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Abstract. Polyacetylene, regarded as one of the simplest systems bearing solitons which 
are coupled to fermions, is investigated at zero temperature. With A denoting the soliton 
size in units of the coherence length, solitons with A )) 1 are considered. It is found, from 
the exact results of Nakahara el al (for a hyperbolic tangent soliton profile). that the soliton 
creation energy does not possess an expansion in powers of I / A ,  as would be expected of 
a gradient expansion. Rather, the leading terms in a large-A expansion are found to be 
ab + bA-'I2 with constant LI and b. Calculations are presented for general soliton profiles. 
They show that the term linear in A is the soliton creation energy to  zeroth order in gradients. 
The term bA-'l' is shown to arise purely from bound states of the fermions (electrons) 
trapped by the soliton. The evaluation of the coefficient b requires the extraction of the 
finite difference between a divergent sum and integral, a procedure employed in the Casimir 
effect. 

1. Introduction 

One of the simplest examples of a condensed matter system that contains fermions 
and has the ability to support topological solitons is the linear molecule polyacetylene. 
From the lessons learned from an exactly soluble model of this system, we believe a 
number of general features of other, soliton-bearing, fermionic systems may be inferred. 

The low-energy physics of polyacetylene, appropriate to this work, is that of a 
chain of atomic sites, carbon ions, along which electrons hop; one electron being 
denoted by each carbon atom in the chain. The interaction of the electrons with the 
carbon chain results in it being energetically favourable for the carbon chain to acquire 
a dimerization (i.e. a staggered displacement). The pairings associated with this dimeriz- 
ation can occur in two different ways and result in two degenerate ground states that 

lene is an interpolation of the dimerization from one of these degenerate ground states 
to the other and occurs over a finite spatial distance. 

At zero temperature, the case we shall principally concentrate on in this work, the 
soliton is partially characterized by the excess energy a soliton-bearing system has over 
a uniform system. We term this energy the soliton creation energy. 

The objective of the present work is to investigate the behaviour of the soliton 
creation energy when the soliton has a spatial extent that is large compared with the 
coherence length in the problem, to. 

In section 2 of this work we derive a form for the soliton creation energy for general 
soliton profiles when the dimerization is treated as a static field. Section 3 obtains an 
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expansion of the soliton creation energy for large solitons. In section 4 it is shown 
that the gradient expansion breaks down at the second non-zero term in the expansion 
and, in section 5 ,  we provide a method to calculate the second term in the large-scale 
expansion from purely bound state contributions. Section 6 consists of a discussion. 
There are two appendices. 

We shall work in units in which h = 1 and use a prime symbol to denote differenti- 
ation of any function with respect to  its argument. 
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2. General expression for the soliton creation energy 

Much of the material in this section can be found in greater detail in section 3 and 
the related appendix of [l]. The model of polyacetylene we consider consists of a 
continuum field theory of fermions moving in one spatial dimension (labelled by x) 
and coupled to a static dimerization field A(x) [Z]. Denoting the free energy of the 
soliton-bearing system by F and that of the uniformly dimerized system by Fo the 
quantity F- Fo may be expressed solely as a functional of A(x). This arises as follows. 
Let + and 4 he independent Grassmann fields which are functions of the Euclidean 
time variable T and are antiperiodic in this variable over the interval p (the inverse 
temperature). Then we can write 

(2.la) e-BIF-Fo)= Jd$d+ exp(-JE dTjdxd&%+H)+) e-snIdxcAl-Ai, 
I d4  d+ exp(-J,P d7 J dx &a,+ HJ+) 

where 

H = -iuFdxu3+A(x)u, (2.lb) 

Ho= -iuFd,u3+Aou, ( 2 . l C )  

0 is a combination of spring and coupling constants (that need not concem us here). 
uk (k = 1,2,3) are the Pauli matrices; they describe the physics of electrons moving 
at f the Fermi velocity uF. The quantities A(x) and A. indicate dimerization in the 
presence of the soliton and in the uniform system, respectively. The electronic spin 
merely results in a factor of two appearing in the free energy. The functional integrals 
can be carried out and yield a ratio of two functional determinants, thus 

F - F o =  --In * ( Det[d,+H1) +R dx(A’-A;) 
P Det[J,+Hol 

where the factor of two results from the two spin contributions. It is convenient at this 
stage to diagonalize d, (eigenvalues io, = i(2m + I ) n / p ,  m =0,  *l, +2,. . .) and to 
combine the contributions of w, and --om (with a requisite factor of 4 in front of the 
logarithm). With ‘det’ denoting the determinant taken over reduced space where the 
eigenfunctions depend only on x and Pauli indices, we obtain 

The soliton creation energy is the zero-temperature limit of F - Fo, and we denote this 
quantity by E - Eo. In this limit the Matsubara frequency sum goes into an integral 
over frequency. Furthermore, a convenient form for E - Eo is obtained by (i) using 
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the identity Indet-Trln (TI denotes the trace in the space with spatial and matrix 
degrees of freedom) and (ii) using the fact that F- Fa is stationary variations of the 
uniform dimerization A, at fixed A. It may be verified that the stationarity requirement 
results in 

Using this equation we obtain the following result for the soliton creation energy which 
is a functional of A(x) and applies for general soliton profiles: 

lii iaier seitioii~ we ski;; Biid ii coiivenieiii io BO O V ~  io ii i i i ~ i ~  geiiei;i! o ~ s : ~ : o ;  
picture. Thus, we regard the trace in equation (2.5) as being taken over the abstract 
spacespanned by kets Ix) (matrix indices will be suppressed). The appropriate operators 
in this space are the momentum and coordinate operators p and x, respectively. (To 
go to this operator picture we must replace -iJ, in, for example, equation (2.lb) by 
p. )  To avoid possible confusion between operators and c-numbers we shall reserve the 
symbol p only for momentum operators. 

3. Exact results for the expansion of the soliton creation energy for large solitons 

In [3] an exact representation of the soliton creation energy was obtained when the 
s=!ik?x p:&!e \vas 2 hyperba!ic !ar.gen! (!rah). The so!i!n!? prn!l!P ldoptcd EU1S 

A(x) =A,  tanh - ( A 2  (3.1) 

where A is a dimensionless parameter characterizing the soliton size and the coherence 
length is given in terms of the uniform dimerization and Fermi velocity by 

For the analysis of the present section, the most convenient expression for the soliton 
creation energy was given in [ l ] :  

E - E ,  2 -- - l + - ’ P ( A )  
An a 

where K ,  is a Bessel function of imaginary argument of order 1 [4]. 
The naive way to proceed in the limit of large A is to expand the exponential: 

(3.4) 
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This leads to 
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E - Eo ~- -AA+ B +  C/A+. . 
A0 

m 

C =& Io dt  K , ( t ) 4  sinh'(;) 

Note that for large t we have [4] - 

(3 .5a)  

(3.5b) 

(3.5c) 

(3 .5d )  

and it immediately follows that A and B are well defined but C diverges due to the 
slow speed of vanishing of the integrand 

and higherterms in the expansion of equation (3.5) will he progressively more divergent 
due to the increased powers o f f  present. 

The above indicates that more careful considerations must be given to the terms 
containing negative powers of A .  If we note that for fa A, the exponential comes into 
play and cuts off the integrand, it seems likely that the leading term in negative powers 
of A is O(A-'/*) rather than O(A-'). 

To verify this we write, with no approximation, 

(3.8a) € - E o  -- -Ah+B+x(A)  
A0 

(3.8b) 

The coefficients A and B may be exactly determined if the representation 

K , ( f ) =  f du(u2-1) ' /2eC' (3.9) I: 
is used for the Bessel function [4] and the f integration is carried out first. The result 
is ( L ( x )  is the Riemann zeta function) 

3 
277 

(3.10a) A=- (2 -L(2 ) )=0 .170  

B = 0. (3.10b) 

In appendix 1 the leading behaviour of the function x ( A )  is extracted: 

(3.11) 
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We thus find that the exact result for the hyperbolic tangent soliton profile leads to 
the large4 expansion 

__-_ E - E ,  3 r(5) 1 
A. 271 Ji7r Jx - (2-((2))A+--+O(h-’) 

= 0.170A +0.588h-1’2+ O(A-’). (3.12) 

4. Breakdown of the gradient expansion of the soliton creation energy 

In this section we show that the gradient expansion, when applied to the general result 
for the soliton creation energy, breaks down at a finite order. 

We have, from equation (2.5), the result for the soliton creation energy: 

We assume a soliton profile that is given by 

(4.2) 

where @(x) is taken to be an odd, monotonically increasing function that approaches 
*1 at spatial infinity: 

@(*m)=*l. (4.3) 

h is a measure of the soliton size in units of the coherence length tu (which was given 
in equation (3.2)). 

Proceeding, let us now perform the canonical transformation 

within the trace of equation (4.1). Since this transformation preserves the commutation 
relation [x, p] = i, it leaves the trace invariant. Furthermore, on rescaling CO, 

o =Auu (4.5) 

we obtain 

1. (4.6) 
E - E o  U ’ + ~ ~ / A ~  + @’(x) + u&’(x)/A @’(x) - 1 
-= Au - I$Tr[ ln(  u2+p2 f A’+ 1 )-u’+p’/h’+l 

Next, we use the result, valid for any function f of coordinate and momentum operators 
that possess a finite trace (tr denotes the trace over the matrix indices), 

Trf (x, p) = tr f(x,  k-ia,). (4.7) 

A proof of this result is given in appendix 2. Lastly, the change of variables correspond- 
ing to the rescaling k+ h k  gives a form for (E - E0)/Au that is suitable for a gradient 
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expansion (U=*] are the eigenvalues of u2): 
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U’+ k2+02(x)  - (Zik/A)J, -(J:/A2)+ (u@’(x)/A) 
v2+ k2+ 1 

(4.8) 

In this last form, each derivative comes with a power of A-‘, thus, if it exists, an 
expansion in powers of derivatives is equivalent to an expansion in powers of A-’. 

The leading term in a derivative expansion follows by setting A-’ = 0 within the 
integrals. This yields 

~ ~ J b m d ~ [ ( 1 - @ Z ( ~ ) ) + 2 @ z ( ~ ) I n @ ( x )  T 1 . (4.9) 

The exact results given in section 3 hold for the soliton profile @(x) = tanh(x). If this 
is substituted into equation (4.9) the result is obtained in accordance with equations 
(3%) and (3.10a). We thus see that the term in the soliton creation energy that is 
linear in A arises simply from the neglect of gradients: it is the contribution from the 
system adiabatically adjusting to the slowly varying soliton profile. The absence of 
derivatives and hence of commutators indicates that this is a result that follows from 
classical, i.e. non-quantum, considerations. 

Higher terms in the gradient expansion follow from expansion of the logarithm 
according to 

In(A+ E )  =In A+ln( 1 +A-’E)  

= I n A + A - ’ B - $ ( A ~ ’ E ) ’ + .  . . (4.10) 

where A is chosen to be v2+  kZ+02(x) .  It immediately follows that there are no terms 
of O(Ao) since this contribution has an integrand that is odd under k + -k and U+ -U. 

The term of O(A-’) that would be expected to follow in a gradient expansion may, 
straightforwardly, be shown to be 

For @(x) approaching zero as any non-zero power of x (recall it is odd), results in 
an integrand behaving as x - ~  for small x and thus the integral diverges. In this way 
we see that the gradient expansion breaks down at the term of second order in gradients 
due to the vanishing of the soliton profile. This is a fundamental breakdown since the 
vanishing of the dimerization is a necessary condition for the very existence of a soliton! 

The results of this section indicate that the absence of an expansion of the soliton 
creation energy in powers of A-’ is not a special feature of the hyperbolic tangent 
profile but a feature present for general soliton profiles. 
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5. Determination of the A-’’’ term in the soliton creation energy and its 
physical origin 

In section 4 we attempted to use a gradient expansion to generate a series for the 
soliton creation energy in powers of A-‘, We found that no such expansion was possible 
and the procedure, despite applying to general soliton profiles, mirrored (albeit in a 
very different language) the calculation for the hyperbolic tangent profile given in 
section 3. Let us pursue this analogy in this section and write equation (4.8) in the 
suggestive form 

(5.1~1) 

(5.lb) 

(and we have made the change of variables equivalent to the rescaling x*x/A). The 
leading term in equation (5.la) has been dealt with in section 4 and we now concentrate 
on equation (5.lb) for x(A). 

Individually, the contribution from each of the logarithms in equation (5.1 b )  
diverges and, thus, both logarithms should be treated together. To properly treat them 
separately requires the imposition of a suitable cut-off which makes the individual 
contributions finite. Only when the two contributions are combined should the cut-off 
be allowed to tend to infinity. We shall not do this here but, rather, shall naively 
manipulate the two contributions separately. The principal reasons for our approach 
are simplicity of treatment and the naturalness of the final expression. Our manipula- 
tions also lead to the exact result. 

To proceed, we re-express the k, x integral over the leading logarithm of equation 
(5.16) in terms of a trace over operators p and x (i.e. we use equation (4.7) from right 
to left). We obtain 

Our approximation, which aims to capture the leading A dependence of x ( A )  is to 
replace ‘4 by its linear approximation 

@ - =-@yo). (3 nx (5.3) 

This assumes a smooth soliton profile and uses the vanishing of @ at the origin, It 
seems additionally appropriate since: (i) A is large and hence x/A is ‘small’ in an 
average sense; (ii) the small-argument behaviour of @(x) results in the gradient 
expansion breaking down. An accurate treatment of the small-argument behaviour 
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therefore seems the most natural direction to proceed. Thus, the function obtained 
from the linearlized profile is denoted by ,yL(A) and is given by 
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dk dx 

Defining 

o = 21@'(O)l/h 

(5.4) 

we see that the operator appearing in equation (5.4) is that of a simple harmonic 
oscillator of mass f and angular frequency o. Thus, the trace in equation (5.4) becomes 

(5.6) 

On going to appropriately scaled coordinates in the k, x plane, the second term involving 
the logarithm in equation (5.4) can be written: 

Thus, equation (5.4) can be written as 

(5.7) 

( 5 . 8 )  

Following the work of [SI, where the extraction of the finite difference between a 
divergent sum and a divergent integral is given, we define E' by 

m m 

We can then write 

, y L ( A ) = - 2 [ E (  n=o f' -[omdn)ln(v2+nnw). 

Noting that the results of [SI imply 
I -  r m  \ (z0-]" dn) xconstant=O 

we have 

,yL(A) = -2 E ( f' - Iom dn) In( :+ n )  , 
"-0 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The difference between the divergent sum and integral appearing in this equation is 
given in equation (5.2) of [SI: 

( io - [omdn) ln(q+n)= - [ h r ( v ) - ( q  -{) In q+q-~lnZ. i r l .  (5.13) 
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We find that ,yL(A) may be written as 

,yL(h) = e j: du[ln T(v‘ ) - (~ ’ - f )  In U’+ v2-f ln  2 ~ 1 .  
T 

The integral may be evaluated in closed form by using the representation [41 

In r(z) = ( z  -f) In z - z +;In 2- + 2  

This leads to 

(5.14) 

(5.15) 

(5.16) 

Then the change of variables u + ( t / u ) ’ / ’  decouples the two integrals and leads to 

(5.17) 

When I@’(O)l= 1,  this result coincides exactly with the result found for the hyperbolic 
tangent profile, equation (3.12). The linearization of the soliton profile, equation (5.3), 
is thus seen to account for the entire A-’/’ dependence in the large-A expansion. 

Let us enquire about the physical origin of the A-’i’ term in the soliton creation 
energy. Looking back to section 2 of this paper, it is evident that the logarithms in the 
free energy originated from an explicit ‘integration out’ of the electrons in the problem. 
The eigenvalues of the frequency-independent part of the argument of the logarithm 
may then be identified with the electronic spectrum. It follows that the discrete part 
of the spectrum is associated with bound states of the electrons localized in the vicinity 
of the soliton. The term in the soliton creation energy is thus seen to be a 
measure of a spectral weight difference, namely that of the excitation spectrum in the 
presence of the soliton and that following from the semiclassical estimate found by 
neglecting derivitives. In contrast to the leading, linear, term in the soliton creation 
energy, the A-’/’ term has an intrinsically quantum mechanical nature-there being 
no notion of discrete numbers associated with bound particles in classical mechanics. 

6. Discussion 

In  this work an expansion of the soliton creation energy has been investigated. The 
leading terms in an expansion of the soliton creation energy for large values of the 
dimensionless soliton size A were found (i) for a specific soliton profile and then (ii) 
for general soliton profiles. An expansion of the form aA f bA-’ I2+.  . . was found, 
indicating the absence of a gradient expansion, irrespective of how large the soliton 
is. The term of O(A-’/’), which signalled the non-existence of a gradient expansion, 
was shown to originate from bound states of electrons on the soliton. The calculation 
of the coefficient of A-‘/’ required the extraction of the finite difference between a sum 
over the bound state contributions and an integral over a semiclassical phase space 
estimate. It is interesting that such techniques were developed in the Casimir effect 
where discrete and continuous mode contributions have to be subtracted and we 
wonder whether there exist any deeper connections or analogies between soliton physics 
and the Casimir effect. 
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The present work has dealt only with the case of zero temperature. For the part of 
the soliton creation energy that is linear in A, it is straightforward to obtain the 
finite-temperature extension by replacing the frequency integral by a sum over 
Matsubara frequencies (we shall leave it implicitly understood in what follows that 
the finite-temperature value of the uniform dimerization Po is used in all formulae). 
The above generalization to finite temperatures still results in a contribution that is 
linear in A. 

Consider next the terms that are corrections to the term linear in A. These are given 
by equation (5.2). We can see some of the finite-temperature corrections by continuing 
to work with the linearized profile whose contribution is given in equation (5.16) by 
,yL(A). By replacing the frequency integral by a Matsubara sum and employing the 
Poisson summation trick it can be shown that the leading correction to the zero- 
temperature part of ,yL(A) is O[l/(pA,)]. Thus, providing the temperature is sufficiently 
low that pA, is large compared with unity, the zero-temperature part will be the 
dominant term. We can see the range of temperatures where the gradient expansion 
is applicable by expanding in powers of A-'. This is most easily achieved by expanding 
the inverse tangent term in equation (5.16). It is seen that the expansion parameter is 
proportional to A-'(pAJ2. This will be small in the Ginzburg-Landau regime where 
A, is small, i.e. close to the transition temperature. In polyacetylene the extremely high 
transition temperature makes this temperature region uninteresting; however, in systems 
with a similar mathematical description, such as superconductors, it is a region of 
considerable interest. 

The results for the soliton creation energy presented in this work are valid when 
A is large compared with unity. It is interesting to enquire whether they furnish a 
reasonable description even when A is not large. From [ l l ]  we know that the exact 
soliton creation energy for a hyperbolic tangent profile is given by 

(6.1) 

If we use the approximate form obtained by keeping the leading two terms in the 
large-A expansion, equation (3.12), 

(7) =0.170A+0.588A\-1'2 (6.2) 

E - E o  2 
exact. -=- A = l  

Ao 

and minimize with respect to A we find 

E - E o  
Ao 

A = 1.441 -- -0.735 approximate 

These correspond to errors in A and (E - E o ) / A o  of 44% and 15%, respectively. 
Finally, let us comment on the relevance of the methods presented in this paper 

to other soliton-bearing fermionic systems. Any system described by a mean field type 
of second quantized Hamiltonian (that is, bilinear in Fermi fields) will lead to a free 
energy functional involving a trace such as that in equation (4.1). This is the result of 
integrating the fermions out of the problem. Consequently, many of the results in this 
work will generalize to some of these other systems. The principal difference may be 
the differing space dimensionality and order parameter structure; however, our investi- 
gations on vortices in type 11 superconductors [6] indicate that a representation of the 
free energy exists that has very great similarities to equation (4.1). In the recent 
numerical work of Gygi et al[7] on the low-temperature structure of vortices in extreme 
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type I1 superconductors, the authors attribute the very large derivative of the order 
parameter at the vortex origin to bound states of electrons trapped on the vortex. The 
present work indicates the sensitivity of the bound state contribution in a related system 
to the derivative of the soliton profile, IV(O)(, and there is clearly a relation between 
these two findings. We hope to pursue this topic elsewhere. 
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Appendix 1. Expansion of the function xQ)  

In this appendix we expand the function ,y(A),  given in equation (3.86).  for large A. 
We have 

For large f we have 

(A!.?) 

(A1.2) 

(AI .3 b )  

(A1.3cj 

The change of variables f = Au makes manifest the A dependence of xl(A). The integral 
may be evaluated by expressing I / ( e "  - 1) in terms of coth(u/2) and then using the 
partial fraction decomposition. This leads to the following result for ,yl(A): 

Note that for ,y2(A) the quantity 

(A1.4) 

behaves for large f as f-5'2. Thus, to obtain the correct behaviour up to and including 
O(A-') we can simply expand the second parentheses in the integrand of equation 
(A1.3~). This indicates that x2 has a large4 expansion that begins at O(A-'). It also 
indicates that ,y2 will not be analytic in A-'  at higher order due to divergence of the 
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coefficients, and additional considerations need to be given to extract these higher 
terms. Thus 

x A A )  =O(A-') (A1.5) 
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and we obtain 

(A1.6) 

Appendix 2. Proof of Tr/(x,p)=trjdkdx/(x, k-i@.)/Zn 

In this appendix we prove the relation between the quantum mechanical trace and the 
phase space integral. 

The proof proceeds as follows. Consider a function f which depends on the 
coordinate and momentum operators x and p and also has unspecified matrix structure. 
On suppressing the matrix indices, we have 

(x'lf(x, p)Ix'? = f x', -i 7 (x'lx") ( a:) 

Then, with tr denoting the matrix trace, 
, 

Trf(x,  p) = t i  J dx'(x'lf(x, p)lx') (A2.2) 

and using equation (A2.1) with x"=x', we obtain the required result: 

Tr f (x ,p)=t r  [ dkxf(x, 1- k-ia,). , L ,, 
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