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ABSTRACT
A model is presented in which alleles at a number of loci combine to influence the value of a quantitative

trait that is subject to stabilizing selection. Mutations can occur to alleles at the loci under consideration.
Some of these mutations will tend to increase the value of the trait, while others will tend to decrease it.
In contrast to most previous models, we allow the mean effect of mutations to be nonzero. This means
that, on average, mutations can have a bias, such that they tend to either increase or decrease the value
of the trait. We find, unsurprisingly, that biased mutation moves the equilibrium mean value of the
quantitative trait in the direction of the bias. What is more surprising is the behavior of the deviation of
the equilibrium mean value of the trait from its optimal value. This has a nonmonotonic dependence on
the degree of bias, so that increasing the degree of bias can actually bring the mean phenotype closer to
the optimal phenotype. Furthermore, there is a definite maximum to the extent to which biased mutation
can cause a difference between the mean phenotype and the optimum. For plausible parameter values,
this maximum-possible difference is small. Typically, quantitative-genetics models assume an unconstrained
model of mutation, where the expected difference in effect between a parental allele and a mutant allele
is independent of the current state of the parental allele. Our results show that models of this sort can
easily lead to biologically implausible consequences when mutations are biased. In particular, unconstrained
mutation typically leads to a continual increase or decrease in the mean allelic effects at all trait-controlling
loci. Thus at each of these loci, the mean allelic effect eventually becomes extreme. This suggests that
some of the models of mutation most commonly used in quantitative genetics should be modified so as
to introduce genetic constraints.

MANY mutations affect continuously distributed mean phenotypic value on the degree of mutational
traits such as height and weight (Lynch and bias is nonmonotonic. As such, under some conditions,

Walsh 1998) that are under stabilizing selection. Theo- increasing the extent of mutational bias can actually lead
reticians studying the evolution of continuously distrib- to a reduction in the deviation of the population’s mean
uted traits have generally assumed that, while some mu- phenotypic value from its optimal value.
tations tend to increase the value of a trait, others decrease We use a modified version of the model of mutation
it, and as a consequence, the average mutational effect that was originally introduced by Crow and Kimura
is zero (Bulmer 1980, 1989; Turelli 1984). Thus most (1964) and employed in a large number of important
theoretical treatments to date have assumed that muta- articles (e.g., Lande 1975; Turelli 1984). Biased muta-
tions do not tend to cause any directional change in tion of arbitrary degree was included in the model of
the mean value of a trait. In this sense, mutation has Crow and Kimura (1964) and investigated by Kimura
been assumed to be unbiased. There is, however, no (1965). Here we show that the analysis presented by
a priori reason to assume unbiased mutation (except, Kimura (1965) is mathematically inconsistent. In partic-
perhaps, for mathematical convenience). Furthermore, ular, we show that if this model incorporates mutational
experimental data suggest that, contrary to the hypothe- bias then the mean allelic effects do not equilibrate
sis of unbiased mutation, mutations do often affect the (as Kimura assumed). Instead, they tend to increase
mean value of phenotypic traits (Santiago et al. 1992; indefinitely in absolute value (the mean phenotypic
Lyman et al. 1996; Mackay 1996; Keightley and Ohni- value does, however, equilibrate). Thus over sufficient
shi 1998). There is thus a compelling rationale to inves- time, allelic effects can acquire extremely large magni-
tigate the impact of biased mutation. tudes. Furthermore, this tends to happen even if only

In this study, we have adopted a standard model of one locus, out of all of the loci affecting the trait, experi-
stabilizing selection, where an optimal value of the trait ences biased mutation, and the degree of bias of this
exists. We find that the dependence of the population’s locus is very slight. It is thus an implication of the results

presented here that one of the most commonly used
mathematical models of mutation is biologically implau-
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based on previous work by Zeng and Cockerham Generations are discrete, with all parents dying soon
after the birth of offspring. Some offspring die before(1993), and show that this does yield biologically plausi-

ble results, with the population approaching equilib- reaching reproductive maturity due to stabilizing viabil-
ity selection. We confine ourselves to parameter rangesrium at long times.

Consideration of biased mutation is common when for which selection is weak at the level of the trait (see
below). We can therefore employ a quadratic functionthe trait under consideration is fitness, as most research-

ers believe that the vast majority of fitness-altering muta- to describe stabilizing selection, following the example
of many authors including Kimura (1965) and Bulmertions cause a decline in fitness (Crow 1979; Kondra-

shov 1988; Keightley 1996). In addition, a few previous (1989). Thus an individual with phenotypic value z has
a probability of surviving viability selection that is pro-studies have also considered biased mutation in the

context of a continuously varying phenotypic trait (other portional to 1 � s*(z � zopt)2 (where s* � 0). The value
of s* is a measure of the strength of stabilizing selectionthan fitness) that is under directional selection (Kimura

1965; Iwasa and Pomiankowski 1991; Pomiankowski on phenotypes and individuals of optimal phenotype
have z � zopt. Note that the probability of survivinget al. 1991). In such models, mutational bias is expected

under directional selection, when favorable alleles achieve should be set to zero for values of z yielding 1 � s*(z �
zopt)2 � 0; however, for the parameter values consideredhigh frequencies. Here, however, we consider the effects

of bias under symmetrical stabilizing selection, and the in this work, the probability with which this occurs is of
order 10�9 and thus negligible for practical purposes.study that is closest to the work presented here was

published by Kimura (1965). Kimura’s analysis was re- Thus, the simple quadratic viability function is taken to
hold without restriction on z.stricted to a range of parameter values that are now

considered to be biologically implausible, at least for We focus, in this study, on the impact of relatively
weak selection: s* � 1. Under weak selection, a quadraticoutcrossing species. The analysis presented here focuses

upon the parameter range that is currently believed to selection function gives results that are very close to
those produced by a Gaussian selection function; how-be closest to biological reality for outcrossing species

(Lynch and Walsh 1998). ever, a quadratic function is, mathematically, more ame-
nable to analysis.

The preceding assumptions allow us to derive the
MODEL

effect of selection on the distribution of genotypic val-
ues. By averaging over environmental effects, it can beConsider a randomly mating population of dioecious

sexual organisms, with no sexual dimorphism. The pop- shown that the probability of survival for an individual
with genotypic value G is proportional toulation size is assumed to be sufficiently large such that

stochastic effects (genetic drift) can be ignored. Individ-
w(G) � 1 � s(G � zopt)2. (1)

uals are subject to selection on the value of a single
phenotypic trait. The phenotype of a particular individ- Here s � s*/(1 � s*) is a measure of the strength of

selection on genotypic values.ual is assumed to depend on the individual’s “genotypic
value,” G, plus a normally distributed environmental Gamete formation involves standard Mendelian seg-

regation and free recombination. The population mem-noise component, ε. Using z to represent an individual’s
phenotypic value, we have z � G � ε. The distribution bers that have survived viability selection—termed

adults—undergo random mating and proceed to pro-of ε is assumed to be independent of G and has a mean
of zero and a standard deviation of Ve. Following conven- duce new offspring.

Each of an individual’s 2n alleles is a copy of an alleletion and without loss of generality, we scale all variables
so that Ve is set to unity. present in one or the other of the individual’s parents.

The effect of an allele in an offspring is identical to thatIndividuals are diploid with n freely recombining loci
that additively affect the genotypic value. These loci are of the parental allele, of which it is a copy, unless a

mutation occurred during its production. The per-allelelabeled 1, 2, . . . , n. The DNA sequence of an allele
determines its effect on genotypic value, and the effects rate of mutation at locus i is denoted by �i, where 1 �

�i � 0. The expected number of new mutations thatof the maternally and paternally inherited alleles at lo-
cus i are denoted by xi and yi, respectively. affect the trait, per individual, per generation, U, is given

by U � 2�n
i�1�i.Following Crow and Kimura (1964) and many subse-

quent authors, we take the allelic effects to be continu- Let us now specify the mutation function. We have
chosen a relatively general formulation that encom-ous and to have an infinite range: ∞ � xi, yi � �∞.

Additivity in the determination of the genotypic value passes a number of previous approaches. In particular,
we make the usual assumptions that mutations to differ-leads to G � �n

i�1(xi � yi). Apart, possibly, from the ini-
tial generation, maternally and paternally inherited al- ent alleles occur independently and that mutant allelic

effects are continuously distributed (Crow and Kimuraleles have identical distributions. Because of this, we
need to refer only to the distribution of alleles of mater- 1964; Kimura 1965) and have a Gaussian form (Lande

1975; Bulmer 1980; Turelli 1984).nal origin.
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Let x represent the effect of a particular allele at locus In what follows, all summary statistics that describe
the population (phenotypic values, genetic variance,i in a particular offspring. Let x* represent the effect

of the parental allele from which the offspring allele etc.) are measured immediately after the birth of the
offspring and before any selection has taken place.was copied. If no mutation of the allele occurred in the

production of the offspring then x � x*. If a mutation
did occur, then the value of x is chosen from a normal

RESULTS
distribution with variance mi

2 and mean 	x* � bi, where
1 � 	 � 0. In other words, at locus i, the probability It has been possible to produce analytical approxima-

tions of the model in a number of relevant cases anddensity function for the allelic effects of new mutations
is given by these have been supplemented with numerical studies.

The appropriate analytical approximations depend on
the combination of parameter values. The standard ref-fi(x � 	x* � bi) � � 1

2
m 2
i

exp�� (x � 	x* � bi)2

2m 2
i

� .
erence on this subject (Lynch and Walsh 1998) sug-

(2) gests plausible ranges of the relevant parameters. In
particular, the following is thought to be likely for manyLet us consider the implications of this formula. If
(or most) quantitative traits:	 � 1 and bi � 0 for all values of i, then we have the

model of mutation most commonly used in quantitative i. The expected number of new mutations per genera-
genetics (e.g., Lande 1975; Turelli 1984). In this model tion per individual that affect the trait, U � 2�n

i�1
the mean mutant allelic effect is simply the effect of the �i, satisfies U � 0.05.
parental allele, x*. ii. The variance of mutant effects at any locus, mi

2,
Next, consider the case where 	 � 1 and bi � 0. In satisfies mi

2 � 1 (Lande 1975; Turelli 1984).
this case the distribution of mutants has a mean of x* � iii. The strength of selection on genotypic values, s,
bi and we can interpret bi as the bias introduced by satisfies s � 1 (Garcia-Dorado and Marin 1998).
mutation: on average, mutations at locus i change allelic iv. The strength of selection acting on allelic effects at
effects by an amount bi. We note that while Crow and any locus, i, is much stronger than the effects of muta-
Kimura (1964) and Kimura (1965) did not directly tion at the locus, such that �i /(smi

2) � 1 (Turelli
concern themselves with moments of the mutation dis- 1984).
tribution higher than two, they did allow the distribution

We assume that conditions i–iv hold. In addition, weto have a nonzero mean and thus implicitly incorpo-
assume that bias is not large compared with the strengthrated mutational bias into their calculations.
of selection, in the sense sb 2 � 0.05. As we shall see, allConsider now the case 	 � 1 and bi � 0. This model
behavior of interest occurs when b is substantiallyof mutation was initially formulated by Zeng and Cock-
smaller than the requirements of this inequality. There-erham (1993) and the distribution of mutants has a
fore this assumption does not place any important limi-mean of 	x*. The model incorporates the idea of genetic
tation on the scope of this work.constraints, so that very extreme allelic effects are un-

The results presented below apply when the preced-likely to arise as a cumulative consequence of mutation.
ing assumptions are met. See Table 1 for notation.Thus, even when selection is absent (s � 0), alleles with

Results for equivalent loci with � � 1: One case wherevery extreme effects will not become common in the
considerable analytic progress is possible is where 	 �population as a result of mutation. Instead, allelic effects
1 and all loci have identical parameter values governingwill remain clustered around zero. It does seem reason-
mutation. This is the case where the parameters �i, mi,able to incorporate some sort of genetic constraint. Oth-
and bi do not have any variation in value across loci. Weerwise one gets biologically implausible implications
refer to these universal values as �, m, and b, respectively.such as large populations yielding extremely large
It would be surprising to find a case of exactly equivalentamounts of phenotypic variation on traits that are not
loci in nature; however, as we shall see, results for theunder selection. Note that a special example of 	 � 1
case of equivalent loci are helpful in predicting theis the case 	 � 0 and this corresponds to the house-
outcome of other, more realistic, cases. In addition, inof-cards model of mutation (Kingman 1978).
one case (albeit a degenerate one) a lack of variationFinally, let us consider the case where 	 � 1 and bi �
in parameter values among loci automatically arises.0. This model is a combination of a Gaussian mutation
This is where only a single locus is under selection (n �model and Zeng and Cockerham’s (1993) regression
1). In the next section we consider equivalent loci withmodel. In this case the distribution of mutants has a
	 � 1 and again the value of the analysis is for themean of 	x* � bi. Thus bi can be interpreted as the
insight gained for more realistic cases.mean deviation of mutant alleles from 	x*. The model

For equivalent loci, with 	 � 1, we can produce esti-allows us to consider mutational bias in situations where
mates of summary statistics using the analysis presentedvery extreme allelic effects are unlikely to arise. Thus,
in Equivalent loci with 	 � 1 in the appendix. In particu-of the models discussed here, this combined mutation

model is the most realistic. lar, we estimate the equilibrium variance in genotypic
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TABLE 1 be most useful since all of its most important properties
are readily derivable from this expression.Glossary of main symbols used

To obtain an estimate of the error of the expressions
given above for VG, L, and z, we have compared the ana-Symbol Description
lytical results, given above, with highly accurate numeri-

bi Mutational bias at locus i cal results. The latter followed from numerical solution
b̃ Weighted average of mutational biases over all loci

of the equation of the appendix governing the distribu-D(�) The nonmonotonic function characterizing the
tion of allelic effects, Equation A1, using the methodmean phenotypic value
of Waxman (2003). We note that under the approxima-ε,Ve Environmental effect and its variance

fi Distribution of mutant allelic effects at locus i tions made in the appendix, VG and L simply follow
φi(xi) Distribution of allelic effects of maternal origin in from a sum over one-locus quantities, while z is inde-

offspring at locus i pendent of the number of loci, n. As a consequence the
	 Mutational regression parameter estimates of errors are effectively on one-locus quantities
G, G Genotypic value and its mean equilibrium value

and hence independent of n. With the plausible parame-L Genetic load
ter values � � 10�5, m � 0.2, and s � 0.025 (Turellimi Standard deviation of mutant allelic effects at
1984) and biases over the range 4 � b/m � 0, we havelocus i

�i Allelic mutation rate at locus i found that for VG, L, and z the difference between nu-
n Number of loci affecting the trait merical and analytical results is �3%.
s Strength of selection on genotypic values Note that an implicit assumption underlies the results
xi Allelic effect of maternal origin at locus i for the summary statistics presented above, for equiva-
xi Mean allelic effect of maternal origin in offspring

lent loci. This is that the distribution of allelic effects inat locus i
gametes (a function of the allelic effects at the n loci thatx, �(x) Vector of n allelic effects in gametes and its
affect the trait) eventually comes to equilibrium. Weequilibrium distribution

U Expected number of new mutations, per individual, have used numerical methods to test this assumption
per generation and the results are in accord with those from previous

VG Variance in genotypic values (genetic variance) studies (Phillips 1996). In particular, for all the cases
w(G) Proportional to the viability of offspring with of equivalent loci that we have numerically examined, the

genotypic value G
distribution of allelic effects in gametes does indeedz, z Phenotypic value and its mean equilibrium value
come to equilibrium. However, the “position” of thisin offspring
equilibrium—which is specified by the mean effects ofzopt Optimal phenotypic value
alleles at all n loci—depends on the initial distribution
of allelic effects.

Let xi be the mean equilibrium effect of alleles of
values, G, among offspring, VG, and also estimate the maternal origin, at locus i, in newborn offspring. It is
equilibrium genetic load, L � 1 � w, where w(G) is identical to the corresponding quantity of paternal ori-
given in Equation 1, w is its mean equilibrium value, gin. With z the mean equilibrium phenotypic value, as
and L is proportional to the fraction of the population given by Equation 3, it follows that any set of n mean
that fails to survive viability selection. The estimates allelic effects satisfying 2�n

i�1xi � z is a possible end
given in the appendix for VG and L are, to first order point of the dynamics (an equilibrium). In this sense,
in �, unaffected by the degree of bias, b, and thus, to the equilibrium is “neutral.” However, analysis in the
this order, identical to well-known approximations that appendix shows that given that an equilibrium is
have appeared in the literature (Lynch and Walsh achieved, and given mutationally equivalent loci, the
1998): VG � 2n�/s and L � 1 � w � 2n�. shapes of the distributions of allelic effects at all loci

We turn now to the behavior of the mean phenotypic (i.e., the marginal distributions of allelic effects) are
value. Our estimate of the equilibrium mean phenotypic identical. Thus, while the second and all higher central

moments of the allelic-effect distributions are the samevalue among offspring, denoted z, is given by
for all loci, the means of these distributions are generally
different.z � zopt �

�
smD� b

m� , (3)
Let us now consider the effects of bias, ignoring the

case b � 0, where mutation is unbiased and z � zopt.where From Equation 3 it follows that a finite positive b yields
a mean phenotypic value that is larger than the optimal

D(�) � e��2/2 �
�

0

e y 2/2dy (4) phenotypic value, i.e., z � zopt. When b is increased from
zero, initially z � zopt increases approximately linearly

and corrections to z in Equation 3 are O(�2). Note that with b. However, as b becomes larger the rate of increase
D(�) can be written in terms of special functions; how- in z � zopt declines until b reaches a critical value, and any

further increase in b produces a decrease in z � zopt. Forever, we have found the form given in Equation 4 to
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intriguing is the effect of the standard deviation of mu-
tant effects, m. The maximum possible deviation of z
from zopt is highest when m is small. Furthermore, since
D(b/m) reaches a maximum when b � 1.3m, we find
that the maximum deviation from the optimum occurs
when both the degree of bias and the standard deviation
of mutant effects are small. This intuitively makes sense
since when m and b are small, many mutant offspring
born to parents with nearly optimal genotypes will also
have nearly optimal genotypes. This allows for the sur-
vival of a large proportion of the mutants and for the
accumulation of biased mutations over the course of
many generations.

Results for equivalent loci when � � 1: When all the
Figure 1.—A plot, for mutationally equivalent loci, of the selected loci are equivalent, but 	 � 1, the preceding

deviation of the equilibrium mean phenotypic value, z, from results are modified and analysis covering this case is
its optimal value, zopt, as a function of mutational bias, b. The contained in Equivalent loci with 	 � 1 in the appendix.
latter is measured in units of the standard deviation of mutant

In particular, numerical investigation indicates that theeffects, m. The solid curve describes the case with regression
distribution of genotypes no longer simply comes to aparameter 	 � 1 and is based on Equation 3. The dashed

curve is for 	 � 0.2, i.e., covered by the case 	 � 1, and is neutral equilibrium. Instead, the distribution comes,
based on Equation 6. The parameter values common to both after some time, to a unique and stable equilibrium where
curves are � � 10�5, m � 0.2, s � 0.025, n � 10, and zopt � 3. mean allelic effects, xi, at all loci are uniquely deter-

mined. The equilibrium distribution is thus indepen-
dent of the initial distribution and equivalence of locisufficiently large values of b, the value of z � zopt is, to
results in the xi having identical values for all loci: xi �a good approximation, proportional to b�1. An example
zopt/(2n) � O(�). A unique equilibrium arises since aof this sort of nonmonotonic behavior is given in Fig-
regression parameter, 	 � 1, corresponds to an addi-ure 1.
tional evolutionary force in the system that directly cou-Results for b � 0 closely parallel those for b � 0 and
ples to the allelic effects. It destroys the property of thecan be determined from the latter from the relation
case with 	 � 1 that, at equilibrium, any sets of meanz(�b)�zopt � �[z(b)�zopt], which follows directly from
allelic effects, xi, that lead to the equilibrium value ofthe property D(��) � �D(�). This is apparent in Fig-
z are equally good candidates for an equilibrium.ure 1.

As far as summary statistics are concerned, we findNote that the maximum value of the function D(�),
that under the same analytical approximations used forof Equation 4, is given by Dmax � 0.77, a value that is
the case 	 � 1, and hence the same accuracy, the geneticindependent of all parameters. The maximum of D(�)
variance, VG, and genetic load, L, are, to leading orderoccurs when �D(�) � 1, i.e., when � � 1.31. The exis-
in the allelic mutation rate �, unaffected by the degreetence of a maximum of D(�) implies a definite limit to
of bias, b, and again given by VG � 2n�/s and L � 1 �the degree of deviation that biased mutation can cause
w � 2n�. Furthermore, the mean phenotypic value, z,in the equilibrium mean phenotype among offspring,
is now given byz, from the optimal phenotype, zopt. For the parameter

ranges specified previously, the absolute value of the
z � zopt �

�
smD�b � (1 � 	)zopt/(2n)

m � , (6)maximum deviation, in terms of phenotypic standard
deviations, is given by

where D(�) is given in Equation 4. Thus, there is still|z � zopt|max

√1 � VG

� 0.77
�

sm
1

√1 � 2n�/s
. (5) a nonmonotonic dependence of z upon the value of bias,

b. However, when 	 � 1, it is no longer the case that
[z(�b)�zopt] � �[�z(b)�zopt]. This is illustrated by theThe above equation indicates that the maximum possi-
dashed curve in Figure 1.ble absolute deviation of z from the optimum, not sur-

Results for nonequivalent loci for � � 1: We have,prisingly, becomes larger when � is increased or s is
so far, confined ourselves to consideration of casesdecreased, since both of these changes enhance the role of
where all the mutational parameters (�i, mi, and bi) aremutation relative to selection. The maximum deviation
the same at all loci. Let us now relax this assumptiondecreases as n increases because the equilibrium pheno-
by allowing variation among loci in the mutational pa-typic variation increases with the number of loci control-
rameters for the case 	 � 1. Analysis covering this caseling the trait, while |z � zopt|max is found to be indepen-
is contained in Nonequivalent loci with 	 � 1 in the appen-dent of n. Thus increasing n decreases the effect of bias,

when measured in phenotypic standard deviations. More dix. In particular, it is shown in the appendix that in
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2�n
i�1�i. As an example, for the parameter values used

in Figure 2 (see Figure 2 legend), the differences be-
tween the analytical predictions for VG and L and the
numerical results are �4%.

The result given in Equation 3 for the equilibrium
mean phenotypic effect, z, for equivalent loci with 	 �
1 may be used to estimate the corresponding quantity
when loci are not equivalent. The most straightforward
procedure is to evaluate Equation 3 at the mean values
of the mutational parameters �i, mi, and bi. As an illustra-
tion of this, we have compared the long-time value of
z of Figure 2 (which is the outcome of numerical solu-
tion) with Equation 3, evaluated at the mean values of
the mutational parameters used in Figure 2 (see Figure
2 legend). The difference between the two values ofFigure 2.—A plot of the mean allelic effects, xi (solid
z is found to be �1%.curves), as a function of time, in generations. The case illus-

Results for nonequivalent loci when � � 1: What aretrated is for four nonequivalent loci with 	 � 1. The dashed
curve shows the behavior of z/8 � G/8 � �4

i�1xi/4, where z the consequences of genetic constraint (	 � 1) when
is the mean phenotypic value. While the mean allelic effects loci are nonequivalent? This question is very difficult to
exhibit continuous change over the timescale of 106 genera- fully address although some progress is made in Non-tions, the mean phenotypic value settles down to its asymptotic

equivalent loci with 	 � 1 in the appendix. In particular,value on a much shorter timescale (on the order of 103 genera-
extensive numerical study strongly suggests that whentions). This figure was produced using a continuous-time ap-

proximation to the dynamical equations, which is highly accu- 	 � 1, the population comes to a unique and stable
rate for the parameter values given below. For all loci, allelic equilibrium. Thus when 	 � 1 we do not see the perpet-
effects were discretized, with a splitting (separation of adjacent ual turnover of alleles that occurs when 	 � 1 sinceallelic effects) of 0.04, and other parameter values adopted

mutational regression is evidently sufficient to stop turn-were s � 0.025, zopt � 0.267, [u1, u2, u3, u4] � [3.9, 2.4, 0.9,
over. We note that under the same approximations used1.1] 
 10�5, [m1, m2, m3, m4] � [0.15, 0.24, 0.11, 0.13], and

[b1, b2, b3, b4] � [0.13, 0.02, 0.15, 0.10]. The initial distributions in previous cases possessing an equilibrium, it is possible
of allelic effect were taken to be independent Gaussians, with to analytically determine that the genetic variance and
different means and different variances. genetic load are, to O(�), unaffected by mutational

bias, so VG � 2�n
i�1�i/s and L � 1 �w � 2�n

i�1�i. Further-
more, at each locus a distribution of allelic effects, char-

this more general case, we have an intriguing result: acteristic of that locus, always becomes established, and
the assumption that allelic distributions at all loci come this occurs regardless of the initial genotypic distribu-
to an equilibrium generally leads to a mathematically tion. For the mean phenotypic value, we are able to
inconsistent set of equations. Thus, in general, the popu- determine the approximate bound
lation cannot equilibrate when loci are nonequivalent and
	 � 1. |z � zopt|� 0.77 Mini � �i

smi� , (7)
Given this lack of attainment of equilibrium, what is

the long-time behavior? Numerical investigation for n �
which is independent of the value of 	 and again indi-1 mutationally nonequivalent loci shows the reason for
cates the highly limited extent to which mutational biasthe inconsistency mentioned above. Nonequivalent loci
can affect the mean phenotypic value.typically lead to a situation where the allelic distributions

Let b̃ denote the average of bi over all loci, weightedat every locus continue to change indefinitely. More
by the mutation ratespecifically, the typical long-term behavior is that at ev-

ery locus there is a roughly linear change in the value
b̃ � �n

i�1�ibi

�n
i�1�i

. (8)of the mean allelic value, xi, with time. This appears to
generally occur at a rate smaller than the mutation rate.
This is caused by a continual turnover of alleles at every Then the dependence of z on b̃ is qualitatively similar
locus, such that common alleles become rare and new to the nonmonotonic dependence of z on b that was
mutations multiply and become more common (see found for equivalent loci with 	 � 1; see Equation 6.
Figure 2). As an example, we have considered n � 4 loci, with a

Despite the turnover in alleles, when the inequalities substantial level of constraint, namely 	 � 0.2 and with
given above in the first paragraph of results apply, the mutation rates, �i, mutational standard deviations, mi,
numerical studies indicate that the genetic variance and and an optimal phenotypic value, zopt, that are identical
genetic load are reasonably close to the results that apply to those used in Figure 2 (see Figure 2 legend). We

have produced a number of sets of randomly generatedin the absence of bias: VG � 2�n
i�1�i/s and L � 1 � w �
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cus. If |b̃ |, the absolute value of b̃, is large, then, on
average, mutations tend to cause substantial directional
changes in trait values. If |b̃ | is small, then the average
effect of mutations on trait values is also small.

We have assumed that the values of the parameters
that describe the mutation process are within bounds
that are currently believed to be biologically realistic.
We have also assumed that, at every locus, the degree
of bias, |bi|, is not very large compared with the standard
deviation of mutational effects, mi. Under these assump-
tions, phenotypic variance and mean fitness are almost
unaffected by the value of b̃. On the other hand, the
deviation of the mean phenotype from the optimum,
|z � zopt|, is sensitive to the value of b̃. This dependency
turns out, however, to be nonmonotonic. While a smallFigure 3.—A plot, for mutationally nonequivalent loci, of

the deviation of the equilibrium mean phenotypic value, z, amount of bias (e.g., b̃ slightly in excess of zero) tends
from its optimal value, zopt, as a function of weighted muta- to move the value of z in the direction of the bias, a
tional bias, b (Equation 8). The latter is measured in units of point is always reached where any further increase inthe mean standard deviation of mutant effects, m, across loci.

the degree of bias will actually bring the value of z closerThe case illustrated is for four nonequivalent loci with 	 �
to zopt (see Figure 1 for the special case of equivalent0.2 with mutation rates, �i, mutational standard deviations,

mi, and an optimal phenotypic value, zopt, which are identical loci). Furthermore, for plausible parameter-value choices,
to those used in Figure 2 (see Figure 2 legend). The vertical and for all models of mutation studied here, the maxi-
bars give the values of z � zopt for 31 different sets of randomly mum-possible deviation of z from zopt is quite small:selected mutational biases of common sign (each set contains

�1% of a phenotypic standard deviation. The smallthe values of b1, b2, b3, and b4). For each set of mutational biases
effect of bias depends on the existence of just one opti-we calculate the value of b̃/m, and this determines the height

of each vertical bar. For comparison, the dashed curve is an mal phenotype, as assumed throughout this article. If
estimate of z � zopt motivated by the result for equivalent loci, multiple optima exist, then a small amount of bias may
Equation 6. In this equation, the values of � and m are taken as have very large long-term evolutionary effects (Yampol-arithmetic means, across loci, of the corresponding mutational

sky and Stoltzfus 2000).parameters.
The reason for the nonmonotonic response of z to

mutational bias is easiest to understand if one relaxes
mutational biases, [b1, b2, b3, b4] and plotted the long- one of the assumptions of the model and considers the
term values of z, in Figure 3, against the weighted aver- fate of mutations when the degree of bias is large at every
age of bias, b̃. For comparison, we have also plotted an locus (|bi| very large at all loci). The extreme degree of
estimate of z motivated by Equation 6: namely z � zopt � bias leads to an equilibrium mean phenotype, z, that is
(�/(sm))D(b̃/m � (1 � 	)zopt/(2nm)), where the values very close to zopt, at least among adults. In this case, the
of � and m are taken as arithmetic mean values of the reason is very clear. Nearly every mutation causes such
corresponding mutational parameters across loci. As is a large deviation from the optimum that it induces death
evident from Figure 3, the form forz given for equivalent before maturation. Thus, only nonmutant offspring
loci with 	 � 1 (Equation 6) provides a useful estimate tend to survive, and so the adults have a mean phenotype
of the results for loci that are genetically constrained that is very close to the optimum. When the values of
and mutationally nonequivalent. the bias parameters are smaller, not every mutation

induces fatality, and so mutant effects can accumulate
each generation. Thus, the effect of mutational bias

DISCUSSION
upon the equilibrium mean phenotype is largest when
the degree of bias takes on an intermediate value.In this study we have considered the evolutionary

consequences of a biased-mutation process that affects a Our claim that mutational bias cannot cause a large
deviation of z from zopt depends on our assumptiontrait that is undergoing stabilizing selection. Stabilizing

selection tends to bring the mean phenotypic value that the standard deviation of the mutant allelic effects
at locus i, namely mi, is not very small. This is embodiedcloser to the optimal phenotypic value (zopt). However,

when mutation is biased, the new mutations arising dur- in the assumption m2
i � �i/s. While the assumption of

a substantial value of mi is consistent with much of theing every generation tend to change the value of the
trait. The overall degree of bias in mutations (taking data on mutation, it should be recognized that very-

small-effect mutations are hard to identify, and so cur-all pertinent loci into account) can be characterized by
b̃, which is given in Equation 8 and is the weighted rent estimates of mi may be much too large (Turelli

1984; Lynch and Walsh 1998; Davis et al. 1999). Ifaverage of the degree of bias at each locus, with the
weighting determined by the mutation rate at each lo- many trait-affecting mutations have very small effects,
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then the mi may be much smaller than current estimates value of z � zopt �G � zopt is the outcome of a dynamical
balance between a term proportional to the additionalallow. The implication of small mi is that mutational bias

may have a substantial effect on z (see Equations 3, 6, selection coefficient that is induced because G � zopt �
0, namely 2s 
 VG 
 (G � zopt), and the mutationaland 7, but recall that these results have been derived

assuming the mi are not small). input into the mean phenotypic effect per generation,
2�n

i�1�ibi. Thus, under the neglect of skew, G � zopt isAnother point to keep in mind is that our analysis
applies to very large (effectively infinite) populations. given by �n

i�1�ibi/(sVG). Combining this with our (nu-
merically verified) finding that moderate mutationalIt is possible that the long-term impact of mutational

bias upon phenotype is greatly enhanced when popula- bias causes negligible change in the genetic variance
indicates that the mean phenotypic value at equilib-tion size is small. This is because of the action of genetic

drift. In a finite population mutations have dynamics rium, z, no longer behaves nonmonotonically as the
degree of bias is increased. Thus, ignoring skew leadsthat are similar to those of strictly neutral alleles if their

effect on fitness is small in comparison to the reciprocal to incorrect results. The behavior of the skew of the
distributions of allelic effects is also strongly implicatedof the effective population size (Crow and Kimura

1970). Thus, if the population size is sufficiently small in the continuous change in allelic effects exhibited
when there are nonequivalent loci with 	 � 1. Thus,and selection is sufficiently weak, then biased mutation

may be able to move the mean phenotype a considerable some of the more intriguing behavior produced by the
model depends on the skew in allelic distributions thatdistance from zopt before selection becomes sufficiently

strong to stop it. Furthermore, it seems possible that is induced by mutational bias.
Of course, a model that leads to ever-increasing (orthis enhanced effect of biased mutation will be seen

even if the population is very large, but is broken into ever-decreasing) allelic effects is obviously not biologi-
cally reasonable. There must be some constraint on thesmall subpopulations, which are weakly connected by

mutation. effect that alleles, at any given locus, can have on a trait.
Furthermore, biased mutation is known to occur in aIn the past, models of quantitative genetics have typi-

cally assumed that the mutation process is not affected variety of cases (Santiago et al. 1992; Lyman et al. 1996;
Mackay 1996; Keightley and Ohnishi 1998), and itby any kind of genetic constraint. This means, for exam-

ple, that the probability that a mutation will increase seems very unlikely that perfectly unbiased mutation is
a common phenomenon. These considerations lead tothe effect of an allele upon a trait is independent of

the premutation effect of the allele (this is the 	 � 1 case the conclusion that reasonable models of mutation for
quantitative trait loci must include some form of geneticof our model). Our results show that, when mutation is

biased, a lack of genetic constraint typically (i.e., with constraint. The only reason that unconstrained muta-
tion models, such as Crow and Kimura’s (1964) classicnonequivalent loci) leads to the evolution of ever-more-

extreme allelic values at every locus that affects the trait. model, have been used in previous studies, without
much difficulty, is that these studies either have madeThis is so even if the degree of bias is very small and even

if mutation is biased at only one locus, with mutations the biologically unlikely assumption of strictly unbiased
mutation or have not addressed the inconsistency ofat all other loci being unbiased. The reasons for this

continuous change in allelic effects lie within the nonlin- assuming an equilibrium (this inconsistency of equilib-
rium is addressed in the appendix).ear mathematics describing the problem. However, we

note that the neutral equilibria, described in Equivalent In this study, we incorporated a simple model of ge-
netic constraint that was suggested, in the absence ofloci with 	 � 1 in results, lie at the heart of the phenom-

enon. It is evidently the case that for nonequivalent loci bias, by Zeng and Cockerham (1993). The degree of
constraint is characterized by the parameter 	. If 	 �with 	 � 1, the neutral equilibria acquire dynamical

behavior at the level of the alleles, which themselves are 1, then there is no constraint, while 	 slightly �1 means
that genetic effects can become quite extreme beforenot directly under selection but which underlie the trait.

However, there is no manifestation of this dynamical genetic constraint has much effect on the distribution
of mutants. If 	 � 0, then the degree of constraint isbehavior at the level of the trait—which is directly under

selection. maximal, and parental allelic values have no effect on
mutant allelic values (this is the house-of-cards modelFurther insight into the processes responsible for the

various results can be obtained by considering the de- of Kingman 1978).
We found that, whenever 	 � 1, allelic effects tendtails of the analysis, as presented in the appendix. We

note, however, that biased mutation generally induces to come to an equilibrium. The equilibrium distribution
of allelic effects at each locus appears to be independentskew into the distributions of allelic effects, with each

distribution generally asymmetric about its mean. One of initial conditions. However, if the degree of constraint
is not very large (	 slightly �1), then, at equilibrium,exercise that is particularly instructive is to try to simplify

the analysis, for the case 	 � 1, by ignoring skew in the when there are more than one nonequivalent loci, the
allelic effects at each locus tend, generally, to be ratherdistributions of allelic effects that become established

at long times. With the neglect of skew, the equilibrium extreme. This is because extreme effects at one locus
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�(x). Numerical results are in accordance with this,
Communicating editor: M. W. Feldman except in the case of nonequivalent loci with 	 � 1 and for

this case we provide, below, a nonequilibrium analysis.
The approximation of global linkage equilibrium (Bul-

APPENDIX
mer 1989; Turelli and Barton 1990) leads to �(x),
being given by �(x) � �n

j�1φj(xj). Here φj(xj) is the equi-Here we provide the theoretical background to the
results presented in the main body of the article. We librium distribution of allelic effects of maternal origin

at locus j in offspring (it is identical to the distributionadopt the convention that unless specified to the con-
trary, all integrals range from �∞ to ∞. of allelic effects of paternal origin at the same locus)

and is a nonnegative and normalized function: φj(xj) �In the model (of which a full description is given in
the main text), viability of individuals of genotypic value 0, �φj(x)dx � 1. The distribution φj(xj) obeys an effective

one-locus haploid equation that arises by integratingG, namely w(G), has been taken as a quadratic function
of G rather than as alternatives such as a Gaussian func- the equilibrium equation for �(x) over allelic effects

of all loci, with the exception locus i. The effectivetion. Nevertheless, if the strength of selection is small
enough to satisfy sm2

i � 0.05, then there is not a substan- haploid equation reads
tial difference between results calculated from a

s 	(xi � G � zopt � xi)2 � (xi � G � zopt � xi)2
φi(xi)Gaussian w(G) and those calculated from its quadratic
approximation. In particular, we have considered the

� �i φi(xi) � �i�fi(xi � 	u � bi)φi(u)du � 0. (A1)typical magnitude of the quartic term that is omitted in
a quadratic approximation to a Gaussian w(G). We esti-

Here an overbar denotes an average of the respectivemate that summary statistics, such as the mean pheno-
quantity over the distribution in zygotes, for example,typic value, the genetic variance, and the genetic load,
G � 2�n

i�1�xi�(x)dnx � 2�n
i�1�xiφi(xi)dxi � 2�n

i�1xi. Thediffer by �10% between the results calculated from a
quantity G � xi appearing in Equation A1 represents aGaussian w(G) and its quadratic approximation.
genetic background contribution that arises from all allelesIn all of the analysis of this work, we have followed
except one of the alleles at locus i. The quantity �i isthe classic treatments by making the approximation of
the allelic mutation rate of locus i and fi(xi � 	u �global linkage equilibrium (Turelli and Barton 1990).
bi) is the distribution of mutant allelic effects given inThis holds to good accuracy when selection is weak in
Equation 2 of the main text.the sense sVG � 1 where VG is the genetic variance (Bulmer

Equation A1 coincides, in form, with the equilibrium1989). We have numerically investigated the validity of
equations of Kimura (1965). It has the same generalthe approximation of linkage equilibrium by numerical
form as Equation 20 of Bulmer (1989) and Equationiteration of the full dynamical equations of a two-locus
2.11 of Turelli (1984), when the latter is specializedmodel with 17 discrete-effect alleles at each locus and
to a quadratic fitness function, and terms of order �i 
thus in excess of 4 
 104 different possible genotypes.
(selection coefficient) are neglected because allelic mu-This model is a direct discretization of the biased contin-
tation rates are small and selection is weak.uum-of-alleles model of mutation at the center of this

We can write Equation A1 in the useful formwork. We adopted typical parameter values for the simu-
lations (�1,2 � 10�5, m1,2 � 0.2, s � 0.025, b1,2 � m1,2, 	 �
0.9) and iterated the full dynamical equation for �106 φi(xi) �

�i

s
�fi(xi � 	u � bi)φi(u)du

(xi � G � zopt � xi)2 � �2
i

, (A2)
generations. The levels of linkage disequilibria ob-
served, as measured by the correlation x1x2 � x1 x2, were

where �2
i � �i/s � (xi � G � zopt � xi)2. Noting that�10�3 of the allelic variances, (xi � xi)2, at either locus

fi(x) � fi(0) it follows, from Equation A2 and normaliza-in either the presence or the absence of bias. This is in
accordance with what we should theoretically expect: tion of φi(xi), that �i � √
/2 
 �i/(mis). It is the small-

ness of �i, compared with mi, that lies at the heart ofthe level of linkage disequilibrium generated by selec-
tion between any two unlinked loci depends on the the house-of-cards approximation (Turelli 1984). The

house-of-cards approximation applies when the strengthproduct of the variances of allelic effects of the two loci
(see, e.g., Equation 32 of Waxman 2000). Under the of selection acting on allelic effects at any locus is much

stronger than the effects of mutation at the locus, i.e.,house-of-cards approximation (see below), allelic vari-
ance changes negligibly due to mutational bias, and when �i/(sm2

i ) � 1 (which is equivalent to �i � mi).
When this condition applies, the variance of mutanthence the level of pairwise linkage equilibrium changes

negligibly due to mutational bias. Thus the estimates in allelic effects is large compared with the equilibrium
variance of allelic effects. Thus the allelic effect of athe literature for the very low levels of linkage disequilib-

ria remain equally valid in the presence of bias. mutant is virtually unrelated to the parental allelic ef-
fect, and this is very similar to the exact behavior ofLet us proceed with the analysis, under the assump-

tion that the distribution of allelic effects in gametes the house-of-cards mutational model of Kingman (1978),
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hence the name of the approximation. In the problem is given by (xi � xi)2 � �/s, i.e., independent of locus
label, i, and unchanged from its unbiased (b � 0) value.under consideration, we implement the house-of-cards

approximation by replacing �f(xi � 	u � bi)φi(u)du in As a consequence, the genetic variance and genetic load
are, to leading order in �, unchanged from their unbi-Equation A2 by f(xi � 	xi � bi), leading to
ased values: VG � 2n�/s and L � 1 � w � 2n�.

Note that in the above calculations, the mean allelicφi(xi) � �i

s
fi(xi � 	xi � bi)

(xi � G � zopt � xi)2 � �2
i

, (A3)
effects, xi, do not appear in the final results and as a
consequence are not determined by the equilibriumand the requirement of normalization determines the
calculations. This is an exact property of Equation A1value of �i. for equivalent loci and 	 � 1. It may be seen to followWe now investigate Equation A3 for some particular
from the change of variable y � xi � G � zopt � xi , whichcases.
eliminates xi from the equation. This property is a mani-Equivalent loci with � � 1: Consider the case where
festation of the fact that in a dynamical calculation, the

	 � 1 and all loci are mutationally equivalent; i.e., at
constant values the xi achieve at long times are depen-loci affecting the trait, allelic mutation rates, mutational
dent on initial data and numerical solution of the dy-variances, and mutational biases are all given by �, m,
namical equations exhibits this feature.and b, respectively. Then Equation A3 takes the form

Equivalent loci with � � 1: When 	 � 1, and all loci are
mutationally equivalent, the approximate distribution

φi(xi) � �

s
f(xi � xi � b)

(xi � G � zopt � xi)2 � �2
(A4) φi(xi), following from (A3), takes the form φi(xi) � (�/

s)f(xi � 	xi � b)[(xi � G � zopt � xi)2 � �2]�1. Following
(we omit the subscript i, on �, in the case of equivalent closely the analysis for the case of equivalent loci with
loci). We proceed by multiplying Equation A4 by (xi � 	 � 1, we find
G � zopt � xi) and integrating over all xi. Using the
substitution y � xi � G � zopt � xi leads to G � zopt � G � zopt � �

2s � f(y � (1 � 	)xi � b) � f(y � (1 � 	)xi � b)
y dy

(�/s)�y(y2 � �2)�1 f(y � G � zopt � b)dy. Combining
(A7)the integral with the integral with y → �y yields

and a variance in allelic effects of (xi � xi)2 � �/s �
G � zopt � �

2s � y
y2 � �2

[f(y � G � zopt � b ) � f(y � G � zopt � b )]dy.
O(�2). Thus genetic variance and genetic load are, to

(A5) leading order in �, unchanged from their unbiased
values: VG � 2n�/s and L � 1 � w � 2n�.

In this form, we make two additional, but well-controlled Note that for equivalent loci but with 	 � 1, the xi
approximations that lead to errors in G � zopt of O(�2). cannot be eliminated from the equations by a coordi-
The first approximation is to neglect �2 within the inte- nate transformation (unlike the case where 	 � 1). In
gral. The rationale is that when |y| � �, the presence particular, xi appears explicitly in Equation A7 and nu-
of � is irrelevant. Furthermore, when y � � we can esti- merical results verify that all xi are uniquely specified at
mate, by Taylor expanding f(y � G � zopt � b) � f(y � equilibrium.
G � zopt � b) to linear order in y, that neglecting �2

Equation A7 holds for i � 1, 2, . . . , n and it is
results in an error of O(��) � O(�2). Thus neglect of plausible that the equilibrium mean allelic effects, xi,
�2 is well justified in Equation A5. The second approxi- are equal at all loci and given by G/(2n) and this is
mation is to note that G � zopt is, by Equation A5, O(�) numerically confirmed in all cases considered.
and hence neglecting G � zopt where it appears on the Since Equation A7 yields G � zopt � O(�) we can
right-hand side of Equation A5 again leads to errors in replace xi � G/(2n) on the right-hand side of Equation
G � zopt, on the left-hand side, of O(�2). As a consequence, A7) by xi � zopt/(2n). This introduces only errors of
the mean phenotypic value, z, which coincides with the O(�2) in G � zopt and using Equation 4 we obtain Equa-
mean genotypic value, G, is given by z � zopt � �(2s)�1

tion 6 of the main text—which is simply Equation 3 of�y�1 [f(y � b) � f(y � b)]dy. Manipulations of this
the main text with the “regression correction” b → b �

integral show
(1 � 	)zopt/(2n).

Nonequivalent loci with � � 1: In the case where 	 �1
2 �f(y � b) � f(y � b)

y dy �
1
mD� b

m� , (A6) 1, and loci are not mutationally equivalent, the approxi-
mate distribution φi(xi), following from (A3), takes the
form φi(xi) � (�i/s)fi(xi � 	xi � bi)[(xi � G � zopt �where D(�) is given by Equation 4 of the main text. In

this way we arrive at Equation 3 of the main text. xi)2 � �2
i ]�1. Proceeding as previously, we find numeri-

cally that the xi are not indeterminate and making theAn additional result follows by multiplying Equation
A4 by (xi � G � zopt � xi)2, integrating over all xi, and same approximations as previously, we find (xi � xi)2 �

�i/s � O(�2) so VG � 2�n
i�1�i/s, L � 1 � w � 2�n

i�1�i,neglecting �2, as justified above. This shows that, to lead-
ing order in �, the allelic variance at any locus, (xi � xi)2, and
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the role of an eigenvalue of £. The eigenfunction of £,z � zopt � �i

2s � fi(y � (1 � 	)xi � bi) � fi(y � (1 � 	)xi � bi)
y dy

namely �i(y), can be a function of only the parameters
appearing in £; thus we explicitly indicate this depen-

� �i
smi

D�bi � (1 � 	)xi
mi � , (A8) dence by writing �i(y) � �(y; �i/s, mi, bi). Next we note

that from the definition of y, it follows that �y�(y; �i/
where D(�) is given in Equation 4. While similar in form s, mi, bi)dy � G � zopt. Because the right-hand side of
to the result for equivalent loci with 	 � 1 (Equation this equation is independent of the locus label i, it
6), we note that Equation A8 is substantially more compli- follows, for arbitrary locus labels i and j, that �y�(y; �i/
cated since there is no simple approximation for the s, mi, bi)dy � �y�(y; �j/s, mj, bj)dy and here the contradic-
xi. To determine the xi, it is necessary to simultaneously tion appears. The parameters �i/s, mi, and bi appearing
solve the set of equations, Equation A8 for i � 1, 2, . . . , on the left-hand side of this equation are completely
n, supplemented withz � G � 2�n

i�1 xi. This is generally independent of the parameters �j/s, mj, and bj appearing
nontrivial because D(�) and hence the set of equations on the right-hand side. Furthermore, the values of the
are nonlinear. Despite this, it is possible to draw a gen- parameters �i/s, mi, and bi generally affect various aspects
eral conclusion from Equation A8. Noting that |D(�)| � of the eigenfunction, �(y; �i/s, mi, bi), including its first
Dmax � 0.77 we have, from Equation A8, |z � zopt| � moment �y�(y; �i/s, mi, bi)dy. Thus for an arbitrary
0.77�i/(smi) and since this holds for i � 1, 2, . . . , n choice of any two loci, i and j, we generally have �y�(y;
we have the approximate bound |z � zopt| � 0.77 Mini(�i/ �i/s, mi, bi)dy � �y�(y; �j/s, mj, bj)dy. We conclude that
(smi)), which is independent of 	. the assumption of equilibrium in the case of nonequiva-

Nonequivalent loci with � � 1: The case we have not lent loci with 	 � 1 leads to contradictions and cannot
yet dealt with concerns nonequivalent loci with 	 � 1. generally hold. We have numerically investigated the
Numerical work for this case indicates that time-inde- case under consideration under the assumption of link-
pendent mean allelic effects, xi, are not obtained at long age equilibrium and also for multilocus models that
times. Thus the distribution of allelic effects in gametes do not neglect linkage equilibria. We have found that
does not approach an equilibrium solution at long times generally a lack of equilibrium is manifested at long
and analysis of this case cannot be approached from times: some mean allelic effects become large and posi-
the equilibrium equation, (A1). tive while others become large and negative, in what

It is possible to see the inconsistency of assuming that appears to be an asymptotically linear manner over time.
an equilibrium exists, by first taking Equation A1 to be However, the distribution of phenotypic values does, to
applicable and then showing that a contradiction fol- numerical accuracy, equilibrate at long times. In partic-
lows from this assumption. Proceeding in this way, we ular, the mean phenotypic value, z, does come to equi-
change variables in Equation A1, with 	 � 1, from xi to librium, meaning the sequences of allelic substitutions
y � xi � G � zopt � xi. Writing �i(y) � φi(xi) we find at different loci, to alleles of progressively larger abso-
�i(y) obeys £�i(y) � ��2�i(y), where £ is a linear opera- lute effects, compensate each other so that at long times
tor defined by £�i(y) � y2�i(y) � (�i/s)� fi(y � u � bi)�i there is no phenotypic manifestation of this allelic turn-

over.(u)du. Furthermore, ��2 � �y2�i(y)dy � (�i/s) plays


