as stated by S. Coleman in The
Uses of Instantons, Proceedings of the International
School of Subnuclear Physics, Ettore Majorana, edited by
A. Zichichi (Plenum, New York, 1977). Coleman’s result
for the Fredholm determinant of a Schrédinger operator
can be written in the form [M(L)],2/[Mo(L)];2 where
here M(x) is a 2X2 matrix that transports solutions of
the Schrodinger equation from 0 to x (cf. Ref. [10]). See
Ref. [S] for more details on Schrodinger operators.

[13] By a straightforward application of the method presented
here, Fredholm determinants with eigenfunctions subject
to Neumann or periodic boundary conditions may be also
expressed in terms of M (L) and Mo(L). We find that for
Neumann boundary conditions (9,¥ =0 at x=0 and
L): Detl(¢— H)/(¢— Ho)l =det2 {lM (L))21/IMo(L)]21}.
For periodic boundary conditions (¥(L)=u¥(0); u
=explira®+iuc®l, A, p real): Detl({—H)/({—H,)]
=dets{lU — M (L)1/IU — Mo(L) 1}, where

u0
0 uf-

[14] There is a simple result that is useful in this context.
From (6), the factor in the matrix M (x) associated with
a stratus of width a is

wola )],

where b is a 2x2 matrix. Then in 2% 2 block form

0 o°
explal, o

indicating that the matrix multiplications required are
really only those of 2% 2 matrices.

U=

sinh(avb)
N/

cosh(avb),
] } = Vb sinh(avb), cosh(avh)
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