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Abstract

We investigate a model that describes the evolution of a diploid sexual population in a changing environment. Individuals have

discrete generations and are subject to selection on the phenotypic value of a quantitative trait, which is controlled by a finite number of

bialleic loci. Environmental change is taken to lead to a uniformly changing optimal phenotypic value. The population continually

adapts to the changing environment, by allelic substitution, at the loci controlling the trait. We investigate the detailed interrelation

between the process of allelic substitution and the adaptation and variation of the population, via infinite population calculations

and finite population simulations. We find a simple relation between the substitution rate and the rate of change of the optimal

phenotypic value.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The evolution of populations rarely, if ever, takes place
in a static environment. Apart from purely abiotic changes
of a physical environment, there may also be changes due
to the interaction of a population with other populations
(Van Valen, 1973; or, for recent developments, see
Gavrilets, 1997). Evolution is thus inexorably influenced
by a changing environment and this may have implications
for a variety of subjects including the evolution of sex
(Maynard Smith, 1978; Waxman and Peck, 1999; Bürger,
1999). In the present work, we consider a population
characterized by a single quantitative trait that possesses an
optimal phenotypic value, because it is subject to stabiliz-
ing selection. Following previous initiatives, we model
environmental change by a constant rate of change of the
optimal phenotypic value (see e.g. Charlesworth, 1993;
Bürger and Lynch, 1995; Waxman and Peck, 1999; Bürger,
1999). The present work has the closest relation with the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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work of Waxman and Peck (1999), which dealt with a very
large (effectively infinite) population of individuals. In that
work it was found that a steady-state situation became
established, where the population tracks (with a lag) the
changing environment. It was also found that there were
extremely large enhancements in the genetic variance
associated with very modest rates of environmental change.
Indeed, from the first two columns of Table 1 of the paper
by Waxman and Peck (1999), which applies for 10 diploid
loci, it may be inferred that in a sexual population,
changing the optimal phenotypic value by a small amount,
e.g. 0.01% or 0.1% of an environmental standard
deviation, each generation, leads to the genetic variance
being increased to 450% or 1400% of its value in a static
environment. These very large increases indicate a sig-
nificant sensitivity (or lack of robustness) of the genetic
variance to a changing environment. Indeed, because of
this, we can conclude that the knowledge of just the
strength of selection and the size of mutation rates may not
be sufficient to predict the level of genetic variance of a
population.
The increase in the genetic variance, referred to above,

must, ultimately, originate from processes of allelic
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Table 1

Comparison of the prediction, that the mean time interval between

substitutions is r�1 ¼ 2m=a, (as follows from Eq. (6)), with the results of

numerical simulation

a r�1 ¼ 2m
a

Time interval (simulation):

Mean � standard deviation

0:5� 10�4 8:0� 103 ð7:7� 2:3Þ � 103

1:0� 10�4 4:0� 103 ð4:2� 1:3Þ � 103

2:0� 10�4 2:0� 103 ð1:9� 1:6Þ � 103

3:0� 10�4 1:3� 103 ð1:2� 0:6Þ � 103

The quantity a is the rate of change of the optimal phenotypic value and m

is the scale of allelic effects of all loci. In the simulations, the population

size was 10 000 individuals, with each adult producing a mean number of

1.5 offspring each generation. Parameter values adopted were: u ¼ 10�5,

m ¼ 0:2, �jZopt;0j ¼ �3 and V s ¼ 21 (see text for a description of these).
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substitution, as the population continually adapts to the
changing environment. The work of Waxman and Peck
(1999) was made in the framework of a continuum of
alleles model (Crow and Kimura, 1964; Kimura, 1965),
which assumes a very large number of alleles at any locus.
In the present work, we investigate the detailed interrela-
tion between the process of allelic substitution and the
adaptation and variation of a population in a changing
environment. Accordingly, we consider a model where the
substitution process is more transparent than one with
many alleles available at each locus, and the simplest and
most transparent of such models has only two alleles at any
locus. As we shall see, such work may have relevance to
recent work on genetic variation in Drosophila melanoga-

ster by Gardner et al. (2004).
2. Model

We consider a panmictic population of sexual organisms
that are diploid and dioecious. The lifecycle of the
population, that takes place in discrete generations, is: (i)
random union of gametes to form zygotes, (ii) maturation
to adulthood, with viability selection, (iii) production of
gametes by Mendelian segregation; mutation is taken to
occur during gamete production, (iv) death of adults.
Census is made at the zygotic stage and at this time, the
population is in Hardy–Weinberg equilibrium.

Individuals do not exhibit any sexual dimorphism, and
are characterized by a single phenotypic trait that is
additively controlled by the effects of 2n alleles at n

unlinked loci. At locus jð¼ 1; 2; . . . ; nÞ we take there to be
only two possible alleles. We label these as Bj and bj, and
they, respectively, contribute mj=2 and �mj=2 to the value
of the trait, where mj40. We shall sometimes refer to mj as
the scale of allelic effects of locus j. The phenotypic value
of the trait, Z, consists of a sum of its genotypic value, G,
and a statistically independent random environmental
effect �, thus Z ¼ G þ �. An individuals genotypic value
is given by

G ¼
Xn

j¼1

mjðxj þ yjÞ=2, (1)

where xjðyjÞ is a variable indicating the state of locus j of
maternal (paternal) origin and only takes the values �1.
Thus G is restricted to the range

Pn
j¼1 mjXGX�

Pn
j¼1 mj.

The random environmental effect, �, is normally distrib-
uted with mean zero. Following convention, an overall
scale of units for various quantities is chosen, so that � has
a variance unity.
The values of xj and yj are, for all j, assumed to be

identical to the parental values unless a mutation occurs in
the production of gametes. We assume mutations occur
independently to different alleles and that the rate (i.e.
probability) of mutation at locus j, between Bj and bj in
either direction, is uj.
Fitness is taken to be determined entirely by Gaussian

stabilizing viability selection on the phenotypic value of the
trait. The relative fitness of individuals of genotypic value G

arises from an average of viability over environmental
effects (see e.g. Turelli, 1984 or Bulmer, 1989) and is given
by

wðGÞ ¼ exp½�ðG � ZoptÞ
2=ð2VsÞ�, (2)

where V�1s ð40Þ is a direct measure of the intensity of
selection on genotypic values of the trait and Zopt is the
optimal phenotypic value (and also the optimal genotypic
value).
In what follows, we shall assume weak selection
ðV�1s 51Þ, as is often observed in naturally occurring
populations (Turelli, 1984). Identical or very closely related
models have been studied by Wright (1935), Barton (1986),
Maynard Smith (1988), Bulmer (1989) and a number of
other authors.

3. Change in the optimal phenotypic value

Let us return to the properties of selection. As we have
said in the Introduction, the optimal phenotypic value,
Zopt, may be influenced by interactions of the population in
question, with other populations or by the physical
environment. As a consequence, Zopt generally depends
on time, t, and we take

ZoptðtÞ ¼
�jZopt;0j; tp0;

�jZopt;0j þ at; t40:

(
(3)

This corresponds to the optimal phenotypic value having a
fixed negative value of �jZopt;0j for times tp0 (i.e.
corresponding to a static environment), while for times
t40, the optimal phenotypic value changes at a constant
rate of a per generation. By virtue of the choice of units
adopted (that ensure the variance of the environmental
effects is unity) the quantity a represents the change in the
optimal phenotypic value, in units of the standard deviation

of environmental effects.
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Analytical studies of related asexual models, where there
are many discrete effect alleles possible at each locus are
given in the work of Broom et al. (2003).
4. Results for an infinite population

We first consider a very large, effectively infinite
population, where effects of random genetic drift are
negligible. We neglect linkage disequilibria. Investigations
of the full multilocus problem in static environments
indicate that neglect of linkage disequilibria is a very
reasonable approximation when selection is weak (see e.g.
Bulmer, 1989; Turelli and Barton, 1990). In a changing
environment, this neglect of linkage disequilibria requires
some discussion. The analysis presented by Bulmer (1974)
for the infinitesimal model (see also Waxman, 2000)
indicates that the chief effect of linkage disequilibria, when
selection is stabilizing, is the production of negative
correlations that reduce the genetic variance. The frac-
tional reduction in genetic variance is proportional to
VG=Vs where VG is the instantaneous genetic variance
(strictly, we should use the genic variance—the genetic
variance when calculated assuming linkage equilibrium)
and V�1s is the intensity of selection on genotypic
values (V�1s appears in Eq. (2)). The values we find for
VG, below, indicate that linkage disequilibria have
only a very small effect on the genetic variance, of order
1%, and hence can reasonably be neglected. Bulmer’s
result is likely to be an overestimate of the effect of
linkage disequilibria, when the optimum is moving,
since the lag of the mean trait value, behind the optimal
trait value, means selection has a directional aspect to it.
Indeed, if fitness can be approximated as an exponential
function of trait values, then such a function is multi-
plicative across loci, and does not produce any linkage
disequilibria.

A consequence of Hardy–Weinberg equilibrium
and the neglect of linkage disequilibria, is the statistical
independence of all alleles both across and between
loci.

Let pjðqj � 1� pjÞ denote the frequency of the allele
BjðbjÞ of maternal origin at locus j in a particular
generation and p0jðq

0
jÞ the corresponding frequency in the

following generation. Apart, possibly, from the initial
generation, the frequency of paternal origin alleles coin-
cides with that of maternal origin and we shall henceforth
assume this.

Given that the intensity of selection, V�1s , is small, the
analysis presented in e.g. Bulmer (1989) then applies. Let
p ¼ ðp1; p2; . . . ; pnÞ denote the set of frequencies of the B

allele at the different loci. The dynamical equations
determining the change of allele frequencies can be written
for j ¼ 1; 2; . . . ; n as

p0j ¼ pj þ
1

2
pjqj

q
qpj

FðpÞ, (4)
where, equivalent to Eqs. (9) and (13) of Bulmer (1989), we
may take

FðpÞ ¼ lnðE½wðGÞ�Þ þ
Xn

j¼1

2uj ln½pjð1� pjÞ�. (5)

The first term in FðpÞ arises from selection and involves
E½wðGÞ�, which denotes the mean (or expected value) of
relative fitness, while the second term arises from mutation.
With E½G� and V G denoting the mean genotypic effect

and the genetic variance, we establish, in Appendix A, that
when V G=Vs51 and ðE½G� � ZoptÞ

2=V s51, it is a good
approximation to replace lnðE½wðGÞ�Þ in Eq. (5) by
E½lnðwðGÞÞ� (which is given in Eq. (11) of Appendix A).
Since V Gpnm2=2, where m2 ¼

Pn
j¼1 m2

j =n is the mean
square scale of allelic effects, the condition VG=V s51 can

be expressed as nm2=ð2VsÞ51. As typical parameter-

values, we take n ¼ 10,
ffiffiffiffiffiffi
m2

p
¼ 0:2, uj�10

�5 and Vs ¼ 20

(Turelli, 1984; see also Lynch and Walsh, 1998, Chapter

12) so V G=Vs51 is well satisfied. The value of
ffiffiffiffiffiffi
m2

p
adopted corresponds to a standard deviation of mutant
effects of order 0.2. Additionally, for the parameter values
adopted we have found that virtually all variation in allele

frequencies (the pj) occurs where ðE½G� � ZoptÞ
2=V s51 and

hence using E½lnðwðGÞÞ� in place of lnðE½wðGÞ�Þ is justified.
The explicit form of Eq. (4) may be found by carrying out
the differentiations in this equation and coincides with the
sum of Eqs. (12) and (13) of Bulmer (1989).
When Zopt has a constant value, Barton (1986) has found

that there are multiple equilibrium solutions of Eq. (4) and
that these have different genetic variances associated with
them. This indicates that the interplay between selection
and mutation, in this biallelic system, results in multiple
equilibria; there is more than one local maximum of FðpÞ of
Eq. (5). The same nonlinear forces manifest themselves
when Zopt changes with time, according to Eq. (3), leading
to a complex dynamical behaviour of the allele frequencies
(the pj).
It is tempting, as a first approach, to consider the case of

equivalent loci (also called interchangeable loci), where the
scale of allelic effects at all loci are identical: mj ¼ m and
where there are the same allelic mutation rates at all loci:
uj ¼ u. For this case, we iterated the dynamical equation,
Eq. (4) from a large negative time, �T , and took �jZopt;0j

sufficiently negative that up to time t ¼ 0, only b alleles
were selectively favourable at every locus. Provided �T

was sufficiently large and negative, it was found that
irrespective of the initial state of the population, all loci
were essentially fixed at the b allele (i.e. all qj ’ 1), by the
time t ¼ 0 was reached. As a consequence of this and the
equivalence of all loci, all allele frequencies were completely
synchronized for times t40. The result for the allele
frequencies is displayed in Fig. 1.
We view this as a spurious synchronization of allelic

effects that is not of biological interest. It arises from
the extreme symmetry of the problem: the complete
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Fig. 1. The frequencies pj of the B alleles at the 10 different loci are

plotted against time t. The figure was produced by numerically iterating

the dynamical equation, Eq. (4). The parameter values adopted were:

u ¼ 10�5, a ¼ 10�4, �jZopt;0j ¼ �3 and Vs ¼ 21. The scale of allelic effects

were taken as mj ¼ 0:2, for all j. The results displayed are for the allele

frequencies after transients have died away and so for the initial time

shown, t ¼ �2� 104, all pj were close to 0. All allele frequencies are

synchronized.

Fig. 2. The frequencies pj of the B alleles at the 10 different loci are

plotted against time t. The figure was produced by numerically iterating

the dynamical equation, Eq. (4). The parameter values adopted were:

u ¼ 10�5, a ¼ 10�4, �jZopt;0j ¼ �3 and Vs ¼ 21. The scale of allelic effects

at different loci (the mj), were independently drawn at random from

uniformly distributed numbers over ½0:15; 0:25�. The results displayed are

for the allele frequencies after transients have died away. For the earliest

time shown, t ¼ �2� 104, all pj were close to 0.

Fig. 3. The mean genotypic effect, E½G�, is plotted against time (solid

line). The figure was produced by numerically iterating the dynamical

equation, Eq. (4) and corresponds to the allele frequencies of Fig. 2.

Parameter values are those given in Fig. 2. Also plotted in the same figure

is the optimal phenotypic value, Zopt (dashed line). The genotypic values

of the trait range from approximately �2 to 2. When the optimal

phenotypic value lies within this range, the population tracks the changing

optimum, with a small but non-zero lag: E½G�oZopt.

Fig. 4. The genetic variance, VG, is plotted against time. The figure was

produced by numerically iterating the dynamical equation, Eq. (4), and

corresponds to the allele frequencies of Fig. 2. Parameter values are those

given in Fig. 2. The horizontal row of black dots represent the times at

which different substitutions occurred. There should be 10 dots visible,

corresponding to substitutions at the 10 loci, however some of the dots

overlap, since some substitutions occurred within a very short time of one

another.
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equivalence of all n loci and the fact that all B alleles had
identical frequencies at time t ¼ 0. Indeed, such a model
could be analysed in the framework of the hypergeometric
model (Barton, 1992; Shpak and Kondrashov, 1999;
Barton and Shpak, 2000), where the solutions are unstable
for many forms of selection. There are other cases in the
literature where equivalence of loci leads to unrepresenta-
tive effects (Welch and Waxman, 2002; Waxman and
Welch, 2003; Waxman and Peck, 2003). Let us therefore
consider a more realistic situation where there is some
variation of the scale of allelic effects across loci. We have
thus drawn the mj at random from a uniform distribution
centred on 0.2 (see Fig. 2 for further details). This yields a
very different pattern of changing allele frequencies, as seen
in Fig. 2, indicating that the original pattern in Fig. 1 is
unstable to small deviations from equivalence of loci. In
Figs. 3 and 4 we plot the corresponding mean genotypic
value and genetic variance against time.
The behaviour exhibited in Figs. 2–4 are complicated,

nevertheless, some general features are apparent, or can be
inferred from these figures or the underlying data.
1.
 Different loci generally undergo substitutions at different
times (Fig. 2).
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2.
 The occurrence of substitution at locus j is taken as the
time when the frequency of the Bj allele achieves
pj ¼ 1=2. Except when substitutions of some loci occur
very close together, there appears to be a simple pattern
connecting the size of mj and the substitution order. The
locus with smallest mj undergoes substitution first, the
locus with next largest mj undergoes substitution next.
3.
 The substitutions allow the mean genotypic value, E½G�,
to follow the changing optimum, albeit with a slightly
variable lag (Fig. 3.). This process can continue until all
genetic variation is exhausted.
4.
 Genetic variation is exhausted at a time slightly larger
(due to the lag) than the time tmax given by
�jZopt;0j þ atmax ¼

Pn
j¼1 mj . For times appreciably lar-

ger than tmax the population will go extinct if the
environmental change persists.
5.
Fig. 5. The frequencies pj of the B alleles at the 10 different loci are

plotted against time t. The figure was produced by numerically simulating

a population of N ¼ 10 000 individuals, with each adult producing a mean

number of 1.5 offspring each generation. The other parameter values

adopted were: u ¼ 10�5, a ¼ 10�4, �jZopt;0j ¼ �3 and Vs ¼ 21. The scale

of allelic effects at all loci were taken as mj ¼ 0:2. The results displayed are

for the allele frequencies after transients have died away. For the earliest

time shown, t ¼ �2� 104, all pj were close to 0.
The contribution to the genetic variance from locus j is
2m2

j pjð1� pjÞ and has a maximum value of m2
j =2, at pj ¼

1=2 (the value of pj corresponding to maximum
polymorphism). Thus the peaks in the genetic variance
that are evident in Fig. 4, for t40, result from the
frequency of the B alleles passing through the value of
p ¼ 1=2. When substitutions occur close together, the
resulting features in the genetic variance are, because of
linkage equilibrium, simply the sum of contributions
from different loci. Because of this additive property, the
height of peaks in the genetic variance can be
appreciably larger than m2

j =2 if a number of substitu-
tions contribute to the same peak.

5. Results for a finite population

In addition to numerical iteration of the dynamical
equation, Eq. (4), we have performed numerical simulations
of finite populations. In contrast to the infinite population
calculations of the previous section, numerical simulations do
not neglect linkage disequilibria. Thus, in the simulations,
linkage disequilibria are fully incorporated into the dynamics.

The lifecycle is as outlined, in Section 2, with each
individual producing an average of 1.5 offspring each
generation and a fixed number of N ¼ 10 000 adults were
maintained, each generation (by non-selectively thinning
the population, after stage (ii) of the lifecycle). We have
found it makes little difference whether the scale of allelic
effects (the mj) are the same for every locus or whether we
use the range used for Figs. 2–4. Accordingly, we have
taken all mj to have the same value: mj ¼ m ¼ 0:2.

It is possible to provide an estimate of the expected time
interval between substitutions. We have specified the time

of a substitution, at locus j, as that time at which pj ¼ 1=2.
We then reason that as a result of a substitution

change in optimal

phenotypic value

 !

¼
change of effect of the locus

that underwent the substitution

 !
.

With r denoting the mean rate of substitutions and r�1

denoting the mean time between substitutions, we have
that the change in optimal phenotypic value is (rate of
change of optimum)�(time between substitutions), which
is a� r�1. We also note that substitution of both b alleles
(each with effect �m=2), at a locus, by two B alleles (each
with effect þm=2) results in a net change of effect on the
trait of 2m. Equating the change in optimal phenotypic
value to the change in effect of the trait: a� r�1 ¼ 2m,
leads to a mean rate of substitutions of

r ¼
a
2m

. (6)

Thus r is proportional to the rate of change of the optimal
phenotypic value.
We have performed numerical simulations for a popula-

tion size of 10 000 individuals and explored the behaviour
of the population when the rate of change of the optimal
phenotypic value takes the values a ¼ 0:5� 10�4, 1� 10�4,
2� 10�4 and 3� 10�4.
In Fig. 5 we plot the changing allele frequencies, as a

function of time, when the rate of change of the optimum is
a ¼ 10�4. In Figs. 6 and 7 we plot the corresponding mean
genotypic value and genetic variance as functions of time.
It is clear, from Fig. 6 that the mean genotypic value

closely tracks the moving optimum, as it did when the
population was effectively infinite.
By contrast to the infinite population results, it is clearly

seen, in Fig. 7, that the substitutions occur in a very

regular, near-periodic manner. For n ¼ 10 loci, there are 10
substitutions possible (assuming all pj ’ 0 at time t ¼ 0; as
occurs if �jZopt;0j is sufficiently negative). For a time
interval a little larger than 10r�1 all substitutions occur.
This is very different behaviour to a Poisson point process,
which is substantially noisier. A Poisson point process, over
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Fig. 6. The mean genotypic effect, E½G�, is plotted against time (solid

line). The figure was produced by numerically simulating a population, as

described in Fig. 5. Also plotted in the same figure is the optimal

phenotypic value, Zopt (dashed line).

Fig. 7. The genetic variance, VG , is plotted against time. The figure was

produced by numerically simulating a population, as described in Fig. 5.

There is very close agreement with the genetic variance calculated from the

allele frequencies at different loci, assuming linkage equilibrium,

VG ¼ 2m2
Pn

j¼1 pjð1� pjÞ. The horizontal row of black dots represent

the times at which different substitutions occurred.
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any time interval where the expected number of substitu-
tions is k, would lead to the order of k �

ffiffiffi
k
p

substitutions
(since the variance in the number of substitutions equals
the expected number itself, in such a process).

We can provide a quantitative measure of how regularly
the substitutions occur by considering the index of
dispersion of the substitution process, R, which, for a
given time interval, is the ratio of the variance in the
number of substitutions that occur, to the mean number of
substitutions. It seems most relevant to determine R over a
time interval where the population is closely tracking the
changing optimum. Accordingly, we have carried out 20
independent simulations and determined R for the time
interval ranging from 2� 104 generations to 4� 104

generations; from Figs. 3 or 6, this time interval is wholly
contained in the time region where the population closely
tracks the changing optimum. A Poisson process would
lead to a value of R of unity; whereas we find values of R

that are substantially smaller than unity, thereby indicating
that the random process underlying the present model is
substantially more periodic (or less random) than a Poisson
process. In particular, when all of the mj’s have identical
values ðmj ¼ 0:2Þ or when the mj’s differ from locus to
locus, (we used the set 0:1693; 0:2182; 0:1803; 0:2042;
0:1651; 0:2198; 0:1878; 0:2360; 0:2354; 0:2094), we find va-
lues for the index of dispersion, R, that are smaller
than 0.1.
The simulations used to determine R (where the mj ’s

differed from locus to locus) also allowed us to determine if
there is any pattern in the order of substitutions at different
loci and the sizes of the mj. For example, is the locus with
the largest (or smallest) value of mj the first (or last) locus
to undergo a substitution in a finite population? We
observed no such pattern. On different simulation runs, a
variety of different loci were the first (and last) to undergo
substitution.
In addition to the above, we have tested how well Eq. (6)

operates by determining the mean time interval between
substitutions, from the numerical simulations, and the
prediction of the equation that this time interval is
r�1 ¼ 2m=a. Results were calculated by averaging the nine
time intervals between substitutions and are summarized in
Table 1.
In order to see the stochastic effects of genetic drift and if

there any significant consequences of different rates-of-
change of the optimal phenotypic value, a we have centred

all allele frequencies around the time of substitution, tsubs

(i.e. the time where p ¼ 1=2). These are illustrated in Fig. 8
and to produce the figure, all 10 centred frequency profiles
were, for a single value of a, centred and also numerically
averaged.
It is evident from Fig. 8 that there is a reasonable level of

similarity of the centred frequency profiles.

6. Conclusion

In this work we have investigated how a changing
optimal phenotypic value of a quantitative trait affects the
process of substitution at the different loci controlling the
trait. During the process of substitution of the two alleles at
any locus, the genetic variance is greatly enhanced above
levels associated with mutation selection balance, even
taking into account the range of genetic variances that are
possible (Barton, 1986).
A striking feature of the numerical simulation for a finite

population, is how periodically the substitutions occur
(Fig. 7). This is far more regular than if there is a little
heterogeneity in the properties of loci, in an infinite
population (Fig. 4). The regularity associated with a finite
population leads to the maximum value of the genetic
variance (which fluctuates over time) being lower than the
maximum value in an infinite population, because with an
infinite population, a number of substitutions occur very
close to each other and their combined contributions to the
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Fig. 8. To obtain the panels making up this figure, all allele frequencies (that were obtained from numerical simulation, as described in Fig. 5) were centred

around the time, tsubs, when a substitution occurred. The centred allele frequencies are plotted as faint lines against the difference in time from the

substitution time, tsubs. The thick black line, paverage, is the average of the centred allele frequencies and represents the frequency history associated with a

typical substitution.

Y. Bello, D. Waxman / Journal of Theoretical Biology 239 (2006) 152–160158
genetic variance add, under the approximation of linkage
equilibrium. Indeed if substitutions are well separated in
time, the maximum genetic variance associated with a
substitution, at just one locus, is m2=2, where m is the scale
of allelic effects associated with the locus. Because
mutation, when it occurs, results in an allele of opposite
effect, compared with the pre-mutated allele, the quantity
m2 can also be interpreted as the variance in mutant effects.
The value m ’ 0:2 is often taken as a ‘‘typical’’ value and
used in published work; it follows from Lande’s (1983)
extrapolation of the data of Russell et al. (1963).
Accordingly, a maximum genetic variance associated with
a single, non-overlapping, substitution is �0:02. If sub-
stitutions are not well separated in time, or if the duration
of a substitution is comparable with the time interval
between substitutions, the genetic variance can be greater
than m2=2. In Fig. 7, the genetic variance fluctuates (over
periods of thousands of generations) but is in the vicinity of
0.05 for much of the time and given the reasonable
separation of substitutions, this value of the genetic
variance arises from the appreciable duration of the
substitutions; see Fig. 8.

In a previous work a related model was analytically
investigated for a very large population with a continuum
of alleles possible at every locus (Waxman and Peck, 1999).
In Eq. (A13) of that work an approximation was given for
the genetic variance, which, in the notation of the present
work reads

VG ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2namVs

p
8 ln

m2

2uV s

� �� ��1=4
(7)

(we do not distinguish here between V s and V s � 1). It is
interesting to compare this value, with the value that has
been observed in the present work. Using the parameter
values n ¼ 10, a ¼ 10�4, V s ¼ 21, u ¼ 10�5 we find Eq. (7)
yields a value of VG ’ 0:037, which is in the vicinity of
genetic variances we have obtained here from numerical
simulation, from populations with 10 000 individuals.
We finish, by returning to the recent work we mentioned

in the Introduction, by Gardner et al. (2004), in which they
investigated the genetic variation for total fitness by
carrying out experiments on replicate, caged populations
of Drosophila melanogaster. They found results for varia-
tion in relative fitnesses over time that ‘‘could be due to
subtle changes in external environment common to all
cages.’’ Indeed, they also stated that the ‘‘high variability
we see is incompatible with the ‘‘classical’’ view, in which
genetic variation is maintained by an equilibrium between
deleterious mutations and selection’’. As we have already
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stated in the Introduction of the present paper, knowledge
of the strength of selection and the size of mutation rates
may not, alone, be sufficient to predict the level of genetic
variance of a population. Thus the results we have
presented here may have some bearing on the findings of
Gardner et al. (2004), since, for example, environmental
change may have a significant influence. We note that since
environmental change, in the form of a moving fitness
optimum induces substitutions (i.e. influences the rate of
evolution) which in turn causes enhancements in the
genetic variance, it would be interesting to see if a value
of the rate of change of the optimal phenotypic value, a,
exists that is simultaneously compatible with observed
levels of genetic variance and observed rates of evolution
(the latter, via Eq. (6)).

Acknowledgements

We dedicate this work to the memory of John Maynard
Smith (JMS). This work, like so many of the problems of
current interest in evolutionary biology can be traced back
to interests of JMS. We very much regret that he is not here
to share his time and his insights with us.

It is a pleasure to thank Adam Eyre-Walker, Joel Peck and
John Welch, who were all colleagues of JMS, and Yoshi
Sato, for helpful discussions which have greatly improved
this work. We also thank two anonymous referees, for their
helpful comments. One of us (YB) was supported by an
Alban Scholarship of the European Union, the other (DW)
was supported by the Leverhulme Trust.

Appendix A

In this Appendix, we determine when the quantity
lnðE½wðGÞ�Þ can be accurately approximated by
E½lnðwðGÞÞ�.

We proceed by first determining E½wðGÞ�. Using an
identity following from a Gaussian integral, we can write
the fitness function of Eq. (2) as

wðGÞ ¼

ffiffiffiffiffiffi
Vs

2p

r Z 1
�1

exp½ikðG � ZoptÞ � V sk
2=2�dk. (8)

To find E½wðGÞ� from this result, it is necessary to evaluate
E½expðikGÞ�, which can be found in closed form, assuming
Hardy Weinberg and Linkage equilibrium. Using Eq. (1)
we have

E½expðikGÞ�

¼
Yn

j¼1

E½expðikmjðxj þ yjÞ=2�

¼
Yn

j¼1

pje
ikmj=2 þ qje

�ikmj=2
� �2� �

¼ exp 2
Xn

j¼1

lnðpje
ikmj=2 þ qje

�ikmj=2Þ

 !
. ð9Þ
We note that the factor expð�V sk
2=2Þ in Eq. (8) only

allows values of k satisfying jkjt1=
ffiffiffiffiffiffi
V s

p
to contribute to

the integral. Accordingly, as long as mj=
ffiffiffiffiffiffi
V s

p
51, for all j,

we can expand the exponentials in Eq. (9) and keeping
terms in the exponent to quadratic order in k yields

E½expðikGÞ� ’ expðikE½G� � k2VG=2Þ, (10)

where E½G� and V G are the mean and variance of G :
E½G� ¼ 2

Pn
j¼1 mjðpj �

1
2
Þ, VG ¼ 2

Pn
j¼1 m2

j pjð1� pjÞ. Using
Eq. (10) in Eq. (8) quickly yields lnðE½wðGÞ�Þ ’ �ðE½G��
ZoptÞ

2=½2ðV s þ VGÞ� �
1
2
lnð1þ V G=V sÞ. Thus providing

VG=V s51 and if, for all t of interest, ðE½G� � ZoptÞ
2
5Vs,

we have

lnðE½wðGÞ�Þ ’ �
ðE½G� � ZoptÞ

2
þ V G

2V s

� E½lnðwðGÞÞ�. ð11Þ

We have thus established when lnðE½wðGÞ�Þ may be
approximated by the analytically more convenient quantity
E½lnðwðGÞÞ�.
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